Center for Scalable Application
Development Software:
Performance Tools

Barton Miller (Wisconsin)
John Mellor-Crummey (Rice)
Ewing Lusk (ANL)

CScADS Midterm Review April 22, 2009 1

Toward Performance Tools for the Petascale

* A multi-prong effort towards

— new tool ideas

— realization in software

— feedback from engagement with peer tool groups and application teams
« Targeting high and low

— IBM Blue Gene and Cray XT leadership class platforms

— multicore processors

« Key technology areas
— binary analysis
— instrumentation and measurement
— performance and differential analysis
— user interfaces and visualization

Engaging the Tools Community

CScADS Workshops on Performance Tools
 Problem

— measurement, analysis, and modeling of application performance on
petascale systems is too large for any one group to develop alone

« Approach
— promote development of sharable software components

— accelerate the development of performance tools for leadership
computing platforms.

« Participants from
— AMD, Cray, HP, IBM, Intel, Sun
— ORNL, LBNL, PNL, LANL, LLNL, Sandia, BSC, Krell Institute, FZJ

— Berkeley, Maryland, New Mexico, UNC, Oregon, PSU, Rice,
Tennessee, UAB, Wisconsin

* |mpact

— effort to catalyze collaboration among the tools community is
beginning to bear fruit

Engaging the Tools Community
CScADS Workshops on Performance Tools

A meeting of experts; a heavy focus on problems and solutions
Detailed presentations, with live demos encouraged

An emphasis on “what can you share with others?” and “what are
you using from others?”

Multi-day working groups on collaborations and sharing

performance data XML formats

binary analysis

performance visualization components

stack walking: issues, approaches, and interfaces
control flow parsing

access to hardware event counters

scalable |/O for performance data

trace generation and processing

Engaging the Tools Community

CScADS Workshops on Performance Tools

Some outcomes

— libmonitor (Rice) for sampling or tracing operations at the library API
level, now in use by Open|Speedshop — a DOE tri-labs performance
tools project.

— SymtabAPIl (Wisconsin) for parsing symbol information from object
files, now in use by the HPCToolkit project.

— MRNet (Wisconsin) for multicast and reduction communication for tool
control, now in use by the LLNL as part of the STAT debugger project.

— sionlib (Julich) for parallel access to task-local files, being targeted for
us in HPCToolkit.

— XED2 (Intel) instruction decoder for analysis of x86 machine
instructions, now in use by HPCToolkit.

— Perfmon2 for hardware-based performance monitoring for Linux, now
used by Cray as part of their Compute Node Linux operating system
for the Cray XT.

Component-based Approach
Infrastructure for Performance Tools

Increases sharing and reuse
— reduces redundant development

Large research tool groups can focus on their priority missions
without having to develop all parts of an end-to-end solution

Small research groups (young investigators!) can explore focused
research topics with a software code base comparable to that of

larger groups

Collaborations with internal (Rice, Wisconsin) and external (LLNL,
Cray, Intel, Berkeley, Oregon, BSC, Julich) groups on various APIs

Workshop discussions are a critical part of the design process

Dyninst Component Roadmap

Under
Development

>

Parsing
API

 DepGraph
| API

The Deconstruction of Dynlnst

Realizing our Push Toward Tool Components
InstructionAPI
— abstract representation of instruction decode and address modes.
SymtabAPI
— abstraction of symbols, debug and dynamic linkage information
— updating to support binary rewriting
StackwalkerAPI

— walk stacks: first or third party, standard vs. optimized frames, custom
frames (from instrumentation or exceptions)

— uses a variety of techniques from full symbols and libunwind to
stripped binaries requiring control-flow analysis

— true synthesis of Wisconsin and Rice algorithms and code
CFGAPI

— platform independent representation of Control Flow Graph,
associated query routines, and extensible data structures

CScADS (all or partially) funded components are underlined g

The Deconstruction of Dynlnst

Just over the Horizon

PDGAPI

— platform independent representation of Program Dependence Graph,
including DDG and CDG API’s.

