
1 CScADS Midterm Review April 22, 2009

Center for Scalable Application
Development Software: 
Libraries and Compilers

Kathy Yelick (U.C. Berkeley)

Overview of Compiler and Library Research

2

Compilers
Rice & Berkeley

Communication
Libraries

Argonne & Berkeley

 Numerical Libraries
Tennesse & Berkeley

 Redundancy Elimination in Loops
•  Redundancy elimination: re-use previously computed expressions
•  Previous techniques

–  value numbering: detects general expressions within a single iteration
–  scalar replacement: detects inter-iteration redundancies involving only

array references
•  Miss opportunities to improve stencil operations: scientific

computations, plus signal, and image processing
–  “a+c+d+b” and “d+a+c+b+e” contain redundant subexpression

–  need to change code shape (using associativity and commutativity)

•  Approach: construct a graph representation, such that finding the
maximal cliques corresponds to redundant subexpressions

•  Prototyped in Open64 compiler as part of the loop nest optimizer
•  More redundancies eliminated with combined technique

–  ~50% performance improvement on a POP kernel and multigrid stencil

3 Cooper, Eckhardt, Kennedy, “Redundancy Elimination Revisited,” PACT, 2008.

 Exploring Optimization of Components

SIDL: Generic code using SIDL Arrays
HOARD: Optimized memory allocator
IPO: LLVM interprocedural optimization (whole program)
NATIVE: Native C code using pointers and C arrays

0.83

1.00

2.67

3.58

3.82

5.47

0.00 1.00 2.00 3.00 4.00 5.00 6.00

NATIVE + HOARD

NATIVE

SIDL + IPO + HOARD

SIDL + IPO

SIDL + HOARD

SIDL

Offline optimization of fine-grained TSTT mesh operations

TSTT Mesh Interface: http://tetra.mech.ubc.ca/ANSLab/publications/TSTT-asm06.pdf

Execution time relative to Native C

 The Case for Dynamic Compilation
•  Static compilation challenges

–  software: modular designs, abstract interfaces, de-coupled
 implementations, dynamic dispatch, dynamic linking/loading

–  hardware: difficult to model, unpredictable latencies, backwards
 compatibility precludes specialization

•  Dynamic compilation opportunities
–  cross-library interprocedural optimization (true whole program)
–  program specialization based on input data
–  machine dependent optimizations for the underlying architecture
–  profile-guided optimization

•  branch straightening for hot paths
•  inlining of indirect function calls
•  insertion/removal of software prefetch instructions
•  tuning of cache-aware memory allocators

Approach
•  Fully exploit offline opportunities

–  aggressive interprocedural optimization statically at link time
–  static analysis to detect potential runtime opportunities
–  classic profile-feedback optimization between executions

•  Minimize online cost
–  lightweight profiling

•  hardware performance counter sampling (using HPCToolkit infrastructure)
–  multiple cores

•  runtime analysis and optimization in parallel with program execution

•  Leverage strengths of multiple program representations
–  optimized native code: provides efficient baseline performance
–  higher-level IR: enables powerful dynamic recompilation (LLVM)

•  Selectively optimize
–  focus optimization only on promising regions of code

Toward Dynamic Optimization
•  Working with ORNL to explore similar optimization of a true CCA

 mesh benchmark
•  Integrating HPCToolkit measurement infrastructure with dynamic

 compilation framework
•  Beginning experimentation with inter-component dynamic

 optimization of CCA applications using LLVM

Work is being presented at the Spring 2009
CCA Forum Meeting, April 23-24, 2009

Dynamic Optimizations in PGAS Languages

•  Runtime optimization techniques were also used overlap communication
 in UPC, in this case bulk operations

•  Dynamically checks dependences to ensure correct semantics

8 Chen, Iancu, Yelick, ICS 2008.

•  Use one-sided communication to optimize UPC collectives
•  Developing automatic tuning to select optimizations

•  Tree shapes, overlap techniques, synchronization protocols, etc.

•  These results are on reduction operations for multicore

PGAS Collectives

AMD Opteron (32 threads) Reductions Sun Victoria Fall (256 threads) Reductions

Nishtala & Yelick, HotPar 2009

PGAS Communication Runtime Work
•  PGAS languages use a one-sided communication model
•  GASNet is widely used as a communication layer (joint funding)

–  Berkeley UPC compiler, Berkeley Titanium compiler
–  Cray UPC and CAF compilers for XT4 and XT5
–  Intrepid UPC (gcc-upc); Cray Chapel compiler; Rice CAF compiler

•  Released in November, CDs distributed at SC08
–  Improvements in Portals performance (Cray XT) with “firehose”
–  New implementation for BG/P DCMF layer with help from ANL

10

0

200000

400000

600000

800000

1000000

1200000

1400000

B
an

dw
id

th
 (K

iB
/s

)

