
1DOE SciDAC CS/VIS Briefing October 2008

Center for Scalable Application
Development Software

John Mellor-Crummey, Keith Cooper (Rice)
Peter Beckman, Ewing Lusk (ANL)

Jack Dongarra (UTK)
Bart Miller (Wisconsin)

Katherine Yelick (UCB/LBNL)

Goals

• Provide open source software systems, tools, and components
that address a spectrum of needs
– directly usable by application experts
– provided to the CS community to enable development of other tools

• Engage directly with DOE application teams
• Target architectures of critical interest to DOE

– Cray XT
– Blue Gene/P
– multicore processors in general

• Outreach

2

3

Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞

4

Community Engagement

CScADS Summer Workshop Series
• Goals

– identify challenges and open problems for leadership computing
– brainstorm on promising approaches
– foster collaborations between computer and application scientists
– engage the broader community of enabling technology researchers

• Workshops to engage SciDAC and INCITE application teams
– Leadership class machines, petascale applications, and performance
– Scientific data analysis and visualization for petascale computing

• Workshops to foster development of enabling technologies
– Autotuning for petascale systems
– Performance tools for petascale computing
– Libraries and algorithms for petascale applications

2009 Workshops at Granlibakken

Some Workshop Outcomes

• Leadership class machines, applications, and performance
– introduced developers to changes in the leadership platforms
– introduced developers to OpenMP, advanced MPI, parallel I/O, & tools
– hands-on: ET researchers assisted developers with platforms and tools

• Performance tools
– create an international community to share ideas and software
– foster development of tool components rather than monolithic tools
– “performance tool dating”

• unstripping tool looking for symbol table info & an x86 instruction cracker

• Autotuning
– bring together experts on architecture, libraries, and compilers
– brainstorm on how to broaden reach of autotuning approaches
– share experiences and ideas; explore opportunities for collaboration
– identify common tools and benchmarks

5

6

Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞

CScADS ZeptoOS Research

7

• Focus
– memory management
– I/O forwarding and job control
– communication software stack

• Benefits
– foster software research on leadership computing platforms
– extend the usage of leadership computing platforms

• Exploring performance improvements for
system software on leadership-class
multicore platforms

Memory Management on BG/P

• General purpose OS loses
memory performance
– worst case: standard Linux

on ppc450 achieves only
25% of the theoretical
memory bandwidth due to
high cost of TLB misses

• Solution
– introduced flat memory

management to Linux
– enables a compute task to

access memory without TLB
misses

8

I/O Forwarding and Job Control

• ZOID (ZeptoOS I/O Daemon) provides
– complete job management
– file I/O and IP forwarding for Zepto Compute Node Linux

• Extensible through plugins
– custom I/O forwarding APIs

• e.g. file system client, communication layer

• Open, full source code available
– enables independent computer science research

• Optimized performance
– multithreading to hide latency
– reduced context switching

9

Architecture
compute nodes

I/O nodes

UNIX
ADIO

libzoid_cn

ZOID daemon

tree

ZOIDFS
libc FUSE

syscalls

UNIX ZOIDFS

IP
fwd

IP
fwd

Job
mgmt

Job
mgmtPVFSUNIX

ZeptoOS I/O Daemon (ZOID)

Performance

(raw link bandwidth is 6.8 Gb/s)

10

ZeptoOS Results

Blue Gene/P Compute Node OS and I/O layer operational

• Supports High Performance Computing (HPC) on BG/P
– BG/P compute node software stack has been ported
– MPICH is ready to use

• Supports High Throughput Computing (HTC) on BG/P
– Falkon task execution framework has been ported

11

12

Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞

 CScADS PGAS Communication

• Planned SC08 release of GASNet and Berkeley UPC
– updated Portals conduit for Cray XT3/4/5 platforms with “firehose”

• avoids pin/unpin costs with caching of registration table entries
– new BG/P conduit based on low level DCMF layer
– updated Infiniband conduit using new OpenIB/OpenFabrics verbs API
– LAPI conduit for IBM Power uses RDMA
– jointly funded by PModels and others

• Implementation goals
– low latency for small to medium transfers
– high bandwidth transfers
– efficient collective communication

13

GASNet is being used in the
upcoming Chapel release

GASNet vs MPI Latency on BG/P

• Recent work on
DCMF Conduit
for GASNet

• Jointly funded by
PModels and
CScADS

14

(lower is better)

