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Application Engagement 

•  Workshops (2 out of 4) for outreach 
–  Leadership Class Machines, Applications, and Performance 
–  Scientific Data Analysis and Visualization for Petascale Computing 

•  Other application engagement 
–  continued interactions with workshop participants 
–  focused engagement with specific application groups 
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Workshop on Leadership Class Machines,  
Applications, and Performance 

•  Goal: Jumpstart productive application use of DOE’s large-scale 
facilities at ANL, ORNL, and NERSC 

•  Target audience 
–  code developers; not necessarily P.I.’s 
–  from DOE SciDAC and INCITE programs 

•  Content (presented by 12 speakers) 
–  leadership machine architectures 
–  programming at scale for performance 
–  tools for understanding code behavior 
–  I/O and visualization 
–  hands-on sessions (time for hacking, with sysadmins available) 
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Attendees and Their Projects 
•  2008: 25 attendees 

–  12 from projects with INCITE awards 
–  15 from other SciDAC projects 

•  Wide range of application areas, e.g.: 
–  climate INCITE 
–  FACETS SciDAC (fusion) 
–  CSCAPES SciDAC 
–  COMPASS SciDAC (particle accelerator modeling) also INCITE 
–  biofuels INCITE 
–  combustion in gas turbines INCITE 
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Interactions Born at the Workshops 

•  Revised approach to parallel I/O for sparse matrix data structures, 
used in part of UNEDF SciDAC.  Interactions continued at recent 
Nuclear Physics Exascale meeting 

•  Alternate file format and  parallel I/O strategy for PHASTA. 
Continued at ALCF workshop in January.  

•  Turbulent flow project for Center for Turbulence Research at 
Stanford.  I/O strategies on Franklin (NERSC machine).  Ported 
code to BG/P.  Continued interactions with ALCF staff 

•  Worked with CERFACS on problem decomposition; student visited 
Argonne for further optimization work. 

•  Formed collaboration with NERSC on HDF5 issues. 
•  Worked closely over the year with GFMC part of UNEDF SciDAC. 
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Lasting relationships formed at Snowbird workshops 



Focused Engagement Activities 
•  Need representative applications to drive compilers/tools research 
•  CScADS collaborates in PERI Tiger Teams 

–  PERI Tiger Teams engage CScADS with applications 
–  CScADS extends PERI Tiger Team efforts 
–  develop software and methods to help application teams 

•  GTC: particle-in-cell simulation of turbulent plasma in a tokamak 
•  FLASH: block structured AMR to simulate astrophysical flashes 
•  S3D: direct numerical simulation of combustion using dense arrays 
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The Challenge of Application Tuning 
•  Performance measurement tools identify 

–  sections of code that execute inefficiently 
–  loops that incur a high fraction of a particular hardware event 

•  Knowing where cache misses occur is seldom enough 
–  data reuse is not a local phenomenon 

•  Assess tuning opportunities through modeling 
–  identify performance bottlenecks due to application characteristics 

•  instruction level parallelism, data reuse patterns, data layout 
–  provide insight into code transformations for improving performance 

•  PERI aims to provide guidance for next generation procurements 
•  CScADS aims to help improve application performance 

–  understand performance impact for a target architecture 
•  understand mismatch between application and architecture 
•  impact of ILP depends on machine width, execution unit types 

7 



Modeling Toolkit Design Overview 
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Understanding Data Reuse 
Identify data reuse patterns using reuse distance 

•  Characterize reuse patterns by a tuple of scopes 
–  source, destination, carrying scopes 

•  Understand not only where cache misses occur  
–  identify where data has been previously accessed 
–  identify which algorithmic loop is driving the reuse 

•  important for understanding how to improve the reuse 

do kz=1,mzbig 
   wz=real(kz)/real(mzbig) 
   zdum=zetamin+deltaz*(real(k-1)+wz) 
   do i=idiag1,idiag2 
      ii=igrid(i) 
      do j=1,mtdiag 
         … 
         phiflux(kz+(k-1)*mzbig,j,i)= … 
      enddo 
   enddo 
enddo 

GTC example 
- spatial reuse 



Missed Opportunities for Spatial Locality 
•  Problem: inefficient use of caches 

–  long temporal or spatial data reuse 
•  captured by memory reuse distance 

–  unused data in cache lines 
•  data fetched in blocks; some words never accessed 

•  fragmentation factor = 

•  Approach 
–  compute fragmentation factors for references 

•  use static analysis to understand access stride and fraction of
 data never accessed 

–  report misses due to data fragmentation at each level 

data fetched but never accessed 
total fetched data 
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•  GTS: simulates turbulent plasma in tokamak reactors  
–  3D particle-in-cell code; 1D decomposition along toroidal direction 

