

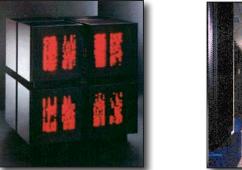
... for a brighter future

<u>ALCF</u>

Argonne Leadership Computing Facility

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility


Pete Beckman Chief Architect Argonne Leadership Computing Facility

Over 20 years of Advanced Systems for DOE and Others

ACRF period [1983-1992]

- DOE's founding ACRF
- Explored many parallel architectures, developed programming models and tools, trained >1000 people
- **HPCRC** period [1992-1999]
 - Production-oriented parallel computing for Grand Challenges in addition to Computer Science.
 - Fielded 1st IBM SP in DOE

- TeraGrid [2001-present]
 - Overall Project Lead
 - Defining, deploying and operating the integrated national cyberinfrastructure for NSF
 - 9 sites, 22 systems, 200TF
- LCRC [2003-present]
 - Lab-wide production supercomputer service
 - All research divisions, 56 projects, 380 users

BlueGene Evaluation [2005-present]

- Founded BlueGene Consortium with IBM
 - 67 institutions, >260 members
 - Applications Workshop Series
 - Systems Software Collaborations

DOE Leadership Computing Facility (LCF) Strategy

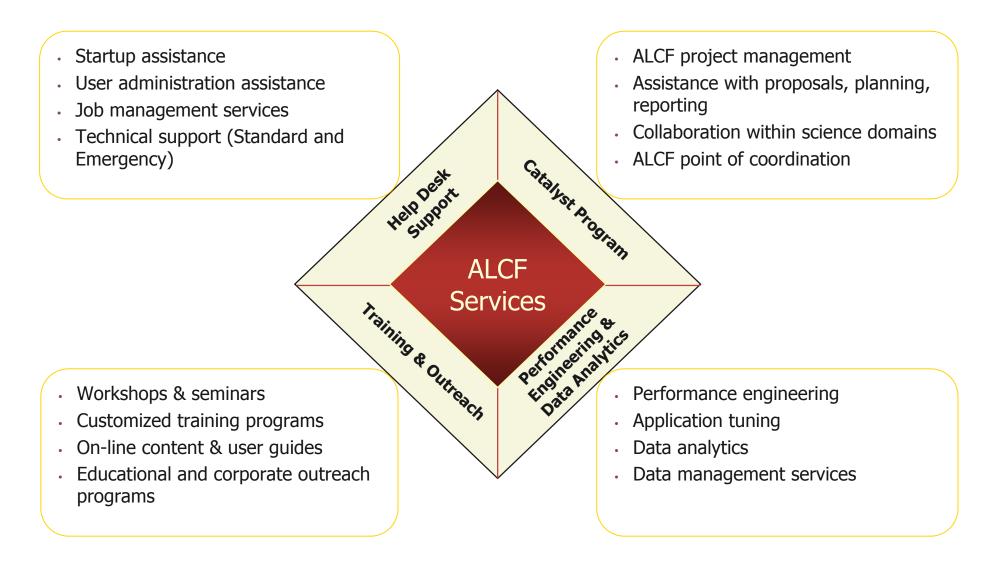
- DOE SC selected the ORNL, ANL and PNNL teams (May 12, 2004) based on a competitive peer review
 - ORNL will deploy a series of systems based on Cray's XT3/4 architectures
 @ 250TF/s in FY07 and 1000TF/s in FY08/09
 - ANL will develop a series of systems based on IBM's BlueGene @ 100TF/s in FY07 and 250-500TF/s in FY08/FY09 with IBM's Next Generation Blue Gene
 - PNNL will contribute software technology
- DOE SC will make these systems available as capability platforms to the broad national community via competitive awards (e.g. INCITE Allocations)
 - Each facility will target ~20 large-scale production applications teams
 - Each facility will also support development users
- DOE's LCFs complement existing and planned production resources at NERSC
 - Capability runs will be migrated to the LCFs, improving NERSC throughput
 - NERSC will play an important role in training and new user identification

Mission and Vision for the ALCF

Our Mission

Provide the computational science community with a world leading computing capability dedicated to breakthrough science and engineering.

