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Goals

• Provide open source software systems, tools, and components 
that address a spectrum of needs
– directly usable by application experts
– provided to the CS community to enable development of other tools

• Engage directly with DOE application teams
• Target architectures of critical interest to DOE

– Cray XT
– Blue Gene/P
– multicore processors in general

• Outreach
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Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages 
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞



4

Community Engagement

CScADS Summer Workshop Series
• Goals

– identify challenges and open problems for leadership computing
– brainstorm on promising approaches
– foster collaborations between computer and application scientists
– engage the broader community of enabling technology researchers

• Workshops to engage SciDAC and INCITE application teams
– Leadership class machines, petascale applications, and performance
– Scientific data analysis and visualization for petascale computing

• Workshops to foster development of enabling technologies
– Autotuning for petascale systems
– Performance tools for petascale computing
– Libraries and algorithms for petascale applications

2009 Workshops at Granlibakken



Some Workshop Outcomes

• Leadership class machines, applications, and performance
– introduced developers to changes in the leadership platforms
– introduced developers to OpenMP, advanced MPI, parallel I/O, & tools
– hands-on: ET researchers assisted developers with platforms and tools 

• Performance tools
– create an international community to share ideas and software
– foster development of tool components rather than monolithic tools
– “performance tool dating”

• unstripping tool looking for symbol table info & an x86 instruction cracker

• Autotuning
– bring together experts on architecture, libraries, and compilers
– brainstorm on how to broaden reach of autotuning approaches
– share experiences and ideas; explore opportunities for collaboration
– identify common tools and benchmarks
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Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages 
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞



CScADS ZeptoOS Research
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• Focus
– memory management
– I/O forwarding and job control
– communication software stack

• Benefits
– foster software research on leadership computing platforms
– extend the usage of leadership computing platforms

• Exploring performance improvements for 
system software on leadership-class 
multicore platforms



Memory Management on BG/P

• General purpose OS loses 
memory performance
– worst case: standard Linux 

on ppc450 achieves only 
25% of the theoretical 
memory bandwidth due to 
high cost of TLB misses

• Solution
– introduced flat memory 

management to Linux 
– enables a compute task to 

access memory without TLB 
misses
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I/O Forwarding and Job Control

• ZOID (ZeptoOS I/O Daemon) provides 
– complete job management 
– file I/O and IP forwarding for Zepto Compute Node Linux

• Extensible through plugins
– custom I/O forwarding APIs

• e.g. file system client, communication layer

• Open, full source code available
– enables independent computer science research

• Optimized performance
– multithreading to hide latency
– reduced context switching
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ZeptoOS Results

Blue Gene/P Compute Node OS and I/O layer operational

• Supports High Performance Computing (HPC) on BG/P
– BG/P compute node software stack has been ported
– MPICH is ready to use 

• Supports High Throughput Computing (HTC) on BG/P
– Falkon task execution framework has been ported
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Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages 
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞



   CScADS PGAS Communication

• Planned SC08 release of GASNet and Berkeley UPC
– updated Portals conduit for Cray XT3/4/5 platforms with “firehose”

• avoids pin/unpin costs with caching of registration table entries
– new BG/P conduit based on low level DCMF layer
– updated Infiniband conduit using new OpenIB/OpenFabrics verbs API
– LAPI conduit for IBM Power uses RDMA
– jointly funded by PModels and others

• Implementation goals
– low latency for small to medium transfers
– high bandwidth transfers
– efficient collective communication 
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GASNet is being used in the 
upcoming Chapel release



GASNet vs MPI Latency on BG/P

• Recent work on 
DCMF Conduit 
for GASNet

• Jointly funded by 
PModels and 
CScADS
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(lower is better)



GASNet vs. MPI Bandwidth on BG/P

GASNet outperforms MPI on small to medium messages, 
especially when multiple links are used
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(higher is better)



3D FFT Performance on BG/P

Strong scaling: good performance up to 16K cores
16

Upper bound 
is based on 
performance 
model of torus 
and bandwidth

(higher is better)



 UPC Collectives on Multicore

• Collective communication is important for many algorithms
• Technology trends encourage sharing on multicore chips 
• Many factors affect performance

– tree structure: balanced vs. binomial
– collective routine
– data size

•
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Autotuning collectives for Niagara2

• Exploring use of autotuning on 
collectives for multicore nodes

• Study different architectures
• Intel Cloverton
• Sun Niagara2

(lower is better)
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Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages 
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans

