
1 CScADS Midterm Review April 22, 2009

Center for Scalable Application
Development Software: 
Application Engagement

Ewing Lusk (ANL)
Gabriel Marin (Rice)

2

Application Engagement

•  Workshops (2 out of 4) for outreach
–  Leadership Class Machines, Applications, and Performance
–  Scientific Data Analysis and Visualization for Petascale Computing

•  Other application engagement
–  continued interactions with workshop participants
–  focused engagement with specific application groups

2

3

Workshop on Leadership Class Machines,
Applications, and Performance

•  Goal: Jumpstart productive application use of DOE’s large-scale
facilities at ANL, ORNL, and NERSC

•  Target audience
–  code developers; not necessarily P.I.’s
–  from DOE SciDAC and INCITE programs

•  Content (presented by 12 speakers)
–  leadership machine architectures
–  programming at scale for performance
–  tools for understanding code behavior
–  I/O and visualization
–  hands-on sessions (time for hacking, with sysadmins available)

3

4

Attendees and Their Projects
•  2008: 25 attendees

–  12 from projects with INCITE awards
–  15 from other SciDAC projects

•  Wide range of application areas, e.g.:
–  climate INCITE
–  FACETS SciDAC (fusion)
–  CSCAPES SciDAC
–  COMPASS SciDAC (particle accelerator modeling) also INCITE
–  biofuels INCITE
–  combustion in gas turbines INCITE

4

5

Interactions Born at the Workshops

•  Revised approach to parallel I/O for sparse matrix data structures,
used in part of UNEDF SciDAC. Interactions continued at recent
Nuclear Physics Exascale meeting

•  Alternate file format and parallel I/O strategy for PHASTA.
Continued at ALCF workshop in January.

•  Turbulent flow project for Center for Turbulence Research at
Stanford. I/O strategies on Franklin (NERSC machine). Ported
code to BG/P. Continued interactions with ALCF staff

•  Worked with CERFACS on problem decomposition; student visited
Argonne for further optimization work.

•  Formed collaboration with NERSC on HDF5 issues.
•  Worked closely over the year with GFMC part of UNEDF SciDAC.

5

Lasting relationships formed at Snowbird workshops

Focused Engagement Activities
•  Need representative applications to drive compilers/tools research
•  CScADS collaborates in PERI Tiger Teams

–  PERI Tiger Teams engage CScADS with applications
–  CScADS extends PERI Tiger Team efforts
–  develop software and methods to help application teams

•  GTC: particle-in-cell simulation of turbulent plasma in a tokamak
•  FLASH: block structured AMR to simulate astrophysical flashes
•  S3D: direct numerical simulation of combustion using dense arrays

6

The Challenge of Application Tuning
•  Performance measurement tools identify

–  sections of code that execute inefficiently
–  loops that incur a high fraction of a particular hardware event

•  Knowing where cache misses occur is seldom enough
–  data reuse is not a local phenomenon

•  Assess tuning opportunities through modeling
–  identify performance bottlenecks due to application characteristics

•  instruction level parallelism, data reuse patterns, data layout
–  provide insight into code transformations for improving performance

•  PERI aims to provide guidance for next generation procurements
•  CScADS aims to help improve application performance

–  understand performance impact for a target architecture
•  understand mismatch between application and architecture
•  impact of ILP depends on machine width, execution unit types

7

Modeling Toolkit Design Overview

Object
Code

Binary
Analyzer

• Control flow graph
• Loop nesting
• Instruction
dependences

• BB instruction mix

Static Analysis

Binary
Instrumenter

Instrumented
Code

Execute

• BB & Edge Counts
• Memory Reuse Distance

Dynamic
Analysis

IR code

Architecture
Description

Performance
Prediction for

Target
Architecture

Cross Architecture Models

Modulo
Scheduler

Architecture neutral
model

Scalable Models

Model
Builder

Evaluate

Understanding Data Reuse
Identify data reuse patterns using reuse distance

•  Characterize reuse patterns by a tuple of scopes
–  source, destination, carrying scopes

•  Understand not only where cache misses occur
–  identify where data has been previously accessed
–  identify which algorithmic loop is driving the reuse

•  important for understanding how to improve the reuse

do kz=1,mzbig
 wz=real(kz)/real(mzbig)
 zdum=zetamin+deltaz*(real(k-1)+wz)
 do i=idiag1,idiag2
 ii=igrid(i)
 do j=1,mtdiag
 …
 phiflux(kz+(k-1)*mzbig,j,i)= …
 enddo
 enddo
enddo

GTC example
- spatial reuse

Missed Opportunities for Spatial Locality
•  Problem: inefficient use of caches

–  long temporal or spatial data reuse
•  captured by memory reuse distance

–  unused data in cache lines
•  data fetched in blocks; some words never accessed

•  fragmentation factor =

•  Approach
–  compute fragmentation factors for references

•  use static analysis to understand access stride and fraction of
 data never accessed