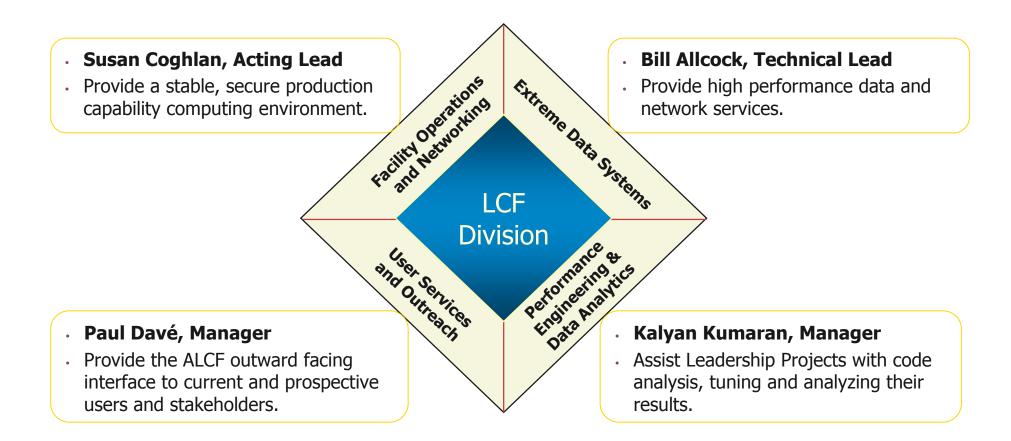
Our Vision


A world class center for computation driven scientific discovery that has:

- outstandingly talented people,
- the best collaborations with computer science and applied mathematics,
- the most capable and interesting computers and,
- a true spirit of adventure.

See http://www.alcf.anl.gov/ for additional information

ALCF Service Offerings



Catalyst Program

What is it?	ALCF Program to establish strategic collaborations with our leading project partners to maximize benefits from the use of various ALCF resources
What are the program features?	 Full project lifecycle approach to collaboration with our project partners Provide value-added services and support in conjunction with ALCF HW and SW resources Tailor services-delivery program for the unique requirements of each research initiative Maintain close contact with research teams through ongoing interactions with assigned ALCF Project Coordinator
What are the key objectives?	 'Jump-start' the use of ALCF resources for major ALCF projects Align availability of ALCF services and compute resources with the needs of researchers through joint project planning based on research goals and timing objectives Establish a spirit of collaboration to maximize the value that ALCF can bring to our project partners

ALCF Organization

ALCF Timeline

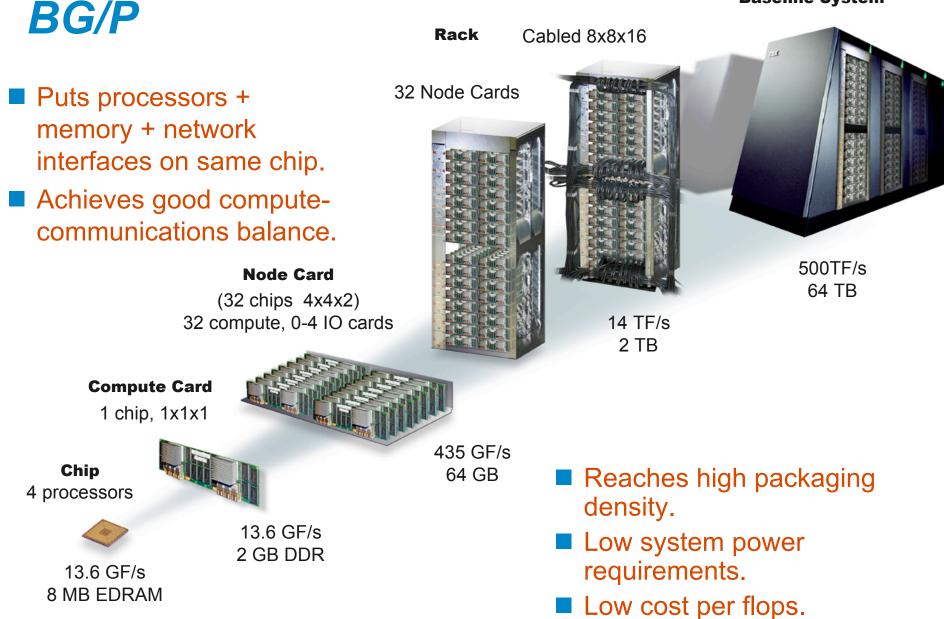
2004

- Formed of the Blue Gene Consortium with IBM
- DOE-SC selected the ORNL, ANL and PNNL teams for Leadership Computing Facility award

