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Overview of Compiler and Library Research 
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        Redundancy Elimination in Loops 
•  Redundancy elimination: re-use previously computed expressions 
•  Previous techniques 

–  value numbering: detects general expressions within a single iteration 
–  scalar replacement: detects inter-iteration redundancies involving only 

array references 
•  Miss opportunities to improve stencil operations: scientific 

computations, plus signal, and image processing 
–  “a+c+d+b” and “d+a+c+b+e” contain redundant subexpression 

–  need to change code shape (using associativity and commutativity) 

•  Approach: construct a graph representation, such that finding the 
maximal cliques corresponds to redundant subexpressions 

•  Prototyped in Open64 compiler as part of the loop nest optimizer 
•  More redundancies eliminated with combined technique 

–  ~50% performance improvement on a POP kernel and multigrid stencil 

3 Cooper, Eckhardt, Kennedy, “Redundancy Elimination Revisited,” PACT, 2008. 



       Exploring Optimization of Components 

SIDL:  Generic code using SIDL Arrays 
HOARD:  Optimized memory allocator 
IPO:  LLVM interprocedural optimization (whole program) 
NATIVE:  Native C code using pointers and C arrays 
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    The Case for Dynamic Compilation 
•  Static compilation challenges 

–  software: modular designs, abstract interfaces, de-coupled
 implementations, dynamic dispatch, dynamic linking/loading 

–  hardware:  difficult to model, unpredictable latencies, backwards
 compatibility precludes specialization 

•  Dynamic compilation opportunities 
–  cross-library interprocedural optimization (true whole program) 
–  program specialization based on input data 
–  machine dependent optimizations for the underlying architecture 
–  profile-guided optimization 

•  branch straightening for hot paths 
•  inlining of indirect function calls 
•  insertion/removal of software prefetch instructions 
•  tuning of cache-aware memory allocators 



Approach 
•  Fully exploit offline opportunities 

–  aggressive interprocedural optimization statically at link time 
–  static analysis to detect potential runtime opportunities 
–  classic profile-feedback optimization between executions 

•  Minimize online cost 
–  lightweight profiling 

•  hardware performance counter sampling (using HPCToolkit infrastructure) 
–  multiple cores 

•  runtime analysis and optimization in parallel with program execution 

•  Leverage strengths of multiple program representations 
–  optimized native code: provides efficient baseline performance 
–  higher-level IR: enables powerful dynamic recompilation (LLVM) 

•  Selectively optimize 
–  focus optimization only on promising regions of code 



Toward Dynamic Optimization 
•  Working with ORNL to explore similar optimization of a true CCA

 mesh benchmark 
•  Integrating HPCToolkit measurement infrastructure with dynamic

 compilation framework 
•  Beginning experimentation with inter-component dynamic

 optimization of CCA applications using LLVM 

Work is being presented at the Spring 2009 
CCA Forum Meeting, April 23-24, 2009 



Dynamic Optimizations in PGAS Languages 

•  Runtime optimization techniques were also used overlap communication
 in UPC, in this case bulk operations 

•  Dynamically checks dependences to ensure correct semantics 

8 Chen, Iancu, Yelick, ICS 2008. 



•  Use one-sided communication to optimize UPC collectives 
•  Developing automatic tuning to select optimizations 

•  Tree shapes, overlap techniques, synchronization protocols, etc.  

•  These results are on reduction operations for multicore 

PGAS Collectives 

AMD Opteron (32 threads) Reductions Sun Victoria Fall (256 threads) Reductions 

Nishtala & Yelick, HotPar 2009 



PGAS Communication Runtime Work 
•  PGAS languages use a one-sided communication model 
•  GASNet is widely used as a communication layer (joint funding) 

–  Berkeley UPC compiler, Berkeley Titanium compiler 
–  Cray UPC and CAF compilers for XT4 and XT5 
–  Intrepid UPC (gcc-upc); Cray Chapel compiler; Rice CAF compiler 

•  Released in November, CDs distributed at SC08 
–  Improvements in Portals performance (Cray XT) with “firehose” 
–  New implementation for BG/P DCMF layer with help from ANL 
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3D FFT Performance on BG/P 

