
27.06.2012 |

Task Analysis with Score-P

Daniel Lorenz
Jülich Supercomputing Centre

CScADS Tools Workshop
Snowbird, Utah

Overview

 Introduction to Score-P

 Task related performance issues

 Reconciling tasking with existing techniques

 Example analysis

 Future work

Score-P

Introduction to Score-P

Common tools infrastructure:

■ Starting with Scalasca, Periscope, TAU, and Vampir

■ Open for other tools and groups

SILC and LMAC projects funded by BMBF, Germany

■ Scalable Infrastructure for Automatic Performance

Analysis of Parallel Codes (SILC)

■ Performance dynamics of massively parallel codes

(LMAC)

PRIMA project funded by DOE, US

■ Performance Refactoring of Instrumentation,

Measurement, and Analysis Technolgies for Petascale

Computing

Score-P functionality

Fundamental tool concepts:

■ Instrumentation (various methods), later sampling

■ Event trace recording

■ Profile generation

■ Online access to profiling data and execution control

Parallelization methods:

■ MPI

■ OpenMP 3.0

■ Hybrid parallelism (and serial)

More functionality in the future (Cuda, OmpSs, HMPP, Pthreads, …)

Analysis tools kept separate on top of Score-P components

Score-P architecture

Target application (MPI, OpenMP, hybrid, serial)

Instrumentation

Score-P measurement infrastructure

Online interface
Event traces

(OTF2 format)

Vampir Scalasca Periscope TAU

Call-path profiles
(CUBE4 and TAU formats)

Compiler
TAU

instrumentor
OPARI 2 User

more … Hardware counter Memory management

Binary
instrumentor

MPI
wrapper

Score-P availability

Current release is version 1.0.2

■ New BSD license

■ The task profiling features of this presentation will be in the Score-P 1.1

release

Download: http://www.score-p.org

http://www.score-p.org/
http://www.score-p.org/
http://www.score-p.org/

Goals of the tasking support

Analysis of task related performance issues

■ Task granularity

■ Task dependency analysis (under development in Scalasca)

Reconcile existing techniques with tasking

■ No continuous instruction stream per thread anymore

■ Additional level of parallelism and code structure need to be represented

Generic event model, used for multiple tasking systems

■ Currently, implementation for OpenMP tied tasks

■ OmpSs and HMPP support under development

Task related performance issues

Task granularity

Tasking offers automated load balancing

■ But introduces task management overhead

Tasks may be too small

■ The management overhead may cause performance loss

■ Task creation may become a bottleneck

■ Only a fraction of tasks may be too small

Especially when using recursive task creation structures

■ Identify problematic tasks

For recursive tasks: Where is the best cut-off?

Tasks may be too large and too few

■ Reduction of the load balancing effects

■ Similar effects may happen with few, long dependency chains

What data shall we measure?

We want to measure

■ runtime of tasks

■ task creation time and management overhead

■ Number of tasks

Only a fraction of tasks may have performance issues

■ In the total sum, the effects might be leveled by other tasks

■ Additional statistical information (min,max,median,mean) might help

recognizing an issue

How to identify problematic tasks

Provide possibilities to group

tasks

■ by constructs

■ depending on certain

parameters (e.g. recursion

depth)

mean execution time in µs

Reconcile tasking with existing techniques

Reconcile tasking with existing techniques

No continuous instruction stream per thread anymore

■ Distinguish the event stream of each task

■ Need to identify task instances

■ Track task switches

■ For OpenMP tied tasks, we can insert necessary instrumentation

Task data representation

Additional level of parallelism and code structure

For Scalasca/Score-P we want to integrate tasks into Cube call trees

Where shall we place tasks in the call tree?

Display tasks in a Cube4 profile (1)

 Require that the inclusive time is the subtree’s sum of exclusive times

 Tasks must appear at execution point in the tree of the implicit task

■ Correct metric attribution

■ Other position may lead to

■ Negative times for exclusive execution time (and other metrics)

■ Appearance of false idle times at synchronization points

1

1

1

6

!$ omp parallel region

create task 1

barrier

task 1

1

-5

7

6

!$ omp parallel region

create task 1

barrier

task 1

At execution point At creation point

Display tasks in a Cube4 profile (2)

 All tasks appear as children of the implicit task

 If tasks appear as children in other explicit tasks:

■ Random execution order leads to incomparable call-tree structure

■ Call-tree may become extremely deep

■ You might end up with separate node for every task instance

■ Could lead to inconsistent call tree

barrier

task 1

taskwait

task 2

taskyield

Enter barrier
Start task 1 => enter task 1
Enter taskwait
Start task 2 => enter task2
Enter taskyield
Resume Task 1 => exit taskwait

Display tasks in a Cube4 profile (3)

 A task may be suspended and resumed at another scheduling point

■ How do we count undividable metrics, e.g. visits?