2005

- Installed 5 teraflops Blue Gene/L for evaluation
- 2006
 - Began production support of 6 INCITE projects, with BGW
 - Joined IBM and LLNL to design and develop BG/P & BG/Q

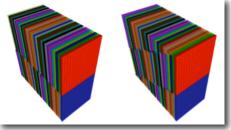
2007

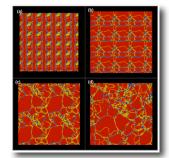

- Increased to 9 INCITE projects; continued development projects
- Install 100 teraflops next gen Blue Gene system (late 2007)

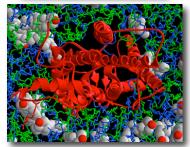
2008

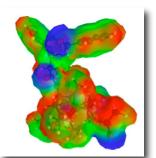
- Begin support of INCITE projects on next gen Blue Gene
- Add 250-500T teraflops Blue Gene system

Baseline System


Why We Like Blue Gene


- Blue Gene has been fielded within a factor of 3 of PF goal
 - No other system is close to this scale (lower risk to scale to PF)
- Applications community has reacted positively, though the set of codes is still limited, but is larger than expected, and some applications are doing extremely well
 - For those applications that can make the transition, the BG platform provides outstanding scientific opportunity many can, some can't
- Blue Gene has been remarkably reliable at scale
 - The overall reliability/TF appears to be at least an order of magnitude better than other platforms for which we have data
- Power consumption is 2x better than other platforms
 - Lower cost of ownership and window to the future of lower power
- System Cost
 - The cost of deploying a balanced system is lower than other platforms



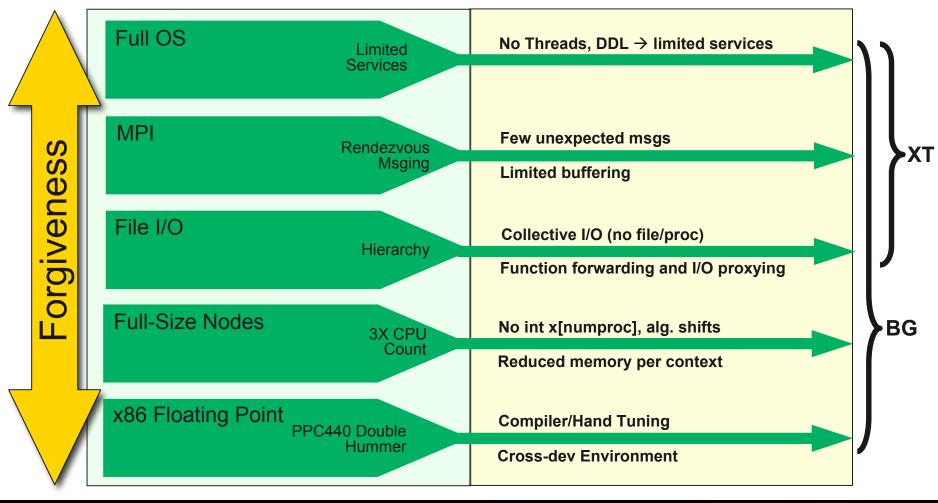

Example Blue Gene Science Applications

- Qbox FPMD solving Kohn-Sham equations, strong scaling on problem of 1000 molybdenum atoms with 12,000 electrons (86% parallel efficiency on 32K cpus @ SC05), achieved 207 TFs recently on BG/L
- ddcMD many-body quantum interaction potentials (MGPT), 1/2 billion atom simulation, 128K cpus, achieved > 107 TFs on BG/L via fused dgemm and ddot
- BlueMatter scalable biomolecular MD with Lennard-Jones 12-6, P3ME and Ewald, replica-exchange 256 replicas on 8K cpus, strong scaling to 8 atoms/node
- GAMESS ab initio electronic structure code, wide range of methods, used for energetics, spectra, reaction paths and some dynamics, scales O(N⁵-N⁷) in number of electrons, uses DDI for communication and pseudo-shared memory, runs to 32,000 cpus
- FLASH3 produced largest weakly- compressible, homogeneous isotropic turbulence simulation to date on BG/L, excellent weak scaling, 72 million files 156 TB of data