☞



  Linear Algebra for Parallel Systems

• Multicore is a disruptive technology for software
• Must rethink and rewrite applications, algorithms and software

– as before with cluster computing and message passing
• Numerical libraries, e.g. LAPACK and ScLAPACK, need to change

• CScADS research
– pOSKI: extend OSKI to autotune sparse matrix kernels for multicore
– event-driven DAG scheduled computations

• direct solvers (LU) on distributed memory using UPC 
• PLASMA software framework dense linear algebra for multicore

– mixed precision

19



            PLASMA: Parallel Linear Algebra s/w for Multicore

• Objectives
– parallel performance

• high utilization of each core
• scaling to large numbers of cores

– any memory model
• shared memory: symmetric or non-symmetric
• distributed memory
• GPUs

• Solution properties
– asychronicity: avoid fork-join (bulk synchronous design)
– dynamic scheduling: out-of-order execution
– fine granularity: independent block operations
– locality of reference: store data using block data layout

A community effort led by Tennessee and Berkeley 
(similar to LAPACK/ScaLAPACK)
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PLASMA Methodology
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Cholesky
4 x 4

QR
4 x 4

Computations as DAGs
Reorganize algorithms and software to work on tiles that are scheduled 
based on the directed acyclic graph of the computation



Cholesky using PLASMA

Nested fork-join parallelism (e.g., Cilk, TBB)

PLASMA
Arbitrary DAG
Fully dynamic scheduling
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        PLASMA Provides Highest Performance
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Leveraging Mixed Precision

• Why use single precision as part of the computation? Speed!
– higher parallelism within vector units

• 4 ops/cycle (usually) instead of 2 ops/cycle
– reduced data motion 

• 32-bit vs. 64-bit data
– higher locality in cache

• more data items in cache

• Approach
– compute a 32-bit result 
– calculate a correction for 32-bit results using 64-bit operations
– update of 32-bit results with the correction using high precision
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   Mixed-Precision Iterative Refinement

• Iterative refinement for dense systems, Ax = b, can work this way:

• Wilkinson, Moler, Stewart, & Higham provide error bound for SP 
floating point results when using DP floating point

• Using this, we can compute the result to 64-bit precision

L U = lu(A)   SINGLE  O(n3)
x = L\(U\b)   SINGLE  O(n2)
r = b – Ax   DOUBLE  O(n2)
WHILE || r || not small enough

        z = L\(U\r)   SINGLE  O(n2)
        x = x + z   DOUBLE  O(n1)
        r = b – Ax   DOUBLE  O(n2)
END
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Results for Mixed Precision

Architecture (BLAS-MPI) # procs n DP Solve
/SP Solve

DP Solve
/Iter Ref

# 
iter

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto – OpenMPI MX) 64 32000 1.90 1.83 6

Iterative Refinement for Dense Ax = b
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Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages 
– math libraries for multicore
– performance tools
– compilers 
– applications

• FY09 plans

☞



     Toward Ubiquitous Tools for Binaries

Infrastructure for performance tools
• Abstract interfaces

– provide portability and multiplatform support
• Component-based approach 

– enable sharing, rapid prototyping, co-development, development of 
best-of-breed algorithms and representations

• Extensible data representations 
– support layered library development

• Open source
– support the above goals and allow broader adoption

28



Component-based Approach

Benefits
• Increases sharing and reuse

– reduces redundant development
• Large research tool groups can focus on their priority missions 

without having to develop all parts of an end-to-end solution
• Small research groups (young investigators!) can explore focused 

research topics with a software code base comparable to that of 
the larger groups
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Collaborations with internal (Rice, Wisconsin) and external (LLNL, 
Cray, Intel, Berkeley, Oregon, Jülich) groups on various APIs

workshop discussions are a critical part of the design process



The Deconstruction of DynInst

Realizing our push towards tool components
• InstructionAPI

– abstract representation of instruction decode and address modes.
• SymtabAPI

– abstraction of symbols, debug and dynamic linkage information
– updating to support binary rewriting

• StackwalkerAPI
– walk stacks: first or third party, standard vs. optimized frames, custom 

frames (from instrumentation or exceptions)
– uses a variety of techniques from full symbols and libunwind to 

stripped binaries requiring control-flow analysis
• ControlFlowAPI 

– platform independent representation of CFG, associated query 
routines, and extensible data structures