GASNet vs. MPI Bandwidth on BG/P

GASNet outperforms MPI on small to medium messages,
especially when multiple links are used

15

(higher is better)

3D FFT Performance on BG/P

Strong scaling: good performance up to 16K cores
16

Upper bound
is based on
performance
model of torus
and bandwidth

(higher is better)

 UPC Collectives on Multicore

• Collective communication is important for many algorithms
• Technology trends encourage sharing on multicore chips
• Many factors affect performance

– tree structure: balanced vs. binomial
– collective routine
– data size

•

17

Autotuning collectives for Niagara2

• Exploring use of autotuning on
collectives for multicore nodes

• Study different architectures
• Intel Cloverton
• Sun Niagara2

(lower is better)

18

Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞

 Linear Algebra for Parallel Systems

• Multicore is a disruptive technology for software
• Must rethink and rewrite applications, algorithms and software

– as before with cluster computing and message passing
• Numerical libraries, e.g. LAPACK and ScLAPACK, need to change

• CScADS research
– pOSKI: extend OSKI to autotune sparse matrix kernels for multicore
– event-driven DAG scheduled computations

• direct solvers (LU) on distributed memory using UPC
• PLASMA software framework dense linear algebra for multicore

– mixed precision

19

 PLASMA: Parallel Linear Algebra s/w for Multicore

• Objectives
– parallel performance

• high utilization of each core
• scaling to large numbers of cores

– any memory model
• shared memory: symmetric or non-symmetric
• distributed memory
• GPUs

• Solution properties
– asychronicity: avoid fork-join (bulk synchronous design)
– dynamic scheduling: out-of-order execution
– fine granularity: independent block operations
– locality of reference: store data using block data layout

A community effort led by Tennessee and Berkeley
(similar to LAPACK/ScaLAPACK)

20

PLASMA Methodology

21

Cholesky
4 x 4

QR
4 x 4

Computations as DAGs
Reorganize algorithms and software to work on tiles that are scheduled
based on the directed acyclic graph of the computation

Cholesky using PLASMA

Nested fork-join parallelism (e.g., Cilk, TBB)

PLASMA
Arbitrary DAG
Fully dynamic scheduling

22

 PLASMA Provides Highest Performance

23

Leveraging Mixed Precision

• Why use single precision as part of the computation? Speed!
– higher parallelism within vector units

• 4 ops/cycle (usually) instead of 2 ops/cycle
– reduced data motion

• 32-bit vs. 64-bit data
– higher locality in cache

• more data items in cache

• Approach
– compute a 32-bit result
– calculate a correction for 32-bit results using 64-bit operations
– update of 32-bit results with the correction using high precision

24

 Mixed-Precision Iterative Refinement

• Iterative refinement for dense systems, Ax = b, can work this way:

• Wilkinson, Moler, Stewart, & Higham provide error bound for SP
floating point results when using DP floating point

• Using this, we can compute the result to 64-bit precision

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

 z = L\(U\r) SINGLE O(n2)
 x = x + z DOUBLE O(n1)
 r = b – Ax DOUBLE O(n2)
END

25

Results for Mixed Precision

Architecture (BLAS-MPI) # procs n DP Solve
/SP Solve

DP Solve
/Iter Ref

iter

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto – OpenMPI MX) 64 32000 1.90 1.83 6

Iterative Refinement for Dense Ax = b

26

27

Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞

 Toward Ubiquitous Tools for Binaries

Infrastructure for performance tools
• Abstract interfaces

– provide portability and multiplatform support
• Component-based approach

– enable sharing, rapid prototyping, co-development, development of
best-of-breed algorithms and representations

• Extensible data representations
– support layered library development

• Open source
– support the above goals and allow broader adoption

28

Component-based Approach

Benefits
• Increases sharing and reuse

– reduces redundant development
• Large research tool groups can focus on their priority missions

without having to develop all parts of an end-to-end solution
• Small research groups (young investigators!) can explore focused

research topics with a software code base comparable to that of
the larger groups

29

Collaborations with internal (Rice, Wisconsin) and external (LLNL,
Cray, Intel, Berkeley, Oregon, Jülich) groups on various APIs

workshop discussions are a critical part of the design process

The Deconstruction of DynInst

Realizing our push towards tool components
• InstructionAPI

– abstract representation of instruction decode and address modes.
• SymtabAPI

– abstraction of symbols, debug and dynamic linkage information
– updating to support binary rewriting