26 BlueGene/L Systems on 11/06 TOP500 List 819 teraflops fielded today, with 294,912 processors

Rank Site	Country	Processors	RMax	RPeak
1 DOE/NNSA/LLNL	United States	131,072	280,600	367,000
3 IBM Thomas J. Watson Research Center	United States	40,960	91,290	114,688
13 Forschungszentrum Juelich (FZJ)	Germany	16,384	37,330	
17 ASTRON/University Groningen	Netherlands	12,288		
21 Computational Biology Research Center, AIST	Japan	8,192		
22 Ecole Polytechnique Federale de Lausanne	Switzerland	8,192	18,200	
23 High Energy Accelerator Research Org (KEK)	Japan	8,192	,	,
24 High Energy Accelerator Research Org (KEK)	Japan	8,192		•
25 IBM - Rochester Deep Computing	United States	8,192	18,200	
42 UCSD/San Diego Supercomputer Center	United States	6,144	13,780	•
52 IBM - Rochester DD1 Prototype	United States	8,192	11,680	
63 High Energy Accelerator Research Org (KEK)	JAPAN	4,096	9,360	
64 IBM - Almaden Research Center	United States	4,096	,	,
65 IBM Research	Switzerland	4,096	9,360	
66 IBM Thomas J. Watson Research Center	United States	4,096	9,360	,
138 Argonne National Laboratory	United States	2,048		,
139 Boston University	United States	2,048	4,713	
140 CERT (Center for Excellence for Applied R&T)	UAR	2,048	4,713	5,734
141 Iowa State University	United States	2,048	4,713	,
142 Lawrence Livermore National Laboatory	United States	2,048	4,713	5,734
143 MIT	United States	2,048	4,713	-
	United States	2,048	4,713	5,734
145 NIWS Co, Ltd	Japan	2,048	4,713	5,734
146 Princeton University	United States	2,048	4,713	
147 Renaissance Computing Institute (RENCI)	United States	2,048	4,713	-
148 University of Edinburgh	United Kingdom	2,048	4,713	5,734

Unique and Challenging Features


- Relatively low memory per CPU core (but very large aggregate).
 - BG/P doubles RAM per core (2 Gig / 4 cores)
 - True SMP is possible (sharing data structures)
- Single node optimization
 - Use of "double hummer" requires lots of hand tuning and compiler experimentation
 - Strategies: Good math libs, perf counters, ATLAS, code tools
- Non-linux kernel makes development difficult (see ZeptoOS)
- Scalable I/O strategy required
 - One file per process **strongly** discouraged
 - Who really wants 300K files per snapshot, with **millions** per large scale run?
 - PnetCDF and HDF5 are good strategies for effectively using parallel storage system (PVFS)
- Debugging at scale remains challenging
 - Tool groups are helping, but the issue is nevertheless hard