•  charge: deposit charge from particles to grid points 
•  solve: compute the electrostatic potential and field on grid points 
•  push: compute the force on each particle from nearby grid points 

•  Used measurement and modeling tools developed at Rice with 
CScADS support to pinpoint performance losses 
–  poor spatial locality due to vector of structures representation for ions 
–  unrealized opportunities for temporal reuse between loops over ions 

•  Improving node performance 
–  manually transform to structure of vectors 
–  manually apply fusion and blocking to improve temporal reuse 
–  transmit improvements back to GTC/GTS code teams 

Application Engagement: GTC 
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       GTS: Node Performance Improvements 

•  Metrics normalized to measurements of original code 
•  Lower is better 
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    GTS: Locality Degrades as Ions Swirl 

•  Locality is best when particles are sorted in cell order 
— potential computation uses cell data only 
— charge deposition and particle pushing involve interactions between 

particles and cells 
•  Initially particles are uniformly distributed in cell order 

Time step 0 
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•  Locality is best when particles are sorted in cell order 
— potential computation uses cell data only 
— charge deposition and particle pushing involve interactions between 

particles and cells 
•  Over time, the particle distribution diverges from cell order 

Time step 20 

    GTS: Locality Degrades as Ions Swirl 
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          GTS: Potential Improvement from Reordering 

•  Locality degrades gradually at run-time 
•  Assumptions: 

— periodic particle reordering restores locality and performance 
— performance degrades at similar rate after each sorting step 
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        GTS: Compute Optimal Sorting Interval 

•  Notations 
— f(x) = time step cost function 
— C = cost of sorting 
— G(t) = gain from sorting every t time 
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Parallel Performance Results 

•  Combined optimizations reduce GTS execution time by 
— 37% on Itanium2 cluster 
— 21% on Cray XT and Cray XD1 



Application Engagement: FLASH 
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FLASH suffers from poor spatial locality due to data layout 
(values predicted for Sedov test case) 

• Total L3 miss count 
• L3 cache misses due to 

fragmentation of data in 
cache lines: 22% of total 

array statement at line 115 accounts 
for 78% of fragmentation misses 

Array unk – main data 
structure holding cell 
centered data for 
PARAMESH – has 
variable index on 
innermost dimension. 
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•  Direct numerical simulation (DNS) of turbulent combustion 
–  state-of-the-art code developed at CRF/Sandia 

•  PI: Jaqueline H. Chen, SNL 
–  2007/2008 INCITE awards at NCCS 
–  pioneering application for 250TF Jaguar system 

•  Extend performance analysis work of PERI Tiger team 
–  use HPCToolkit to locate single-core performance bottlenecks  

•  compiler inserted array copies 
•  streaming calculations with low data reuse 
•  loop nests with recurrences 

–  identified opportunities for compiler-based improvement 
–  enhanced LoopTool to address S3D’s needs 
–  improved loop nests with LoopTool’s semi-automatic transforms 

•  transformed code is now part of S3D’s source base 
–  used HPCToolkit to assess multicore scaling issues 

Application Engagement: S3D 

J H Chen et al 2009 Computational Science and Discovery 2 015001 (31pp) 
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S3D: What Opportunities Exist? 

initialize 

update 

5D loop nest: 
2D explicit loops 

3D F90 vector syntax 

reuse 

reuse 

reuse performance 
problem 

data streams  
in/out of memory 
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Loop Unswitching 

 
Controlled Loop Fusion 

           LoopTool: Loop Optimization of Fortran 

    Rice University’s tool for 
source-to-source 
transformation of Fortran 

(transformation subset shown)  

 

Unroll  
and Jam 

do k = 1,n 
do k = 1,n-1,2 
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if BS  
   if TD 

   else 

else 
   if TD 

   else 

n=1,nspec-2,2 

n=1,nspec-2,2 

n=1,nspec-2,2 

n=1,nspec-2,2 

if BS 
else 
if TD 

n=1,nspec-1 
m=1,3 

LoopTool 

      Optimization of S3D Diffusive Flux Loop 

Transformation Log: 
–  scalarization (4 stmts) 
–  loop unswitching (2 conditions) 
–  fusion (loops within 4 outer nests) 
–  unroll-and-jam (2 loops) 
–  peeling excess iterations (4 nests) 

2.94x faster than original  
(6.7% total savings) 

(35 lines) (445 lines) 



Ongoing Work 
•  Beginning to study new applications 

–  PFLOTRAN, POP 
•  Modeling toolkit  

–  replacing EEL (licensed) with Dyninst toolkit (open source) 
•  create open source multi-platform tool 

–  status: testing instrumentation using GTC on Opteron platform 
•  LoopTool  

–  being prepared for deployment in 2009 
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