ProcessControlAPI

— operating system independent interface for controlling processes and
threads, monitoring events and state changes and reading and writing
the application address space (tricky in for multi-threaded aps).

CodeGenAPI

— instruction set independent code generator for incremental and
dynamically generated code.

— lightweight and fast
— context based, considering, e.g., register and stack frame use.

CodePatchAPI
— patch area allocation, code relocation, and code hooking.

liIbmonitor

An Interface between OS and First-party Tools

Processes

— parent: pre_fork, post_fork

— child: init_process, fini_process
Threads

— parent: init_thread_support, thread pre create, thread post create

— child: init_thread, fini_thread
MPI

— mpi_pre_init, mpi_post_init, mpi_pre_fini, mpi_post_fini
Signals

— selectively catch signals before or instead of delivering to application
Intercept functions to maintain control

— e.g. dlopen, sigmask, pthread_sigmask, exit, signal, sigaction
Stack unwinding support

— stack _bottom; identification of PC for bottommost frame
10

Rice: using SymtabAPI and
libmonitor in HPCToolkit

Krell Institute (Open|SpeedShop)
using SymtabAPI to get symbols
for their offline collectors; using
libmonitor in first-party tools

UNC and LLNL: using SymtabAPI
and StackwalkerAPI for PnMPI
project

LLNL (STAT project): using
SymtabAPI| and StackwalkerAPI

SiCortex: porting SymtabAPI to
Linux/MIPs; using libmonitor
underneath HPCToolkit

A Few Component Consumers

Cray: started work using
StackwalkerAPl and SymtabAPI for
new APT (Abnormal Process
Termination) system

Univ. of Oregon: using binary
rewriter as part of TAU
instrumentation

Forschungszentrum Julich: using
SymtabAPI for Scalasca

Berkeley (BitBlaze): APls for binary
processing (security tools)

BSC: using Dyninst for function-
level instrumentation

11

HPCToolkit

HPCToolkit Goals

Accurate measurement of complex parallel codes
— large, multi-lingual programs

— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments
» dynamic loading or static binaries
« SPMD parallel codes with threaded node programs
* batch jobs
— production executions

Effective performance analysis

— pinpoint and explain problems
* intuitive enough for scientists and engineers
 detailed enough for compiler writers

— vyield actionable results
Scalable to petascale systems

13

HPCToolkit Approach

Binary-level measurement and analysis

— observe executions of fully optimized, static or dynamic binaries
Sampling-based measurement

— minimize systematic error and avoid blind spots

— support data collection for large-scale parallelism
Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context
Synthesize derived performance metrics

— diagnosis requires more than one metric

— derived metrics: “miss rate,” “scalability loss”

Support top-down performance analysis

— start with what’'s most important

— keep unnecessary detail out of the way

Support multiple views of performance data

— different views help pinpoint different problems
14

HPCToolkit Performance Tools

compile & link call stack

profile

app.
source

program
structure

interpret profile
database)€1 correlate w/ source
[hpcprof]

15

HPCToolkit Performance Tools

call stack

profile
« Compile and link for production

program
structure
— with full optimization

* For statically-linked executables (e.g. for Cray XT or BG/P)
— use hpclink script to incorporate monitoring library

interpret profile
database)€1 correlate w/ source
[hpcprof]

16

HPCToolkit Performance Tools

compile & link call stack

l | profile
app. i
source !
program
structure

Measure execution unobtrusively
— launch optimized application binaries
— collect call path profiles of events of interest

interpret profile
database)€1 correlate w/ source
[hpcprof]

17

Call Path Profiling

Measure and Attribute Costs in Context
« Sample timer or hardware counter overflows
« Gather calling context using stack unwinding

Call path sample Calling Context Tree (CCT)

return address
return address
return address
instruction pointer

Overhead proportional to sampling frequency ...
.. hot call frequency

18

HPCToolkit Performance Tools

compile & link call stack

profile
app.
source
program
structure
Analyze binary to recover program structure