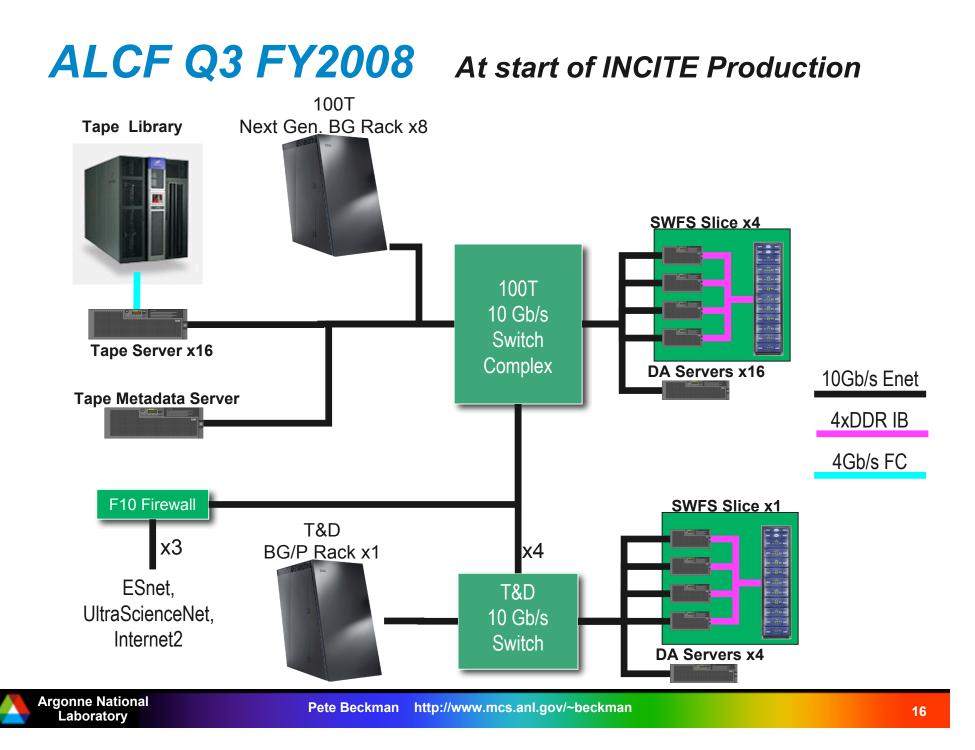
Challenges and Choices to Achieve Leadership-Class Capability

Commodity Linux Clusters

Extreme-scale Cray/BG

Understanding Blue Gene Usability

Concurrent Programming Tools & Styles


Grid Linux Pure MPI Cluster

- Blue Gene/L is a "PureMPI" software environment
- Current kernel limits the use of some technologies:
 - DLLs, sockets, Java, threads, fork(), Python, etc

BG/P will improve functionality

- Porting ultra-scale PureMPI programs is generally straightforward
 - The IBM xl* you know and love
 - Some *build* environments can be complicated (crosscompilers)
 - Reduced memory per node and sheer node count forces some algorithmic changes
 - Achieving good double-hummer requires extra work

Processor

BlueGene/L Chip

BLC DD 2.0 FPU1 PUO ЭIJ Eth # # 2 complete cores

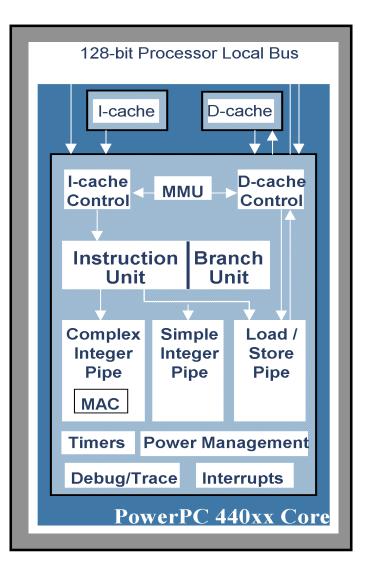
Just add DRAM

– PPC440x5 Processor Core – 700 MHz

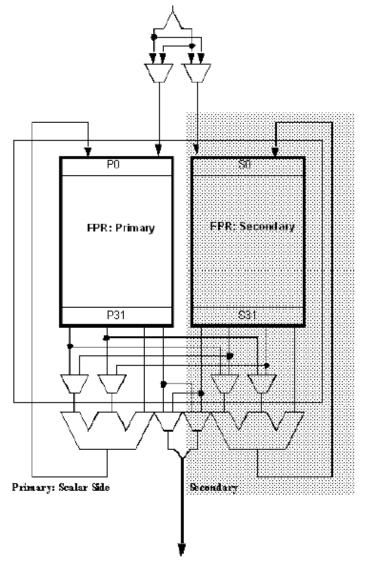
- Superscalar: 2 instructions per cycle
- Out of order issue and execution
- Dynamic branch prediction, etc.
- Two 64-bit floating point units
 - SIMD instruct. over both register files
 - Parallel (quadword) loads/stores
 - 2.8 GFLOPS/processor

