Topological Analysis of Large Scale Data: Theory and Practice

Scientific Data is Only as Useful as the Results From its Analysis

Science has Progressed From Data Poor to Data Rich Leading to Progressively More Complex Analysis Tasks

- Hundreds of data points:
 - Tables or simple plots
 data collection
- Thousands of data points:
 - Data regression
- Millions of data points:
 - Data sub-selection
- Billions of data points:
 - Region of interest

Feature-Based Statistics Pose Several Challenges

- Feature definition:
 - Intuitive descriptions
- Feature extraction:
 - Efficiency
 - Accuracy lacksquare
 - Flexibility
- Feature interpretation:
 - Complexity
 - Stability
 - Sensitivity

10

Cell Area

5

Topology-Based Analysis Techniques Address Some of These Challenges and Enable New Capabilities

- Mathematical theory to define features:
 - Threshold-based features
 - Gradient-based features
- Efficient, combinatorial algorithms:
 - Generic collection of streaming and/or parallel algorithms
 - Provably correct algorithms and guaranteed error bounds
 - Exact representation of mathematical concepts
- Multi-scale analysis framework with flexible post-processing
 - In-build hierarchical structure with variable simplification metrics
 - Single-pass analysis leading to higher level meta-representations
 - Flexible post-processing of meta-representations enables:
 - parameter selection
 - sensitivity analysis

We Have Extended Morse Theory to Analyze the Topology of Discrete Scalar Functions

Level set-based: Reeb graphs, contour trees, etc.

Gradient-based: Morse-Smale complex

Ultra Clean, Low Swirl Combustion Which Promises Significant Advances in Energy Production Technology

- Low swirl burners produce a stable lifted flame that:
 - Burns more fuel efficient;
 - Produces fewer emissions; and
 - Does not interact with the burner.

Low Swirl, Fuel Lean Flames Burn in a Chaotic, Quasi-Steady Cellular Mode That Defies Traditional Analysis Techniques

- There exists not connected interface separating fuel from the products.
- No notion of a "progress variable" to analyze the dynamics

Simulations of Laboratory-Scale Flames are Used to Augment and Validate Experimental Diagnostics

- Simulations allow to:
 - Better interpret diagnostics
 - Form and test new hypothesis
 - Aid in develop new salient models
- We are analyzing two sets of AMR-based simulations of lean, pre-mixed hydrogen flames
 - Three idealized flames at different levels of turbulence
 - 621, 540, and 427 time steps
 - Simulated at effective resolution 512x512x1536
 - 400 GB compressed floating point data
 - Two device scale simulation that differ in flow speed and turbulence
 - 332 and 284 time steps, respectively
 - Simulated at effective resolution 2048^3, saved at 1024^3.
 - 12-16 GB per time step, combined 8.4 TB of raw data

The Features of Primary Interest are Burning Cells Defined via Thresholds of the Local Fuel Consumption

- Scientists characterize the combustion process via burning cells defined as regions of high fuel consumption:
 - How many cells exist at a given time ?
 - What are their sizes ?
 - What are their integral properties, e.g. average temperature ?
 - What is their evolution over time ?
- There exists no pre-set threshold on the fuel consumption and analyzing the data with various thresholds provides important information:
 - How does each of the characteristics change as the threshold changes ?
 - Are there stable thresholds indicating more salient properties ?

Threshold-Based Features can be Encoded Independent of the Threshold Using Level Set Based Graphs or Trees

Exploiting the Corresponding Segmentation Merge Trees can Store any Number of Feature Attributes

Cutting a Merge Tree Represents Segmentations at Different Thresholds by Treating Combining Sub-Trees

Cutting a Merge Tree Represents Segmentations at Different Thresholds by Treating Combining Sub-Trees

Feature Attributes of the Current Segmentation are Reconstructed Through the Merging of Branches

Feature Attributes of the Current Segmentation are Reconstructed **Through the Merging of Branches**

Surface-Based Analysis of Lean, Pre-Mixed Hydrogen in Idealized Conditions Under Different Levels of Turbulence

Hierarchical Merge Trees Enable Extensive Parameter Studies in a Single Analysis Path

The Analysis Reveals New Scientific Insight Into the Influence of Turbulence on the Combustion Process

Side-by-Side Comparison on Experimental Methane Flame vs. Burning Regions of a Simulated Hydrogen Flame

Device-Scale Low-Swirl Turbulent Combustion

Inter-Simulation Comparison

Directorate

The One-Parameter Family of Segmentations Provides Unprecedented Analysis Capabilities

Weighted Area CDF Skewness

Overlap-Based Tracking Enables Us to Robustly Track All Cells Through All Time Steps

Recently we have Developed Techniques for On-The-Fly Tracking Producing Dynamic Graph Layouts of Massive Graphs

Demo

High-Dimensional Data Represents a Growing Challenge for Visualization and Data Analysis

- High dimensional functions represent an increasingly important type of data
 - High dimensional PDF's, i.e. conditional analysis
 - Sensitivity analysis
 - Uncertainty quantification
 - Material phase space
- Current analysis tools are still limited and often unintuitive
 - Scatter plots
 - Parallel coordinates
 - Dimension reduction
 - Clustering
- High-dimensional topological segmentations can provide new opportunities for analysis and new visual metaphors

The High-Dimensional MS Complex Provides a Topological Segmentation Leading to New Analysis and Visualization Techniques

 The Morse-Smale complex encodes the topology of an input function with all extrema and the monotone cells between them

Exploration of High Dimensional Functions for Sensitivity Analysis

Integrated presentation of statistics and topology

Topological Analysis Reveals Some Interesting Relationship Between Shallow/Deep Convection and Global Long Wave Flux

 The clear sky global long wave flux is maximal in two distinct parameter regimes something not evident through standard analysis

The Same Information is Not Apparent in Either BIC Selection or Standard Regression

Topological Analysis Reveals Some Interesting Relationship Between Shallow/Deep Convection and Global Long Wave Flux

 The clear sky global long wave flux is maximal in two distinct parameter regimes something not evident through standard analysis