— analyze machine code, line map, and debugging information
— extract loop nesting information and identify inlined procedures
— map transformed loops and procedures back to source

interpret profile
database)€1 correlate w/ source
[hpcprof]

19

HPCToolkit Performance Tools

call stack
profile

program
structure
« Combine multiple profiles

— multiple threads; multiple processes; multiple executions
« Correlate measurements to static and dynamic program structure

compile & link

app.
source

interpret profile

correlate w/ source
[hpcprof]

profile

execution
[hpcrun]

- HPCToolkit Performance Tools

call stack

profile

program
structure

« EXxplore performance data from multiple perspectives
« Rank order by metrics to focus on what’s important

« Compute derived metrics to gain insight

(=—

interpret profile

correlate w/ source
[hpcprof]

calling context
'ﬁmbperf_iMesh.cpp &3 "% TypeSequenceManager.hpp PX4 @.stl_tree.h VieW

22 * Define less-than comparison for EntitySequence pointers as a comparison
232 % of the entity handles in the pointed-to EntitySequences. m
24 */

25 class SequenceCompare {
26 public: bool operator()(const EntitySequence* a, | ~Acte fAr =

27 { return a->end_handle() < b->start_handle(); } CC_)SFS for

28 1; * inlined procedures

(5 Cling Contexeyview] ., caters view] . e " loops

R allers View| ty, Flat View . .

: - * function calls in full context
| &6 |fa |

Scope | PAPILL1_DCM (I) ¥ PAPI_TOT_CYC(l) F

=

¥ main 8.63e+08 100 % | 1.13e+11 100 % &
¥ [P testB(void*, int, double const*, int const*) 8.35e+08 96.7% 1.1l0e+1l 97.6%m|
¥linlined from mbperf_iMesh.c 6.8le+08 78.9% 0.98e+11 86.5%
¥| loop at mbperf=iMesh,cpp; 280-313 | 3.43e+08 39.8% 3.37e+10 29.9%
¥ [P imesh_getvtxarrcoords_ 3.20e+08 37.1%| 2.18e+10 19.3%
¥ [MBCore:get_coords(unsigned long const*, int, double*) cc 3.20e+08 37.1% 2.16e+10 19.1%
¥|loop at MBCore.cpp: 681-693 3.20e+08 37.1%| 2.16e+10 19.1%
v[lnlined from stl_tree.h: 472 | 2.04e+08 23.7% 9.38e+09 8.3%
v 2.04e+08 23.6% 9.37e+09 8£.3%
v |inlined from TypeSequenceManager.hpp: 27 JL- 78e+08 20.6% 8.56e+09 7.6% 3
TypeSequenceManager.hpp:-z7 1.78e+08 20.6% 8.56e+09 7.6%

L(%)<;P

s~ - Pinpointing Scalability Bottlenecks

1.000 r=—
0.875
>
O
&
§ 0.750
b
w — |deal efficiency
0.625 — Actual efficiency
0.500 '
S S %))
Vv N ™ \6 6@,

CPUs

Note: higher is better
23

Bottleneck Analysis Challenges

Parallel applications

— modern software uses layers of libraries

— performance is often context dependent

Monitoring

— bottleneck nature: computation, data movement, synchronization?
— size of petascale platforms demands acceptable data volume

— low perturbation for use in production runs

Example climate code skeleton

24

<™ Analyzing Weak Scaling: 1K to 10K processors

10K

25

Shortly: Relativistic accretion onto NS

{=0.09(s) =0.125) {=0.6(s)

plely oneubop

Magnetic
Rayleigh-Taylor

FLASH from University of Chicago

G0 2 =06 |

Parallel, adaptive-mesh refinement (AMR) code
* Block structured AMR; a block is the unit of computation
« Designed for compressible reactive flows

« Can solve a broad range of (astro)physical problems
 Portable: runs on many massively-parallel systems
 Scales and performs well