Interconnect

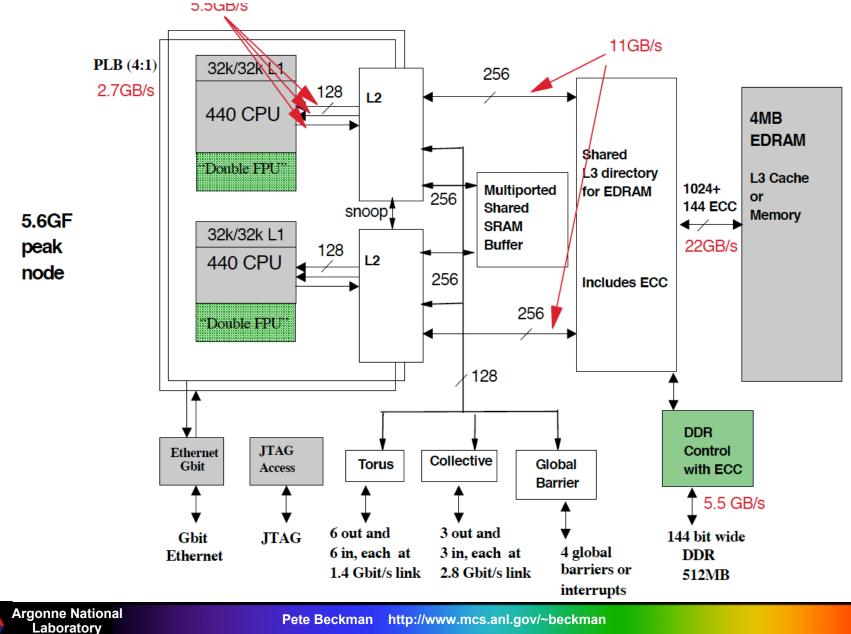
- 3 Dimensional Torus
 - Virtual cut-through hardware routing
 - 1.4Gb/s on all 12 node links
 - 1 µs latency bet. neighbors, 5 µs to farthest


- Global Tree

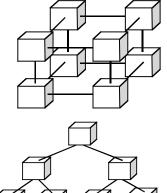
- One-to-all broadcast, reduction functionality
- 2.8 Gb/s of bandwidth per link
- Latency of one way tree traversal 2.5 μs
- Low Latency Global Barrier and Interrupt
 - Latency of round trip 1.3 μs
- Ethernet
 - All external comm. (file I/O, control, etc.)
- Control Network


PPC440x5 Processor Core Features

- High performance embedded PowerPC core
- 2.0 DMIPS/MHz
- Book E Architecture
- Superscalar: Two instructions per cycle
- Out of order issue, execution, and completion
- 7 stage pipeline
- 3 Execution pipelines
 - Combined complex, integer, & branch pipeline
 - Simple integer pipeline
 - Load/store pipeline.
- Dynamic branch prediction
- Single cycle multiply
- Single cycle multiply-accumulate
- Real-time non-invasive trace
- 128-bit CoreConnect Interface

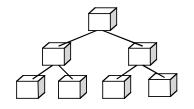

Dual FPU Architecture

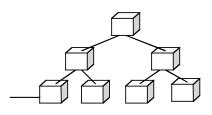
- Two 64 bit floating point units
- Designed with input from compiler and library developers
- SIMD instructions over both register files
 - FMA operations over double precision data
 - More general operations available with cross and replicated operands
 - Useful for complex arithmetic, matrix multiply, FFT
- Parallel (quadword) loads/stores
 - Fastest way to transfer data between processors and memory
 - Data needs to be 16-byte aligned
 - Load/store with swap order available
 - Useful for matrix transpose



BlueGene/L Compute System on a Chip ASIC

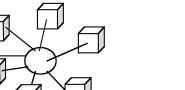
20


BlueGene/L - Five Independent Networks


3 Dimensional Torus

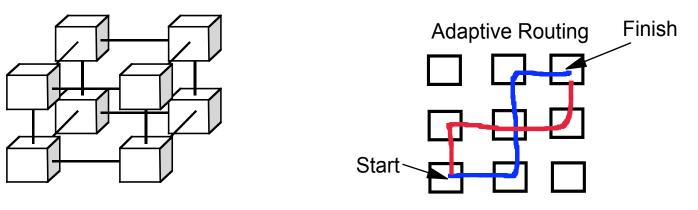
Point-to-point

Global Tree Global Operations



Global Barriers and Interrupts Low Latency Barriers and Interrupts

Gbit Ethernet


File I/O and Host Interface

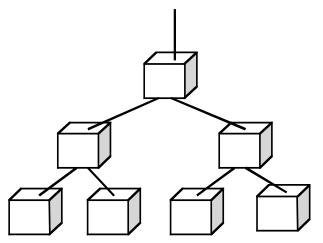
Control Network Boot, Monitoring and Diagnostics

