
Combining QC codes

Alexander Gaenko

Ames Laboratory
Iowa State University

July 27, 2009

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 1 / 12

Advisors and Collaborators

Advisors and collaborators

Advisors:

Professor Mark S. Gordon

Professor Theresa L. Windus

Main collaborators:

Dr. Ajitha Devarajan

Dr. Heather Netzloff

Dr. Meng-Shiou Wu

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 2 / 12

General information

General directions

Quantum Chemistry packages integration and extension to petascale.
Challenges: the packages usually

Were never meant to work together

Use different means of interprocess communication and memory
management

Have different policies and practices

Are sometimes written in different languages

Have different scalability issues and bottlenecks

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 3 / 12

General information

Approach: CCA Framework

Common Component Architecture (CCA):

Components — separate pluggable
program units, with well-defined access
interface

The framework establishes connection,
then the components interact directly

The framework runs using BABEL
runtime: language mix is possible
(C/C++, Fortran 77/90, Python, Java
are supported)

Interfaces are defined using SIDL
language, BABEL compiler generates
glue and skeleton codes

BABEL
Runtime

Python code

Fortran codeC code

C++ code

http://www.cca-forum.org/

https://computation.llnl.

gov/casc/components/

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 4 / 12

http://www.cca-forum.org/
https://computation.llnl.gov/casc/components/
https://computation.llnl.gov/casc/components/

General information

Main project: QM/MM or MC with EFP potentials

Effective Fragment Potential (EFP): almost-quantum potential, so far
implemented only in GAMESS

We want to use MM or MC code from NWChem

Subprojects:

Make EFP a component — almost done

Make MM/MC a component — is being done

Bring DDI to multilevel

Design Distributed Arrays component

Address RTDB [lack of] scalability

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 5 / 12

DDI: Distributed Data Interface

DDI: general information

The one and the only interprocess communication used by GAMESS.

Sync and async message passing, distributed memory paradigm.

Design focus: light weight, portability, no “unnecessary” functionality.

Existing implementations run on top of:

TCP/IP sockets
MPI-1 + sockets
Cray’s SHMEM
PNNL’s ARMCI

TCP/IP sockets + shared memory
Pure MPI-1
IBM’s LAPI

“Unfair comparison”: GA vs. DDI:
GA DDI

$ cd ga-4-0-8 $ cd Gamess/ddi
$ find . -type f -name ’*.c’ -o -name ’*.h’ | wc -l | tail -n 1
430 77
$ find . -type f -name ’*.c’ -o -name ’*.h’ | xargs wc -l | tail -n 1
151762 total 16315 total

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 6 / 12

DDI: Distributed Data Interface

DDI and petascale

Grouping is advantageous in certain QM methods (e.g. FMO)

DDI supports a model “cluster of SMPs”: 2 (and only 2!) level
grouping

Distributed, replicated, node-replicated memory objects
“World”, “Group”(e.g. SMP box) and “Masters” process groups

However, DDI needs to be extended — preferably without loss of
portability, gain of complexity!

URGENT: Have more than 2 level of grouping

Monte−
Carlo

Chain

Chain

Chain

Fragment

Fragment

Fragment

Accommodate more transports: MPI-2 RMA? InfiniBand? ...?

Add more reduction operations? Augment with I/O capabilities?

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 7 / 12

DA: Distributed Arrays component

DA: The problem

Large matrices in QM needs to be distributed

There are a few competing incompatible interfaces (e.g. GA and DDI)

Distributed data produced by one component should be consumed by
another component — How?

The idea: Lightweight CCA component to deal with this.
Design decisions and limitations:

Data is a matrix of
dimension up to 4.

Distribution of the matrix is
“rectangular patches”

The component can be built
as a layer around an existing
library (e.g. DDI or GA)

CPU 1

CPU 2

CPU 3

CPU 5

CPU 4

CPU 3

CPU 7

CPU 6

j

i

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 8 / 12

DA: Distributed Arrays component

DA: Open questions

Memory model: which one?

Treat all memory as “shared local” (like MPI-2 RMA):
lock()–access–unlock()
Treat all memory as remote (like GA, DDI):
put()/get() calls

Adaptation by existing codes:

Make an adapter (wrapper) library to imitate GA or DDI?
Have a handle of the implementing (DDI or GA) library user accessible?

Choice of level of implementation:

High: GA, DDI, ...?
Middle: MPI-2 RMA, ARMCI, ...?
Low: shared memory, InfiniBand, ...?

Functionality:

Are matrix operations needed?
Are I/O operations needed?

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 9 / 12

RTDB: Run-Time DataBase

RTDB: General information

RTDB (Run-Time DataBase) is used in NWChem. It is:

Mean of persistent information storage.
Mean of communication between parts of the program.
Logically – a “type map”: a collection of key-value pairs; keys are
strings; values are typed arrays.
Implemented as database files:

Replicated: each node has its own file
Centralized (seems to be not implemented fully): only a master
performs file I/O, results are broadcast.

Example:
int handle; char* filename="myfile.db"; int ilen, dlen;
int iarray(ilen); double darray(dlen);
char* ikey, * dkey;
/* */
rtdb open(filename,"old",handle);
rtdb get(handle,MA INT,ikey,iarray,ilen);
rtdb put(handle,MA DBL,dkey,darray,dlen);
rtdb close(handle,"keep");

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 10 / 12

RTDB: Run-Time DataBase

RTDB: Scalability & interoperability challenges

Mixed data: large arrays and small scalars

Replication between nodes is done by close–copy–open:

Conceptually simple, but:
Slow: relies on underlying FS performance
What if we don’t have FS, or if I/O is expensive?

Alternative: keeping all data in memory
(a pure F77 implementation of this exists!)

Fast to replicate & operate, but:
No persistence, unless backed by a file
Large, rarely used values unnecessary consume memory

QUESTION: Can we make use of parallel I/O along with caching of
frequently used values?

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 11 / 12

Summary

Topics of interest

The topics of interest would be:

What are the efficient means of interprocess communications on
high-end machines — with respect to:

Run time?
Programming time?

Remote Memory Access vs. Message Passing approach

Parallel I/O: efficiency and technique of use.

Thank you!

Alexander Gaenko (AmesLab) Combining QC codes July 27, 2009 12 / 12

	Advisors and Collaborators
	General information
	DDI: Distributed Data Interface
	DA: Distributed Arrays component
	RTDB: Run-Time DataBase
	Summary