Size (Bytes)

Cray XT4 Bulk Put Bandwidth

With Firehose

Without Firehose

BlueGene/P Bandwidth for GASNet & MPI
(varying the number of links used)

Hargrove et al, CUG 2009

3D FFT Performance on BG/P

•  Strong scaling: shows good performance up to 16K cores

Upper bound
is based on a
performance
model of
torus
topology and
bandwidth

Packed slabs is a
bulk-synchronous
algorithm that
minimizes the
number of
messages

Slabs overlaps
communication
with computation
by sending data as
soon as it is ready

Nishtala et al, IPDPS 2009

12

Experiments Comparing MPI and UPC

•  UPC work motivated MPICH work
•  Table of timings extracted from various experiments with NPB-FT

–  UPC code from Berkeley and MPI code by ANL

•  On 512 processes of BG/P

–  Fastest (by a teeny bit) is MPI isend/irecv with interrupts on

•  On 1024 processes of BG/P
–  Tuned Berkeley UPC is slightly faster, but MPI all2all is close.

12

Naïve UPC

(not done)

UPC alltoall

82.64

tuned UPC

61.67

MPI isend/irecv/wait

No int: 83.43; Int: 60.32

MPI alltoall

72.68

13

UPC and MPI
•  Asynchronous progress in the communication engine is what

matters for performance in this particular example
–  Not so much the one-sidedness of UPC put
–  Not so much the fact that UPC

•  Non-blocking collective operations in MPI are needed
–  Being worked on now by the MPI-3 Forum.

•  But there is no reason that MPI and UPC need to compete
–  MPI + UPC is an important hybrid programming model
–  An alternative path to effective use of multicore

•  Saves memory within a node compared to all MPI: sharing rather than
replication

•  Sometimes faster
–  UPC offers locality control for multisocket SMP nodes unlike OpenMP
–  Working on this model is ongoing

13

Numerical Libraries

14

15

Multicore is a disruptive technology for software
• Must rethink and rewrite applications, algorithms and software

–  as before with cluster computing and message passing
• Numerical libraries, e.g. LAPACK and ScLAPACK, need to change

A Motivating Example: Cholesky
Existing software based on BLAS uses fork-join parallelism

–  causes stalls on multicore systems

15

16

 PLASMA: Parallel Linear Algebra s/w for Multicore

•  Objectives
–  parallel performance

•  high utilization of each core
•  scaling to large numbers of cores

–  any memory model
•  shared memory: symmetric or non-symmetric
•  distributed memory
•  GPUs

•  Solution properties
–  asychronicity: avoid fork-join (bulk synchronous design)
–  dynamic scheduling: out-of-order execution
–  fine granularity: independent block operations
–  locality of reference: store data using block data layout

A community effort led by Tennessee and Berkeley
(similar to LAPACK/ScaLAPACK)

16

17

PLASMA Methodology

Computations as DAGs
Reorganize algorithms and software to work on tiles that are scheduled
based on the directed acyclic graph of the computation

18

19

 PLASMA Provides Highest Performance

DAG Scheduling of LU in UPC + Multithreading

•  UPC uses a static threads (SPMD) programming model
–  Multithreading used to mask latency and to mask dependence delays
–  Three levels of threads:

•  UPC threads (data layout, each runs an event scheduling loop)
•  Multithreaded BLAS (boost efficiency)
•  User level (non-preemptive) threads with explicit yield

–  New problem in distributed memory: allocator deadlock

21

Leveraging Mixed Precision
•  Why use single precision as part of the computation? Speed!

–  higher parallelism within vector units
•  4 ops/cycle (usually) instead of 2 ops/cycle

–  reduced data motion
•  32-bit vs. 64-bit data

–  higher locality in cache
•  more data items in cache

•  Approach
–  compute a 32-bit result
–  calculate a correction for 32-bit results using 64-bit operations
–  update of 32-bit results with the correction using high precision

21

22

 Mixed-Precision Iterative Refinement
•  Iterative refinement for dense systems, Ax = b, can work this way:

•  Wilkinson, Moler, Stewart, & Higham provide error bound for SP
floating point results when using DP floating point

•  Using this, we can compute the result to 64-bit precision

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

 z = L\(U\r) SINGLE O(n2)
 x = x + z DOUBLE O(n1)
 r = b – Ax DOUBLE O(n2)
END

22

23

Results for Mixed Precision

Architecture (BLAS-MPI) # procs n DP Solve
/SP Solve

DP Solve
/Iter Ref

iter

AMD Opteron (Goto – OpenMPI MX) 32 22627 1.85 1.79 6

AMD Opteron (Goto – OpenMPI MX) 64 32000 1.90 1.83 6

Iterative Refinement for Dense Ax = b

24

Autotuning Sparse Matrix Vector Multiply
•  Sparse Matrix-Vectory Multiply (SpMV)