• StackwalkerAPI
– walk stacks: first or third party, standard vs. optimized frames, custom

frames (from instrumentation or exceptions)
– uses a variety of techniques from full symbols and libunwind to

stripped binaries requiring control-flow analysis
• ControlFlowAPI

– platform independent representation of CFG, associated query
routines, and extensible data structures

30

CScADS funded components are underlined

libmonitor

An interface between OS and first-party tools
• Processes

– parent: pre_fork, post_fork
– child: init_process, fini_process

• Threads
– parent: init_thread_support, thread_pre_create, thread_post_create
– child: init_thread, fini_thread

• Signals
– selectively catch signals before or instead of delivering to application

• Intercept functions to maintain control
– e.g. dlopen, sigmask, pthread_sigmask, exit, signal

• Stack unwinding support
– stack_bottom; identification of PC for bottommost frame

31

 A Few Component Consumers

• Rice: using SymtabAPI and
libmonitor in HPCToolkit

• Krell Institute (Open|SpeedShop)
Using SymtabAPI to get symbols
for their offline collectors. Using
libmonitor to manage first-party
tools

• UNC and LLNL: using SymtabAPI
and StackwalkerAPI for PnMPI
project.

• LLNL (STAT project): using
SymtabAPI and StackwalkerAPI.

• SiCortex: porting SymtabAPI to
Linux/MIPs; uses libmonitor
underneath HPCToolkit

32

• Cray: started work using
StackwalkerAPI and SymtabAPI
for new APT (Abnormal Process
Termination) system

• Univ. of Oregon: using binary
rewriter as part of TAU
instrumentation

• Forschungszentrum Jülich: using
SymtabAPI for Scalasca

• Berkeley (BitBlaze): APIs for binary
processing (security tools)

33

 Pinpointing Scalability Bottlenecks

0.500

0.625

0.750

0.875

1.000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

?

Note: higher is better

34

 Bottleneck Analysis Challenges
• Parallel applications

– modern software uses layers of libraries
– performance is often context dependent

• Monitoring
– bottleneck nature: computation, data movement, synchronization?
– size of petascale platforms demands acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

presentation
[hpcviewer]

program
structure

HPCToolkit Performance Tools

• Measurement, analysis, attribution, and presentation of
application performance

• Pinpoint and quantify performance bottlenecks
— across scalable parallel systems
— within multicore nodes
— independent of programming model or cause

35

Measure and attribute costs in context
• Sample timer or hardware counter overflows
• Gather calling context using stack unwinding

Call Path Profiling

36

Call path sample

instruction pointer

return address

return address

return address

 Calling Context Tree (CCT)

Overhead proportional to sampling frequency...
...not call frequency

37

Weak Scaling: 1K to 10K processors

- =

10K 1K

 S3D Multicore Losses at the Loop Level

38

Multicore
Loss

(Multicore
time - single

core time)

highlighted loop is 2.84x
slower on 8 cores in a
weak scaling study

 Moab: Integrated Static and Dynamic Info

39

40

Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞

 Compilers: Runtime Re-optimization

• A source of inefficiency in large-scale applications is the “glue” that
holds together code from different sources
– library code, code cribbed from other applications
– often different languages with different programming models

• e.g., call object-oriented code from inside imperative C program

• Classic compilers cannot improve this kind of code
– compiler never sees all the pieces

• limits the scope of analysis and transformation
• could build link-time optimizer, but would miss dynamically linked code

– good application for runtime re-optimization
• monitor execution, notice inefficiency, rewrite code to avoid it

41

 Runtime Re-optimization

Opportunities for improvement
• Classic answers

– straighten hot paths to avoid jumps
– fold constants from input data
– reschedule long-latency ops to reflect actual behavior

• Opportunities in large-scale applications
– improve procedure calls & chains of calls (libraries, CCA)

• Runtime inlining and specialization of calls
– fold constants from distribution of work and data
– runtime selection of library components

• e.g., choose communication routines based on actual distribution

42

Runtime Re-optimization

Current work
• Experimental

– we are running a series of small-scale experiments to look at
opportunities for improvement and magnitude of potential benefits

– we have worked with both PIN (x86-specific tool) and LLVM

• Analytical
– compile-time analysis to predict how much improvement we might

find, given some set of runtime-knowable facts
– compile-time analysis in support of the actual transformations and

techniques to encode the results in the executable image

43

44

Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans
☞

45

• GTC: simulates turbulent plasma in tokamak reactors
– 3D particle-in-cell code; 1D decomposition along toroidal direction