30

CScADS funded components are underlined



libmonitor

An interface between OS and first-party tools
• Processes

– parent: pre_fork, post_fork
– child: init_process, fini_process

• Threads
– parent: init_thread_support, thread_pre_create, thread_post_create
– child: init_thread, fini_thread

• Signals
– selectively catch signals before or instead of delivering to application

• Intercept functions to maintain control
– e.g. dlopen, sigmask, pthread_sigmask, exit, signal

• Stack unwinding support
– stack_bottom; identification of PC for bottommost frame 
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         A Few Component Consumers

• Rice: using SymtabAPI and 
libmonitor in HPCToolkit

• Krell Institute (Open|SpeedShop) 
Using SymtabAPI to get symbols 
for their offline collectors. Using 
libmonitor to manage first-party 
tools

• UNC and LLNL: using SymtabAPI 
and StackwalkerAPI for PnMPI 
project. 

• LLNL (STAT project): using 
SymtabAPI and StackwalkerAPI.

• SiCortex: porting SymtabAPI to 
Linux/MIPs; uses libmonitor 
underneath HPCToolkit
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• Cray: started work using 
StackwalkerAPI and SymtabAPI 
for new APT (Abnormal Process 
Termination) system 

• Univ. of Oregon: using binary 
rewriter as part of TAU 
instrumentation

• Forschungszentrum Jülich: using 
SymtabAPI for Scalasca

• Berkeley (BitBlaze): APIs for binary 
processing (security tools)
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           Pinpointing Scalability Bottlenecks
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           Bottleneck Analysis Challenges
• Parallel applications

– modern software uses layers of libraries
– performance is often context dependent

• Monitoring
– bottleneck nature: computation, data movement, synchronization?
– size of petascale platforms demands acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait



app. 
source

optimized
binary

compile & link call stack 
profile

profile 
execution
[hpcrun]

binary 
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

presentation
[hpcviewer]

program 
structure

HPCToolkit Performance Tools

• Measurement, analysis, attribution, and presentation of 
application performance

• Pinpoint and quantify performance bottlenecks 
— across scalable parallel systems 
— within multicore nodes
— independent of programming model or cause
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Measure and attribute costs in context
• Sample timer or hardware counter overflows
• Gather calling context using stack unwinding

Call Path Profiling
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Call path sample

instruction  pointer

return address

return address

return address

 Calling Context Tree (CCT)

Overhead proportional to sampling frequency... 
...not call frequency
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Weak Scaling: 1K to 10K processors

- =

10K 1K



      S3D Multicore Losses at the Loop Level

38

Multicore 
Loss

(Multicore 
time  - single 

core time)

highlighted loop is 2.84x 
slower on 8 cores in a 
weak scaling study



        Moab: Integrated Static and Dynamic Info
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Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages 
– math libraries for multicore
– performance tools
– compilers 
– applications

• FY09 plans

☞



    Compilers: Runtime Re-optimization

• A source of inefficiency in large-scale applications is the “glue” that 
holds together code from different sources
– library code, code cribbed from other applications
– often different languages with different programming models

• e.g., call object-oriented code from inside imperative C program

• Classic compilers cannot improve this kind of code
– compiler never sees all the pieces

• limits the scope of analysis and transformation
• could build link-time optimizer, but would miss dynamically linked code

– good application for runtime re-optimization
• monitor execution, notice inefficiency, rewrite code to avoid it
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         Runtime Re-optimization

Opportunities for improvement
• Classic answers

– straighten hot paths to avoid jumps
– fold constants from input data
– reschedule long-latency ops to reflect actual behavior

• Opportunities in large-scale applications
– improve procedure calls & chains of calls (libraries, CCA)

• Runtime inlining and specialization of calls
– fold constants from distribution of work and data
– runtime selection of library components

• e.g., choose communication routines based on actual distribution
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Runtime Re-optimization

Current work
• Experimental

– we are running a series of small-scale experiments to look at 
opportunities for improvement and magnitude of potential benefits

– we have worked with both PIN (x86-specific tool) and LLVM

• Analytical
– compile-time analysis to predict how much improvement we might 

find, given some set of runtime-knowable facts
– compile-time analysis in support of the actual transformations and 

techniques to encode the results in the executable image
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Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages 
– math libraries for multicore
– performance tools
– compilers
– applications

• FY09 plans
☞
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• GTC: simulates turbulent plasma in tokamak reactors 
– 3D particle-in-cell code; 1D decomposition along toroidal direction