•  Strong scaling: shows good performance up to 16K cores 

Upper bound 
is based on a 
performance 
model of 
torus 
topology and 
bandwidth 

Packed slabs is a 
bulk-synchronous 
algorithm that 
minimizes the 
number of 
messages 

Slabs overlaps 
communication 
with computation 
by sending data as 
soon as it is ready 

Nishtala et al, IPDPS 2009 
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Experiments Comparing MPI and UPC 

•  UPC work motivated MPICH work 
•  Table of timings extracted from various experiments with NPB-FT 

–  UPC code from Berkeley and MPI code by ANL 

•  On 512 processes of BG/P 

–  Fastest (by a teeny bit) is MPI isend/irecv with interrupts on 

•  On 1024 processes of BG/P 
–   Tuned Berkeley UPC is slightly faster, but MPI all2all is close. 
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UPC and MPI 
•  Asynchronous progress in the communication engine is what 

matters for performance in this particular example 
–  Not so much the one-sidedness of UPC put 
–  Not so much the fact that UPC 

•  Non-blocking collective operations in MPI are needed 
–  Being worked on now by the MPI-3 Forum. 

•  But there is no reason that MPI and UPC need to compete 
–  MPI + UPC is an important hybrid programming model 
–  An alternative path to effective use of multicore 

•  Saves memory within a node compared to all MPI: sharing rather than 
replication 

•  Sometimes faster 
–  UPC offers locality control for multisocket SMP nodes unlike OpenMP 
–  Working on this model is ongoing 

13 



Numerical Libraries 

14 



15 

Multicore is a disruptive technology for software 
• Must rethink and rewrite applications, algorithms and software 

–  as before with cluster computing and message passing 
• Numerical libraries, e.g. LAPACK and ScLAPACK, need to change 

A Motivating Example: Cholesky 
Existing software based on BLAS uses fork-join parallelism 

–  causes stalls on multicore systems 

15 
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            PLASMA: Parallel Linear Algebra s/w for Multicore 

•  Objectives 
–  parallel performance 

•  high utilization of each core 
•  scaling to large numbers of cores 

–  any memory model 
•  shared memory: symmetric or non-symmetric 
•  distributed memory 
•  GPUs 

•  Solution properties 
–  asychronicity: avoid fork-join (bulk synchronous design) 
–  dynamic scheduling: out-of-order execution 
–  fine granularity: independent block operations 
–  locality of reference: store data using block data layout 

A community effort led by Tennessee and Berkeley  
(similar to LAPACK/ScaLAPACK) 

16 



17 

PLASMA Methodology 

Computations as DAGs 
Reorganize algorithms and software to work on tiles that are scheduled 
based on the directed acyclic graph of the computation 
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        PLASMA Provides Highest Performance 



DAG Scheduling of LU in UPC + Multithreading 

•  UPC uses a static threads (SPMD) programming model 
–  Multithreading used to mask latency and to mask dependence delays 
–  Three levels of threads:  

•  UPC threads (data layout, each runs an event scheduling loop) 
•  Multithreaded BLAS (boost efficiency) 
•  User level (non-preemptive) threads with explicit yield 

–  New problem in distributed memory: allocator deadlock 
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Leveraging Mixed Precision 
•  Why use single precision as part of the computation? Speed! 

–  higher parallelism within vector units 
•  4 ops/cycle (usually) instead of 2 ops/cycle 

–  reduced data motion  
•  32-bit vs. 64-bit data 

–  higher locality in cache 
•  more data items in cache 

•  Approach 
–  compute a 32-bit result  
–  calculate a correction for 32-bit results using 64-bit operations 
–  update of 32-bit results with the correction using high precision 

21 
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   Mixed-Precision Iterative Refinement 
•  Iterative refinement for dense systems, Ax = b, can work this way: 

•  Wilkinson, Moler, Stewart, & Higham provide error bound for SP 
floating point results when using DP floating point 

•  Using this, we can compute the result to 64-bit precision 

L U = lu(A)    SINGLE   O(n3) 
x = L\(U\b)    SINGLE   O(n2) 
r = b – Ax    DOUBLE   O(n2) 
WHILE || r || not small enough 

        z = L\(U\r)    SINGLE   O(n2) 
        x = x + z    DOUBLE   O(n1) 
        r = b – Ax    DOUBLE   O(n2) 
END 

