Data Analysis and Visualization for Accelerator Simulation

Lixin Ge, Kwok Ko, Kihwan Lee, Zenghai Li, Cho Ng, Liling Xiao SLAC National Accelerator Laboratory

CScADS Workshop, Snowbird, Utah, July 30 – August 2, 2012

Particle Accelerators

Motivations for Advanced Modeling Capabilities

International Linear Collider Cavity

Modeling challenges include

- Complexity <u>HOM coupler</u> (fine features) versus cavity
- **Problem size** <u>multi-cavity</u> structure (e.g., cryomodule)
- Accuracy <u>10s of kHz mode separation out of GHz</u>
- Speed <u>Fast</u> turn around time to impact design

Parallel EM Code Development of ACE3P

- DOE high performance computing initiatives and SLAC support
 - » 15 years of DOE investment in developing ACE3P started from the Computational Grand Challenge and then through SciDAC 1 & 2
 - » SciDAC3 ComPASS (HEP & ASCR)
- Focus in these closely integrated efforts
 - » <u>Code Development</u> Parallel software and infrastructure in Electromagnetics and Multi-physics
 - » <u>Computational Science R&D</u> Efforts in computer science and applied mathematics under SciDAC for accelerator applications
 - » <u>High-performance Computing</u> US DOE computing resources at NERSC to support accelerator modeling and Large scale "Discovery" simulations
 - » <u>Accelerator Modeling and Simulation</u> Solutions to challenging problems in Accelerator Science, Development and Projects

Parallel Higher-order Finite-Element Method

Strength of Approach – Accuracy and Scalability

- <u>Conformal</u> (tetrahedral) mesh with quadratic surface
- <u>Higher-order</u> elements (p = 1-6)
- <u>Parallel</u> processing (memory & speedup)

$$\mathbf{E}(\mathbf{x},t) = \sum_{i} e_{i}(t) \cdot \mathbf{N}_{i}(\mathbf{x})$$

67k quad elements (<1 min on 16 CPU,6 Error ~ 20 kHz (1.3 GHz)

Accelerator Modeling with Code Suite ACE3P

Meshing - **CUBIT** for building CAD models and generating finite-element meshes <u>http://cubit.sandia.gov</u>

Modeling and Simulation – SLAC's suite of conformal, higher-order, C++/MPI based parallel finite-element electromagnetic codes <u>https://slacportal.slac.stanford.edu/sites/ard_public/bpd/acd/Pages/Default.aspx</u>

ACE3P (<u>A</u> dvanced <u>C</u>	omputational <u>E</u> lectromagnetics <u>3P</u>)	
-----------------------------------	---	--

Frequency Domain:	Omega3P	mega3P – Eigensolver (damping)	
	S3P	– S-Parameter	
<u>Time Domain</u> :	T3P	 Wakefields and Transients 	
Particle Tracking:	Track3P	 Multipacting and Dark Current 	
EM Particle-in-cell:	Pic3P	 RF guns & klystrons 	
<u>Multi-physics:</u>	TEM3P	– EM, Thermal & Structural effects	

Postprocessing - **ParaView** to visualize unstructured meshes & particle/field data http://www.paraview.org/

Field Visualization in Large-Scale Accelerator System

- The first-ever simulation of the entire CLIC 3D coupled structure (AS + PETS) was carried out with theT3P module within ACE3P.
- T3P simulation results show much stronger than expected dipole wakefield coupling between the accelerating structure and PETS which is undesirable.
- Time domain simulation generated 15 Tbyte data for postprocessing.

Field Visualization in Unbounded Structure

- Transmission and radiation of accelerating mode
 - » Far-field pattern provides a mechanism of directing laser pulses from free space to excite the defect mode in an experimental setup.
- Improved volume rendering will facilitate the identification of enhanced regions of radiation.

Radiation of accelerating mode

Particle Visualization in Complex Geometry

 Efficient methods to identify locations of multipacting will expedite the analysis of simulation results.

In collaboration with MSU – J. Popielarski

Field Visualization in Long Structure

- Requires robust zoom-in capabilities to capture the fine detail of field distributions in structures with large aspect ratios.
- Allows the loading of multiple field solutions with different amplitudes and phases simultaneously on the same mesh in ParaView.

Particle Visualization in Long Structure

 Challenges remain in tracking the movements of a large number of particles in end-to-end simulations.

ACE3P User Community

- Three Code Workshops have been held at SLAC
 - » CW09 1 day/15 attendees/13 institutions
 - » CW10 2.5 days/36 attendees/16 institutions
 - » CW11 5 days/42 attendees/25 institutions
- ACE3P user base has been growing
 - » more than 60 active users share a dedicated computer allocation at NERSC;
 - ACE3P simulation results have been presented by many users in conference proceedings and refereed journals. More than 25 abstracts in IPAC 2012 include ACE3P in their research efforts;
 - » beta version of user manual is available.
- ParaView is used as the tool for visualization of simulation results.

CW11 Code Workshop, SLAC, October 10-14, 2011 http://www-conf.slac.stanford.edu/cw11/default.asp

|--|

	10/10 Monday	10/11 Tuesday	10/12 Wednesday	10/13 Thursday	10/14 Friday
8.30 am to 10.10 am	ACE3P CUBIT	Cavity Design - Omega3P - Cavity w/ coax coupler	Beam-cavity - T3P	Traveling Wave Cavity Design - Omega3P - Periodic structure	Parallel Session: RF Gun - Pic3P RF Gun - TEM3P
Refreshments					
10.30 am to 12.15 pm	CUBIT ParaView	- Cavity w/ WG coupler	- Pillbox w/ closed WG - Pillbox w/ open WG - Pillbox with absorber	Component Design - S3P - Coax WG - Window - 90 degree bend - WG Load	RF Gun - <mark>Pic3P</mark> RF Gun - <mark>TEM3P</mark>
Lunch on your own					
1.30 pm to 3.10 pm	<u>Standing Wave</u> Cavity Design - Omega3P	Multipacting - Track3P	- BPM - Taper	Multipacting - Track3P - Coax WG	LCLS Tour
Refreshments					
3.30 pm to 5.15 pm	 Pillbox Cavity Rounded top cavity 	- Pillbox cavity User Talk - BNL	Computing @ NERSC User Talk - CERN	- Coupler w/ window	
		Pay Your Own Buffet Dinner		Soccer Friendly	

Summary

- Large data-sets generated in system-scale simulation require efficient methods to process data and visualize results.
- Improved techniques are required to visualize fields and particles in long accelerator structures with large aspect ratios, and in structures with complex geometries.
- Addressing the above issues will also benefit the ACE3P user community in analyzing simulation results.