3-D Torus Network

- 32x32x64 connectivity
- Backbone for one-to-one and one-to-some communications
- 1.4 Gb/s bi-directional bandwidth in all 6 directions (Total 2.1 GB/s/node)
- 64k * 6 * 1.4Gb/s = 68 TB/s total torus bandwidth
- 4 * 32 *32 * 1.4Gb/s = 5.6 Tb/s Bisectional Bandwidth
- Worst case hardware latency through node ~ 69nsec
- Virtual cut-through routing with multipacket buffering on collision
 - Minimal
 - -Adaptive
 - Deadlock Free
- Class Routing Capability (Deadlock-free Hardware Multicast)
 - Packets can be deposited along route to specified destination.
 - Allows for efficient one to many in some instances
- Active messages allows for fast transposes as required in FFTs.
- Independent on-chip network interfaces enable concurrent access.

Tree Network

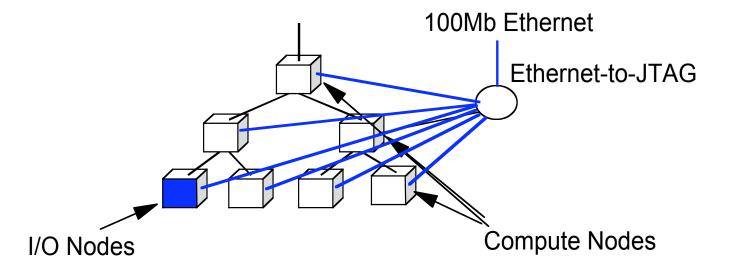
High Bandwidth one-to-all


- 2.8Gb/s to all 64k nodes
- 68TB/s aggregate bandwidth

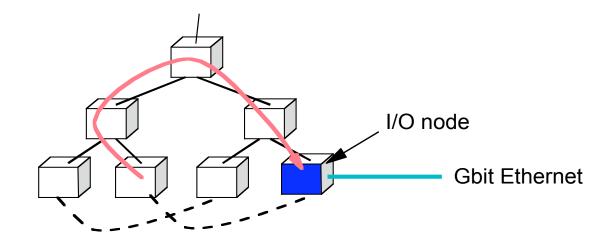
Arithmetic operations implemented in tree

- Integer/ Floating Point Maximum/Minimum
- Integer addition/subtract, bitwise logical operations
- Latency of tree less than 2.5usec to top, additional 2.5usec to broadcast to all
- Global sum over 64k in less than 2.5 usec (to top of tree)
- Used for disk/host funnel in/out of I/O nodes.
- Minimal impact on cabling
- Partitioned with Torus boundaries
- Flexible local routing table
- Used as Point-to-point for File I/O and Host communications

Fast Barrier Network


- Four Independent Barrier or Interrupt Channels
 - Independently Configurable as "or" or "and"
- Asynchronous Propagation
 - Halt operation quickly (current estimate is 1.3usec worst case round trip)
 - > 3/4 of this delay is time-of-flight.
- Sticky bit operation
 - Allows global barriers with a single channel.
- User Space Accessible
 - System selectable
- Partitions along same boundaries as Tree, and Torus
 - Each user partition contains it's own set of barrier/ interrupt signals

Control Network


JTAG interface to 100Mb Ethernet

- direct access to all nodes.
- boot, system debug availability.
- runtime noninvasive RAS support.
- non-invasive access to performance counters
- Direct access to shared SRAM in every node

Ethernet Disk/Host I/O Network

Gb Ethernet on all I/O nodes

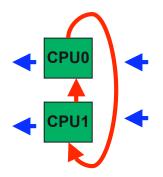
- Gbit Ethernet Integrated in all node ASICs but only used on I/O nodes.
- Funnel via global tree.
- I/O nodes use same ASIC but are dedicated to I/O Tasks.
- I/O nodes can utilize larger memory.