• charge: deposit charge from particles to grid points
• solve: compute the electrostatic potential and field on grid points
• push: compute the force on each particle from nearby grid points

• Extend performance analysis work of PERI Tiger team
• Used measurement and modeling tools developed at Rice with

CScADS support to pinpoint performance losses
– poor spatial locality due to vector of structures representation for ions
– unrealized opportunities for temporal reuse between loops over ions

• Code optimization
– manually transform to structure of vectors
– manually apply fusion and blocking to improve temporal reuse
– transmit improvements back to GTC code team

Application Engagement: GTC

46

 GTC: Node Performance Improvements

• Metrics normalized to measurements of original code
• Lower is better

47

 GTC: Locality Degrades as Ions Swirl

• Locality is best when particles are sorted in cell order
—potential computation uses cell data only
—charge deposition and particle pushing involve interactions between

particles and cells

• Initially particles are uniformly distributed in cell order

Time step 0

48

• Locality is best when particles are sorted in cell order
—potential computation uses cell data only
—charge deposition and particle pushing involve interactions between

particles and cells

• Over time, the particle distribution diverges from cell order

Time step 20

 GTC: Locality Degrades as Ions Swirl

49

 GTC: Potential Improvement from Reordering

• Locality degrades gradually at run-time
• Assumptions:

—periodic particle reordering restores locality and performance
—performance degrades at similar rate after each sorting step

50

 GTC: Compute Optimal Sorting Interval

• Notations
—f(x) = time step cost function
—C = cost of sorting
—G(t) = gain from sorting every t time

steps

€

G(t) = f (x)dx
kt

(k+1)t
∫ − f (x)dx −C

0

t
∫()

k=1

N
t
−1

∑

€

G(t) = f (x)dx
0

N
∫ −

N
t

f (x)dx − N
t
C + C

0

t
∫

• Find t that maximizes G(t) over N
steps

terms constant in t

• Find t that minimizes
- h(t) = average time step cost with sorting

€

h(t) =
1
t

f (x)dx + C
0

t
∫()

51

Adaptive Particle Sorting Algorithm
Step 0: Compute C. Measure cost of sorting after program executed a

fixed number of time steps. Start initialization at step 1.
Step 1: Evaluate h(t). At each time step compute the value of the integral

incrementally, evaluate h(t), and update hmin as needed.
Step 2: Compute local optimum. If last h(t)>hmin, local optimum τlocal = t-1
Step 3: Compute global optimum. Apply reduction with MAX operator

across all processors. Global optimum τ = max(τlocal)
Step 4: Provide confidence in the global optimum. Continue initialization

(steps 1 to 3) while t < 2τ.

52

Parallel Performance Results

• Combined optimizations reduce GTS execution time by
—37% on Itanium2 cluster
—21% on Cray XT and Cray XD1

53

GTC: Electron Sub-Cycle Loop

• GTC simulates ions + trapped electrons
• GTS transformations still apply to ion simulation
• Electrons move much faster than ions

– execute multiple sub-cycle steps in each time step
– electron sub-cycle loop dominates simulation cost
– electron data reused in each sub-step; reuse distance large

• Locality improvements
– each electron simulated for multiple sub-steps at a time

• electron data reused with a short distance
• electron migration accomplished with fewer, larger messages
• better locality to grid data when electrons become disordered

54

 GTC: Electron Sub-Cycle Loop Results

• Evaluate code with restructured electron sub-cycle loop
—GTS transformations not applied
—128p = 32 poloidal planes x 4 particle domains
—256p = 32 poloidal planes x 8 particle domains
—4x = four times more grid points, # particles in tokamak unchanged

55

• Direct numerical simulation (DNS) of turbulent combustion
– state-of-the-art code developed at CRF/Sandia

• PI: Jaqueline H. Chen, SNL
– 2007/2008 INCITE awards at NCCS
– pioneering application for 250TF system

• Extend performance analysis work of PERI Tiger team
– use HPCToolkit to locate single-core performance bottlenecks

• compiler inserted array copies
• streaming calculations with low data reuse
• loop nests with recurrences

– identified opportunities for compiler-based improvement
– enhanced LoopTool for addressing S3D’s needs
– improved loop nests with LoopTool’s semi-automatic transforms

• transformed code is now part of S3D’s source base
– used HPCToolkit to assess multicore scaling issues