22 
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Results for Mixed Precision 

Architecture (BLAS-MPI) # procs n DP Solve 
/SP Solve 

DP Solve 
/Iter Ref 

# iter 

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6 

AMD Opteron (Goto – OpenMPI MX) 64 32000 1.90 1.83 6 

Iterative Refinement for Dense Ax = b 
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Autotuning Sparse Matrix Vector Multiply 
•  Sparse Matrix-Vectory Multiply (SpMV) 

–  Evaluate y=Ax 
–  A is a sparse matrix, x & y are dense vectors 

•  Challenges 
–  Very low arithmetic intensity  (often <0.166 flops/byte) 
–  Difficult to exploit ILP(bad for superscalar), 
–  Difficult to exploit DLP(bad for SIMD) 

•  Optimizations for Multicore by Williams et al, SC07 
–  Supported in part by PERI 

(a) 
algebra conceptualization 

(c) 
CSR reference code 

for (r=0; r<A.rows; r++) { 
  double y0 = 0.0; 
  for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){ 
    y0 += A.val[i] * x[A.col[i]]; 
  } 
  y[r] = y0; 
} 

A x y 

(b) 
CSR data structure 

A.val[ ] 

A.rowStart[ ] 

... 

... 

A.col[ ] 
... 
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SpMV Performance 
(simple parallelization) 

•  Out-of-the box SpMV
 performance on a
 suite of 14 matrices 

•  Scalability isn’t great 
•  Is this performance

 good? 

Naïve Pthreads 

Naïve 
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Auto-tuned SpMV Performance 
(portable C) 

•  Fully auto-tuned SpMV
 performance across
 the suite of matrices 

•  Why do some
 optimizations work
 better on some
 architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 
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Auto-tuned SpMV Performance 
(architecture specific optimizations) 

•  Fully auto-tuned SpMV
 performance across the
 suite of matrices 

•  Included SPE/local store
 optimized version 

•  Why do some
 optimizations work better
 on some architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 



28 

The Roofline Performance Model 
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Roofline model for SpMV 
(matrix compression) 

  Inherent FMA 
  Register blocking 
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Roofline model for SpMV 
(matrix compression) 
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•  SpMV should run
 close to memory
 bandwidth 
–  Time to read

 matrix is major
 cost 

•  Can we do better? 
•  Can we compute

 Ak*x with one read
 of A? 

•  If so, this would 
–  Reduce #

 messages 
–  Reduce memory

 bandwidth 



Avoiding Communication in Iterative Solvers 

•  Consider Sparse Iterative Methods for Ax=b 
–  Use Krylov Subspace Methods: GMRES, CG 
–  Can we lower the communication costs? 

•  Latency of communication, i.e., reduce # messages
 by computing Ak*x with one read of remote x 

•  Bandwidth to memory hierarchy, i.e., compute A 
•  Example: GMRES for Ax=b on “2D Mesh” 

–  x lives on n-by-n mesh 
–  Partitioned on p½ -by- p½ grid 
–  A has “5 point stencil” (Laplacian) 

•  Much more complex in general 
– TSP algorithm to sort matrix 
– Minimize communication events 



Avoiding Communication in Sparse Linear 
Algebra - Summary 

•  Take k steps of Krylov subspace method 
–  GMRES, CG, Lanczos, Arnoldi 
–  Parallel implementation 

•  Conventional: O(k log p) messages 
•  “New”: O(log p) messages - optimal 

–  Serial implementation 
•  Conventional: O(k) moves of data from slow to fast memory 
•  “New”: O(1) moves of data – optimal 

•  Performance of Akx operation relative to Ax and upper bound 



But the Numerics have to Change! 

•  Collaboration with PERI and Tops SciDACS among others 



Summary 

•  All aspects of the optimization space 
–  Changing languages 
–  Changing compilers 
–  Changing architecture  

•  or at least evaluating them and exploint all features 
–  Changing algorithms 

•  Joint projects within this SciDAC effort and between others 
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