Similar problem for min, max, sum of squares

■ First event of the resumed task is an exit event

■ We would need to copy the whole call stack of the task

 Solution

■ Leave stub node for task execution at execution point

■ Put task’s inner structure in a separate tree beside the implicit task

Call-tree example (main)

Call-tree example (tasks)

Analysis example

nqueens

 Code of the Barcelona OpenMP Tasking Suite (BOTS)

 Calculate the possibilities to place n queens on an nxn chess board

 BOTS provide multiple versions of the code

■ Analyze the version without cut-off

■ There is also an optimized version with a cut-off

Runs performed on Juropa using a GNU compiler

Speedup of nqueens without cut-off (s)

Number of threads

0

0,2

0,4

0,6

0,8

1

1,2

1 2 4 8

no cut-off

Profile comparison (execution time)

Profile of a run with one

thread

Profile of a run with four

threads

Sum of execution time of user code over all threads stays nearly the same

Profile comparison (execution time)

Profile of a run with one

thread

Profile of a run with four

threads

Additional time due to management overhead

Tasks by recursion level

Depth level Mean time Sum Number of tasks

0 23.6 µs 0.0003 s 14

1 17.4 µs 0.0034 s 196

2 13.4 µs 0.0293 s ~ 2,000

3 10.6 µs 0.2019 s ~19,000

4 8.05 µs 1.086 s ~135,000

5 5.97 µs 4.520 s ~750,000

6 4.23 µs 14.31 s ~3,400,000

7 2.93 µs 34.25 s ~11,700,000

8 1.98 µs 61.56 s ~31,000,000

9 1.35 µs 83.01 s ~61,000,000

10 0.94 µs 83.48 s ~89,000,000

11 0.69 µs 62.42 s ~91,000,000

12 0.51 µs 32.26 s ~63,000,000

13 0.26 µs 7.145 s ~27,000,000

Depth level Mean time Sum Number of tasks

0 23.6 µs 0.0003 s 14

1 17.4 µs 0.0034 s 196

2 13.4 µs 0.0293 s ~ 2,000

3 10.6 µs 0.2019 s ~19,000

4 8.05 µs 1.086 s ~135,000

5 5.97 µs 4.520 s ~750,000

6 4.23 µs 14.31 s ~3,400,000

7 2.93 µs 34.25 s ~11,700,000

8 1.98 µs 61.56 s ~31,000,000

9 1.35 µs 83.01 s ~61,000,000

10 0.94 µs 83.48 s ~89,000,000

11 0.69 µs 62.42 s ~91,000,000

12 0.51 µs 32.26 s ~63,000,000

13 0.26 µs 7.145 s ~27,000,000

Tasks by recursion level Mean task creation time approx. 0.85 µs

>100 % Overhead

>20 % Overhead

>10 % Overhead

>5 % Overhead

Depth level Mean time Sum Number of tasks

0 23.6 µs 0.0003 s 14

1 17.4 µs 0.0034 s 196

2 13.4 µs 0.0293 s ~ 2,000

3 10.6 µs 0.2019 s ~19,000

4 8.05 µs 1.086 s ~135,000

5 5.97 µs 4.520 s ~750,000

6 4.23 µs 14.31 s ~3,400,000

Tasks by recursion level

>10 % Overhead

>5 % Overhead

 Let us target less than 5% management overhead per task

 210 tasks may be too little for proper load balancing

 Upper levels do not contribute significant amount of execution time

 Tasks in last level will grow due to merge with children

 Compromise: Cut-off at level 3

Mean task creation time approx. 0.85 µs

Resulting speedup

Number of threads

0

1

2

3

4

5

6

7

8

9

1 2 4 8

no cut-off

with cut-off

Future Work

 Currently, only OpenMP tied tasks are supported

■ Ongoing work on HMPP and OmpSs support

■ Hopefully, a new OpenMP tools interface provides necessary

information to support untied tasks, too

 Trace analysis of tasks with Scalasca

■ Extend for additional patterns

■ Task dependency analysis