Application Engagement: S3D

56

S3D: What Opportunities Exist?

initialize

update

5D loop nest:
2D explicit loops

3D F90 vector syntax

reuse

reuse

reuse performance
problem

data streams
in/out of memory

57

Loop Unswitching

Controlled Loop Fusion

 LoopTool: Loop Optimization of Fortran

 Rice University’s tool for
source-to-source
transformation of Fortran

(transformation subset shown)

Unroll

and Jam

do k = 1,n
do k = 1,n-1,2

58

Markup of S3D Diffusive Flux Loop
!dir$ uj 3
 do m=1,3 ! DIRECTION
!dir$ uj 2
 do n=1,n_spec-1 ! SPECIES

!dir$ unswitch 2
 if (baro_switch) then
 ! driving force includes gradient in mole fraction and baro-diffusion:
!dir$ fuse 1 1 1
 diffFlux(:,:,:,n,m) = - Ds_mixavg(:,:,:,n) * (grad_Ys(:,:,:,n,m) &
 + Ys(:,:,:,n) * (grad_mixMW(:,:,:,m) &
 + (1 - molwt(n)*avmolwt) * grad_P(:,:,:,m)/Press))
 else
 ! driving force is just the gradient in mole fraction:
!dir$ fuse 1 1 1
 diffFlux(:,:,:,n,m) = - Ds_mixavg(:,:,:,n) * (grad_Ys(:,:,:,n,m) &
 + Ys(:,:,:,n) * grad_mixMW(:,:,:,m))
 endif

 ! Add thermal diffusion:
!dir$ unswitch 2
 if (thermDiff_switch) then
!dir$ fuse 1 1 1
 diffFlux(:,:,:,n,m) = diffFlux(:,:,:,n,m) - Ds_mixavg(:,:,:,n) *
 Rs_therm_diff(:,:,:,n) * molwt(n) * avmolwt * grad_T(:,:,:,m) / Temp
 endif

 ! compute contribution to nth species diffusive flux
 ! this will ensure that the sum of the diffusive fluxes is zero.
!dir$ fuse 1 1 1
 diffFlux(:,:,:,n_spec,m) = diffFlux(:,:,:,n_spec,m) - diffFlux(:,:,:,n,m)

 enddo ! SPECIES
 enddo ! DIRECTION

unswitching
directives

controlled fusion
directives

unroll and jam
directives

Add LoopTool directives
to source program

59

if BS
 if TD

 else

else
 if TD

 else

n=1,nspec-2,2

n=1,nspec-2,2

n=1,nspec-2,2

n=1,nspec-2,2

if BS
else
if TD

n=1,nspec-1
m=1,3

LoopTool

 Optimization of S3D Diffusive Flux Loop

Transformation Log:
– scalarization (4 stmts)
– loop unswitching (2 conditions)
– fusion (loops within 4 outer nests)
– unroll-and-jam (2 loops)
– peeling excess iterations (4 nests)

2.94x faster than original
(6.7% total savings)

(35 lines) (445 lines)

Engagement: Other

• Enabling technologies engagement
– APDEC: Chombo (structured AMR)
– ITAPS: Moab/iMESH (meshing)

• Application engagement using HPCToolkit
– UNEDF: MFDn (many Fermion dynamics - nuclear)
– USQCD: Chroma (quantum chromodynamics)
– Center for Turbulence Research: Hybrid (shock + turbulence)
– NETL: MFiX (multiphase flow with interface exchanges)
– Iowa State: CAM-EULAG (atmospheric modeling)
– Gromacs (cellulosic ethanol)

• Working with Fortran 2008 J3 standards committee on parallelism
via coarrays

60

61

Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages
– math libraries for multicore
– performance tools
– applications

• FY09 plans☞

FY09 Plans

• ANL
– continue to replace components in BG/P s/w stack with open source

• Berkeley
– release UPC and GASNet with improved support for BG/P, XT, and IB
– optimize sparse linear algebra libraries for multicore (with UTK)

• Rice
– performance tools

• deploy HPCToolkit on the leadership computing platforms
• devise support for working with data from a huge # of cores

– compilers
• continue work on dynamic optimization, ROSE, scripting languages
• release a version of LoopTool for use by application teams

• Tennessee
– explore dynamic and adaptive out-of-order execution patterns for

linear algebra on multicore and heterogeneous nodes
• Wisconsin

– continue development of InstructionAPI and ControlFlowAPI

62