• charge: deposit charge from particles to grid points
• solve: compute the electrostatic potential and field on grid points
• push: compute the force on each particle from nearby grid points

• Extend performance analysis work of PERI Tiger team
• Used measurement and modeling tools developed at Rice with 

CScADS support to pinpoint performance losses
– poor spatial locality due to vector of structures representation for ions
– unrealized opportunities for temporal reuse between loops over ions

• Code optimization
– manually transform to structure of vectors
– manually apply fusion and blocking to improve temporal reuse
– transmit improvements back to GTC code team

Application Engagement: GTC



46

       GTC: Node Performance Improvements

• Metrics normalized to measurements of original code
• Lower is better
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    GTC: Locality Degrades as Ions Swirl

• Locality is best when particles are sorted in cell order
—potential computation uses cell data only
—charge deposition and particle pushing involve interactions between 

particles and cells

• Initially particles are uniformly distributed in cell order

Time step 0
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• Locality is best when particles are sorted in cell order
—potential computation uses cell data only
—charge deposition and particle pushing involve interactions between 

particles and cells

• Over time, the particle distribution diverges from cell order

Time step 20

    GTC: Locality Degrades as Ions Swirl
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          GTC: Potential Improvement from Reordering

• Locality degrades gradually at run-time
• Assumptions:

—periodic particle reordering restores locality and performance
—performance degrades at similar rate after each sorting step
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        GTC: Compute Optimal Sorting Interval

• Notations
—f(x) = time step cost function
—C = cost of sorting
—G(t) = gain from sorting every t time 

steps

€ 

G(t) = f (x)dx
kt

(k+1)t
∫ − f (x)dx −C

0

t
∫( )

k=1

N
t
−1

∑

€ 

G(t) = f (x)dx
0

N
∫ −

N
t

f (x)dx − N
t
C + C

0

t
∫

• Find t that maximizes G(t) over N 
steps

terms constant in t

• Find t that minimizes
- h(t) = average time step cost with sorting

€ 

h(t) =
1
t

f (x)dx + C
0

t
∫( )
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Adaptive Particle Sorting Algorithm
Step 0: Compute C. Measure cost of sorting after program executed a 

fixed number of time steps. Start initialization at step 1.
Step 1: Evaluate h(t). At each time step compute the value of the integral 

incrementally, evaluate h(t), and update hmin as needed.
Step 2: Compute local optimum. If last h(t)>hmin, local optimum τlocal = t-1
Step 3: Compute global optimum. Apply reduction with MAX operator 

across all processors. Global optimum τ = max(τlocal)
Step 4: Provide confidence in the global optimum. Continue initialization 

(steps 1 to 3) while t < 2τ.
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Parallel Performance Results

• Combined optimizations reduce GTS execution time by
—37% on Itanium2 cluster
—21% on Cray XT and Cray XD1
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GTC: Electron Sub-Cycle Loop

• GTC simulates ions + trapped electrons
• GTS transformations still apply to ion simulation
• Electrons move much faster than ions

– execute multiple sub-cycle steps in each time step
– electron sub-cycle loop dominates simulation cost
– electron data reused in each sub-step; reuse distance large

• Locality improvements
– each electron simulated for multiple sub-steps at a time

• electron data reused with a short distance
• electron migration accomplished with fewer, larger messages
• better locality to grid data when electrons become disordered
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    GTC: Electron Sub-Cycle Loop Results

• Evaluate code with restructured electron sub-cycle loop
—GTS transformations not applied
—128p = 32 poloidal planes x 4 particle domains
—256p = 32 poloidal planes x 8 particle domains
—4x = four times more grid points, # particles in tokamak unchanged
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• Direct numerical simulation (DNS) of turbulent combustion
– state-of-the-art code developed at CRF/Sandia

• PI: Jaqueline H. Chen, SNL
– 2007/2008 INCITE awards at NCCS
– pioneering application for 250TF system

• Extend performance analysis work of PERI Tiger team
– use HPCToolkit to locate single-core performance bottlenecks 

• compiler inserted array copies
• streaming calculations with low data reuse
• loop nests with recurrences

– identified opportunities for compiler-based improvement
– enhanced LoopTool for addressing S3D’s needs
– improved loop nests with LoopTool’s semi-automatic transforms

• transformed code is now part of S3D’s source base
– used HPCToolkit to assess multicore scaling issues

Application Engagement: S3D
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S3D: What Opportunities Exist?