–  report misses due to data fragmentation at each level

data fetched but never accessed
total fetched data

11

•  GTS: simulates turbulent plasma in tokamak reactors
–  3D particle-in-cell code; 1D decomposition along toroidal direction

•  charge: deposit charge from particles to grid points
•  solve: compute the electrostatic potential and field on grid points
•  push: compute the force on each particle from nearby grid points

•  Used measurement and modeling tools developed at Rice with
CScADS support to pinpoint performance losses
–  poor spatial locality due to vector of structures representation for ions
–  unrealized opportunities for temporal reuse between loops over ions

•  Improving node performance
–  manually transform to structure of vectors
–  manually apply fusion and blocking to improve temporal reuse
–  transmit improvements back to GTC/GTS code teams

Application Engagement: GTC

12

 GTS: Node Performance Improvements

•  Metrics normalized to measurements of original code
•  Lower is better

13

 GTS: Locality Degrades as Ions Swirl

•  Locality is best when particles are sorted in cell order
— potential computation uses cell data only
— charge deposition and particle pushing involve interactions between

particles and cells
•  Initially particles are uniformly distributed in cell order

Time step 0

14

•  Locality is best when particles are sorted in cell order
— potential computation uses cell data only
— charge deposition and particle pushing involve interactions between

particles and cells
•  Over time, the particle distribution diverges from cell order

Time step 20

 GTS: Locality Degrades as Ions Swirl

15

 GTS: Potential Improvement from Reordering

•  Locality degrades gradually at run-time
•  Assumptions:

— periodic particle reordering restores locality and performance
— performance degrades at similar rate after each sorting step

16

 GTS: Compute Optimal Sorting Interval

•  Notations
— f(x) = time step cost function
— C = cost of sorting
— G(t) = gain from sorting every t time

steps

€

G(t) = f (x)dx
kt

(k+1)t
∫ − f (x)dx −C

0

t
∫()

k=1

N
t
−1

∑

€

G(t) = f (x)dx
0

N
∫ −

N
t

f (x)dx − N
t
C + C

0

t
∫

•  Find t that maximizes G(t) over N
steps

terms constant in t

•  Find t that minimizes
-  h(t) = average time step cost with sorting

€

h(t) =
1
t

f (x)dx + C
0

t
∫()

17

Parallel Performance Results

•  Combined optimizations reduce GTS execution time by
— 37% on Itanium2 cluster
— 21% on Cray XT and Cray XD1

Application Engagement: FLASH

18

FLASH suffers from poor spatial locality due to data layout
(values predicted for Sedov test case)

• Total L3 miss count
• L3 cache misses due to

fragmentation of data in
cache lines: 22% of total

array statement at line 115 accounts
for 78% of fragmentation misses

Array unk – main data
structure holding cell
centered data for
PARAMESH – has
variable index on
innermost dimension.

19

•  Direct numerical simulation (DNS) of turbulent combustion
–  state-of-the-art code developed at CRF/Sandia

•  PI: Jaqueline H. Chen, SNL
–  2007/2008 INCITE awards at NCCS
–  pioneering application for 250TF Jaguar system

•  Extend performance analysis work of PERI Tiger team
–  use HPCToolkit to locate single-core performance bottlenecks

•  compiler inserted array copies
•  streaming calculations with low data reuse
•  loop nests with recurrences

–  identified opportunities for compiler-based improvement
–  enhanced LoopTool to address S3D’s needs
–  improved loop nests with LoopTool’s semi-automatic transforms

•  transformed code is now part of S3D’s source base
–  used HPCToolkit to assess multicore scaling issues

Application Engagement: S3D

J H Chen et al 2009 Computational Science and Discovery 2 015001 (31pp)

20

S3D: What Opportunities Exist?

initialize

update

5D loop nest:
2D explicit loops

3D F90 vector syntax

reuse

reuse

reuse performance
problem

data streams
in/out of memory

21

Loop Unswitching

Controlled Loop Fusion

 LoopTool: Loop Optimization of Fortran

 Rice University’s tool for
source-to-source
transformation of Fortran

(transformation subset shown)

Unroll
and Jam

do k = 1,n
do k = 1,n-1,2

22

if BS
 if TD

 else

else
 if TD

 else

n=1,nspec-2,2

n=1,nspec-2,2

n=1,nspec-2,2

n=1,nspec-2,2

if BS
else
if TD

n=1,nspec-1
m=1,3

LoopTool

 Optimization of S3D Diffusive Flux Loop

Transformation Log:
–  scalarization (4 stmts)
–  loop unswitching (2 conditions)
–  fusion (loops within 4 outer nests)
–  unroll-and-jam (2 loops)
–  peeling excess iterations (4 nests)

2.94x faster than original
(6.7% total savings)

(35 lines) (445 lines)

Ongoing Work
•  Beginning to study new applications

–  PFLOTRAN, POP
•  Modeling toolkit

–  replacing EEL (licensed) with Dyninst toolkit (open source)
•  create open source multi-platform tool

–  status: testing instrumentation using GTC on Opteron platform
•  LoopTool

–  being prepared for deployment in 2009

23