–  Evaluate y=Ax
–  A is a sparse matrix, x & y are dense vectors

•  Challenges
–  Very low arithmetic intensity (often <0.166 flops/byte)
–  Difficult to exploit ILP(bad for superscalar),
–  Difficult to exploit DLP(bad for SIMD)

•  Optimizations for Multicore by Williams et al, SC07
–  Supported in part by PERI

(a)
algebra conceptualization

(c)
CSR reference code

for (r=0; r<A.rows; r++) {
 double y0 = 0.0;
 for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){
 y0 += A.val[i] * x[A.col[i]];
 }
 y[r] = y0;
}

A x y

(b)
CSR data structure

A.val[]

A.rowStart[]

...

...

A.col[]
...

25

SpMV Performance
(simple parallelization)

•  Out-of-the box SpMV
 performance on a
 suite of 14 matrices

•  Scalability isn’t great
•  Is this performance

 good?

Naïve Pthreads

Naïve

26

Auto-tuned SpMV Performance
(portable C)

•  Fully auto-tuned SpMV
 performance across
 the suite of matrices

•  Why do some
 optimizations work
 better on some
 architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

27

Auto-tuned SpMV Performance
(architecture specific optimizations)

•  Fully auto-tuned SpMV
 performance across the
 suite of matrices

•  Included SPE/local store
 optimized version

•  Why do some
 optimizations work better
 on some architectures?

+Cache/LS/TLB Blocking

+Matrix Compression

+SW Prefetching

+NUMA/Affinity

Naïve Pthreads

Naïve

28

The Roofline Performance Model

peak DP

mul / add imbalance

w/out SIMD

w/out ILP

0.5

1.0

1/8
actual flop:byte ratio

at
ta

in
ab

le
 G

flo
p/

s

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

Generic Machine
  Locations of posts in

the building are
determined by
algorithmic intensity

  Will vary across
algorithms and with
bandwidth-reducing
optimizations, such as
better cache re-use
(tiling), compression
techniques

29

Roofline model for SpMV
(matrix compression)

  Inherent FMA
  Register blocking

improves ILP,
DLP, flop:byte
ratio, and FP% of
instructions 1

2

1/16
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

1

2

1/16
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out SIMD

peak DP

w/out ILP

w/out FMA

25% FP

peak DP

12% FP

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

IBM QS20
Cell Blade

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

30

Roofline model for SpMV
(matrix compression)

1

2

1/16
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

1

2

1/16
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8
1

2

1/16
flop:DRAM byte ratio

at
ta

in
ab

le
 G

flo
p/

s

4

8

16

32

64

128

1/8 1/4 1/2 1 2 4 8

w/out SIMD

peak DP

w/out ILP

w/out FMA

25% FP

peak DP

12% FP

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

peak DP

w/out SIMD

w/out ILP

mul/add imbalance

IBM QS20
Cell Blade

Opteron 2356
(Barcelona)

Intel Xeon E5345
(Clovertown)

Sun T2+ T5140
(Victoria Falls)

•  SpMV should run
 close to memory
 bandwidth
–  Time to read

 matrix is major
 cost

•  Can we do better?
•  Can we compute

 Ak*x with one read
 of A?

•  If so, this would
–  Reduce #

 messages
–  Reduce memory

 bandwidth

Avoiding Communication in Iterative Solvers

•  Consider Sparse Iterative Methods for Ax=b
–  Use Krylov Subspace Methods: GMRES, CG
–  Can we lower the communication costs?

•  Latency of communication, i.e., reduce # messages
 by computing Ak*x with one read of remote x

•  Bandwidth to memory hierarchy, i.e., compute A
•  Example: GMRES for Ax=b on “2D Mesh”

–  x lives on n-by-n mesh
–  Partitioned on p½ -by- p½ grid
–  A has “5 point stencil” (Laplacian)

•  Much more complex in general
– TSP algorithm to sort matrix
– Minimize communication events

Avoiding Communication in Sparse Linear
Algebra - Summary

•  Take k steps of Krylov subspace method
–  GMRES, CG, Lanczos, Arnoldi
–  Parallel implementation

•  Conventional: O(k log p) messages
•  “New”: O(log p) messages - optimal

–  Serial implementation
•  Conventional: O(k) moves of data from slow to fast memory
•  “New”: O(1) moves of data – optimal

•  Performance of Akx operation relative to Ax and upper bound

But the Numerics have to Change!

•  Collaboration with PERI and Tops SciDACS among others

Summary

•  All aspects of the optimization space
–  Changing languages
–  Changing compilers
–  Changing architecture

•  or at least evaluating them and exploint all features
–  Changing algorithms

•  Joint projects within this SciDAC effort and between others

34