initialize

update

5D loop nest:
2D explicit loops

3D F90 vector syntax

reuse

reuse

reuse performance 
problem

data streams 
in/out of memory
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Loop Unswitching

 
Controlled Loop Fusion

           LoopTool: Loop Optimization of Fortran

    Rice University’s tool for 
source-to-source 
transformation of Fortran

(transformation subset shown) 

 
Unroll 

and Jam

do k = 1,n
do k = 1,n-1,2
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Markup of S3D Diffusive Flux Loop
!dir$ uj 3 
  do m=1,3 ! DIRECTION
!dir$ uj 2 
    do n=1,n_spec-1 ! SPECIES

!dir$ unswitch 2
      if (baro_switch) then
        ! driving force includes gradient in mole fraction and baro-diffusion:
!dir$   fuse 1 1 1 
        diffFlux(:,:,:,n,m) = - Ds_mixavg(:,:,:,n) * ( grad_Ys(:,:,:,n,m)  &
                                     + Ys(:,:,:,n) * ( grad_mixMW(:,:,:,m)    &
                                     + (1 - molwt(n)*avmolwt) * grad_P(:,:,:,m)/Press))
      else
        ! driving force is just the gradient in mole fraction:
!dir$   fuse 1 1 1 
        diffFlux(:,:,:,n,m) = - Ds_mixavg(:,:,:,n) * ( grad_Ys(:,:,:,n,m)  &
                                   + Ys(:,:,:,n) * grad_mixMW(:,:,:,m) )
      endif

      ! Add thermal diffusion:
!dir$ unswitch 2
      if (thermDiff_switch) then
!dir$   fuse 1 1 1 
        diffFlux(:,:,:,n,m) = diffFlux(:,:,:,n,m) - Ds_mixavg(:,:,:,n) *  
            Rs_therm_diff(:,:,:,n) * molwt(n) * avmolwt * grad_T(:,:,:,m) / Temp
      endif

            ! compute contribution to nth species diffusive flux
            ! this will ensure that the sum of the diffusive fluxes is zero.
!dir$       fuse 1 1 1 
      diffFlux(:,:,:,n_spec,m) = diffFlux(:,:,:,n_spec,m) - diffFlux(:,:,:,n,m)

    enddo ! SPECIES
  enddo ! DIRECTION

unswitching 
directives

controlled fusion
directives

unroll and jam 
directives

Add LoopTool directives
to source program
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if BS 
   if TD

   
   else

else
   if TD

   else

n=1,nspec-2,2

n=1,nspec-2,2

n=1,nspec-2,2

n=1,nspec-2,2

if BS
else
if TD

n=1,nspec-1
m=1,3

LoopTool

      Optimization of S3D Diffusive Flux Loop

Transformation Log:
– scalarization (4 stmts)
– loop unswitching (2 conditions)
– fusion (loops within 4 outer nests)
– unroll-and-jam (2 loops)
– peeling excess iterations (4 nests)

2.94x faster than original 
(6.7% total savings)

(35 lines) (445 lines)



Engagement: Other

• Enabling technologies engagement
– APDEC: Chombo (structured AMR)
– ITAPS: Moab/iMESH (meshing)

• Application engagement using HPCToolkit
– UNEDF: MFDn (many Fermion dynamics - nuclear)
– USQCD: Chroma (quantum chromodynamics)
– Center for Turbulence Research: Hybrid (shock + turbulence)
– NETL: MFiX (multiphase flow with interface exchanges)
– Iowa State: CAM-EULAG (atmospheric modeling)
– Gromacs (cellulosic ethanol)

• Working with Fortran 2008 J3 standards committee on parallelism 
via coarrays
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Outline

• Community engagement
• Research and open source software development

– system software and language runtime systems
– communication for partitioned global address space languages 
– math libraries for multicore
– performance tools
– applications

• FY09 plans☞



FY09 Plans

• ANL
– continue to replace components in BG/P s/w stack with open source

• Berkeley
– release UPC and GASNet with improved support for BG/P, XT, and IB
– optimize sparse linear algebra libraries for multicore (with UTK) 

• Rice
– performance tools

• deploy HPCToolkit on the leadership computing platforms
• devise support for working with data from a huge # of cores

– compilers
• continue work on dynamic optimization, ROSE, scripting languages
• release a version of LoopTool for use by application teams

• Tennessee
– explore dynamic and adaptive out-of-order execution patterns for 

linear algebra on multicore and heterogeneous nodes
• Wisconsin

– continue development of InstructionAPI and ControlFlowAPI
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