* Fully modular and extensible: components can be

ns

Orzag/Tang MHD
vortex

Helium burning on neutron stars

Cellular detonation Text and figures courtesy of FLASH Team, University of Chicago

Viewing a GTC call stack sample trace with hpctraceviewer
« 32 process MPI program

» Each process has a pair of threads managed with OpenMP

i

i

|
_HHIH\”w MH'H‘ I HH‘

Il
’I“‘ .‘wmm‘ \Humﬂ

i

I
\

27

Multiple Levels of Abstraction

« Call stack sample trace for S3D
« 8 cores on a dual quad-core node; OpenMPI

call stack depth 15 call stack depth 8

=]
Call Stack CallStack

mun mun

33 3

salve driver, solve driver,

inined from sole drhver.f inined from solve drher,{

Integrate_ Integrate_

Inined from Integrate_erk Inined from Integrate_erk
Nt s,

derhative X, derhative X,

dervative x k.

mpl_walt_ mpl_wait_

PMP Walt
b ompi request default wal
OMpi_reGuest wait_comph

PMPI Wait

b ompi sequest default war
ompi_reGuestwait_comph
opal_condition_wait
0pal_progress
o bt sm_component
ompi_ffo_read_from_tal
ompl_cb_fifo_read_from_t

opal_condition wait
opal_progress

ca bl 12, peogress
rca_bil_sm_component 2
ompi_fifo_read_from _tail
ompi_¢b_fifo_read_from_t:

28

Novel Capabilities of HPCToolkit

Measurement

» Binary analysis for (1) recovering functions in partially stripped code, (2)
unwinding fully-optimized code, (3) recovering program structure

» Nearly perfect call stack sampling of fully optimized code with low overhead

Binary Analysis for Measurement and Attribution of Program Performance,
PLDI, June 2009. To appear.

Pinpoint Scalability Bottlenecks using Differential Profiling
Scalability Analysis of SPMD Codes using Expectations, ICS, June 2007

Pinpoint Performance Losses in Multithreaded Executions

Attribute insufficient parallelism and parallelization overhead for multithreaded
programs on a work-stealing runtime using sampling

Effective Performance Measurement and Analysis of Multithreaded
Applications, PPoPP, February 2009.

Performance Analysis using Sampling on Leadership Platforms

Diagnosing Performance Bottlenecks in Emerging Petascale Applications,
Submitted to SC09

p4S)

IPCToolkit Summary

Precise measurement with low overhead

— e.g. PFLOTRAN scaling study on Cray XT
« measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead, 512 cores
* unwind errors 148 out of 289M on 8192 cores

— suitable for use on production runs

Insightful analyses

Actionable feedback

Scalable to the petascale

Newly operational on leadership computing platforms
— Cray XT (CNL) : March 27, 2009

— Blue Gene/P: April 8, 2009
— Opteron+IB (Linux): February 12, 2009 (TACC’s Ranger)

30

Jumpshot

Performance Visualization with Jumpshot

« For detailed analysis of parallel program
behavior, timestamped events are collected

: . : Processes
into a log file during the run.

« A separate display program (Jumpshot) aids
the user in conducting a post mortem
analysis of program behavior.

+ We use an indexed file format (SLOG-2) that Logfile
uses a preview to select a time of interest
and quickly display an interval, without ever
needing to read much of the whole file.