Dedicated DMA controller for transfer to/from Memory Configurable ratio of Compute to I/O nodes

• I/O nodes are leaves on the tree network

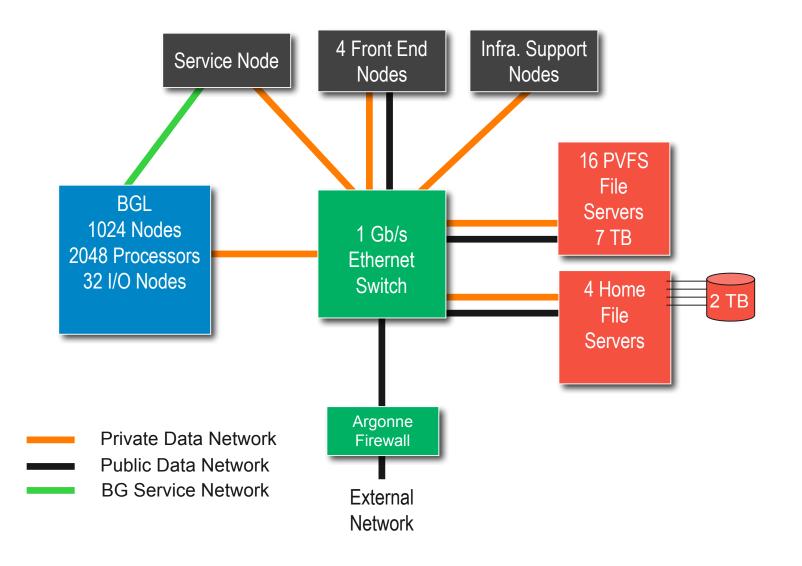
BG/P Programming Environment

- Fortran, C, C++ with MPI
- Linux: User accesses system through Front End nodes for compilation, job submission, debugging
- Compute Node OS: very small, selected services, I/O forwarding
- OpenMP, Pthreads (up to 4)
- Space sharing one parallel job (user) per partition of machine, one process per processor of compute node
- Single executable image is replicated on each node
- Virtual memory limited to physical memory
- Maybe dynamically linking



Applications Developer's View of BG/L

- Two CPU cores per node at 700 MHz
 - Each CPU can do 2 Float multiply-adds per cycle
- Mode 1 (Co-processor mode CO)
 - CPU0 does all the computations (512MB memory)
 - CPU1 does the communications
 - Communications overlap with computation
 - Peak compute performance is 5.6/2 = 2.8 GFlops
- Mode 2 (Virtual node mode VN)
 - CPU0, CPU1 independent "virtual tasks" (256MB each)
 - Each does own computation and communication
 - The two CPU's talk via memory buffers
 - Computation and communication cannot overlap
 - Peak compute performance is 5.6 GFlops
- 3-D torus network with virtual cut-through routing
 - (point to point: MPI_ISEND, MPI_IRECV)
- Global combine/broadcast tree network
 - (collectives: MPI_GATHER, MPI_SCATTER)



Argonne BGL System Architecture

Innovative and Novel Computational Impact on Theory and Experiment

INCITE

Solicits large computationally intensive research projects

- to enable high-impact scientific advances
- Open to all scientific researchers and organizations
- Provides large computer time & data storage allocations
 - to a small number of projects for 1-3 years

INCITE Project Proposals

Scientific Discipline Peer Review

- Scientific quality
- Proposed impact of the science
- Ability of the PI and team
- Computational plan
- Relation to the Office of Science mission-related research

Computational Readiness Review

- Reasonableness and appropriateness of resource request
- Appropriateness of approach
- Technical readiness has code run at scale on target system?
- Progress in previous year (for renewals)
- Nonproprietary Research
 - Must sign user agreement (non-negotiable)

Proprietary Research is permitted

- Full cost recovery; user agreement required;
 - data protection considerations

INCITE 2008

Call for proposals issued May 16

- Proposals due August 8
- See http://hpc.science.doe.gov

Spans 250M hours of computing at

Argonne	IBM Blue Gene	www.alcf.anl.gov
ORNL	Cray X1e and XT4	www.nccs.gov
NERSC/LBNL	Opteron Cluster, SGI Altix, IBM Power 3+5	www.nersc.gov
PNNL	HP-MPP	mscf.emsl.pnl.gov

- For guidance on submitting a proposal, contact
 - Paul Davé, Manager, ALCF User Services and Outreach Dave@alcf.anl.gov