Jumpshot

| \/ | Display
(clog :{> slog)

<~ Viewing Multiple Scales with Jumpshot

TimeLine : 120_np=8_Iref=6_myri.slog2 <Identity Map> | 4 |J|)$|

uum ies] <d]a/a[glaln [@ua) 2o

LowestJMax Depth\‘ Zoom Level Global Min Time View Init Time Zoom Focus Time View Final Time Global Max Time Time Per Pixel Iq » Apow w
[678 "o Jo.ossss7si1e | 0.0886675119 123159529034 251087569264 (251087589264 | 0.0352395654 L

|ldentity Map

M — A A7
N | N 7| N N 1 N /i N

Al N G N led vi it
oy) f““&y“ 5 |§\ e, Q\y.,/,,m\ 4/, Detalleq view shows opportunities
' ' e q for optimization

“|Row Count

TimeLine

1 III‘l!D 4

7 x
n: | NN A AV

[alv]or 8 u e [<[o]aamlan ©ns] s

FEEikal

v '/I \\\‘|V;(;f‘\‘\‘|5'.lh\ \ (AT XYEY

B ;; '!”ﬂ_v.u'.\m A SVEANNA \\\ T T P Y e N | L
IR A IR EE e
: ANYA i i\ ; E
B e e S AN S, ; A A I
4 i S 4 ERIFANS <EEE/ VY T W n p i B
I folnas s ¢ W |l
Y memenviavaavess | ML T @RI Uy T
AN m‘\n /m\‘ FAN T 47 ‘||u.. _ i 7T “ AN 7 . 5
Oe "“ sravirvar: ‘ll "‘v‘ﬁ",“""“ ‘ 4 ||.~§\!‘I IMII/ &a\m&\\ -“- %
.‘. I -.‘Ill'. ML T -‘-'.J“‘-.' \ A 5?‘ ,' ‘
D 7 “\ ﬁ Drawable Info Box fr‘ - ‘“ !““||!—L>-:\\\ 'ﬂ' ‘ﬂ”, J 5
= Preview_Arrow \ H'/f
o T A7 (e

curation {ave) = 1.10051 msec
[0]: time (ave) = 3.6481806572, LinelD = 7
[1]: time (ave) = 3.6492811626, LinelD = 6

i duration (max) = 2.5411 sec
@ LinelD §; 7 {lror: time (miny = 23852754831, LineiD = 7
— 4l | 00 2.5[l[1]: time (max) = 4.9263705015, LinelD = 6
|
4 [>] 1%

| N E T [l

W W

L ————————— i bt o ek | - /7|

 dose | i ! & S
o || . ST Il
< I':E iz |>;‘| I
@ LinelD s

| Fit All Rows

EaCh I i n e re p rese ntS [. . :: 12.305 12,3075 1231 12.3125 12.315 12,3175 12.32 12,3225 12.32T5Ime (secol:i]ﬂ_ l%,ﬁl
1000’s of messages

Number of Real Drawables = 1782

1000x zoom

More on Jumpshot

Connection to other projects
— distributed with MPICHZ2 (thousands of downloads per month)
— Jumpshot viewer included as part of TAU, with converters
— Berkeley UPC/GASP emits SLOG2 files for Jumpshot
Scalability minuses
— use with a thousand time lines still a research issue
— need adaptive summary for amalgamating messages
Scalability pluses
— SLOGZ2 format allows interactive access to large trace files
— summary states and messages
— statistics view
— can view subset of processes
Basic Jumpshot premise
— sometimes you have to look at the details

34

e
@)

L
7))
Q.
&
)

-

ic Load

Using Jumpshot to study ADLB (Asynchronous Dynam

in UNEDF SciDAC

library used

)

— understand

Balancing

ime

t

IOr over

lar behav

irregu

ing very

<Process View>

256k.slog2

a.mpilog

56.mic.

8o o2e

adlb.14n-m0

TimelLine

&

<[> |[a]a]s]

Global Min Time
0.0001843647

alv|DF

[Lowest / Max. Depth [zoom Level

[Row

.‘.‘

TimelLines -

Row Count
37.66

Time Per Pixel
0.0000114394

286.2358403682

Global Max Time

View Final Time
192.8424336957

192.8234287273

Zoom Focus Time

View Init Time
192.825903744

Cumulati..

241

201

~161

121

WLk

Fit All Row

@ world_rank

e [

192.842

192.83 192.832 192.834 192.836 192.838 192.84
Time (seconds) -

192.828

35

