Argggnggo

ORATORY

Programming in MPI for Performance

and
MPI at Exascale

Rajeev Thakur
Mathematics and Computer Science Division
Argonne National Laboratory

@ U.S. DEPARTMENT OF

Outline

= Selected topics in MPI programming

= MPI profiling interface and tools
— SLOG/Jumpshot: visualizing parallel performance
— FPMPI: gathering summary statistics
— Collchk: runtime checking of correct use of collective operations

= MPI and threads: hybrid programming
= One-sided communication

= Dynamic processes

= MPI at Exascale

= Recent Activities of the MPI Forum

Message Passing, Buffering, Deadlocks

= Message passing is a simple programming model, but there are some
special issues

— Buffering and deadlock
— Deterministic execution
— Performance

Buffers

= When you send data, where does it go? One possibility is:

Process 0

User data

Process 1

User data

Avoiding Buffering

= |tis better to avoid copies:

*

Process 0 Process 1

S

This requires that MP1_Send wait on delivery, or
that MP1_Send return before transfer is complete,

and we walit later.

S

Sources of Deadlocks

= Send a large message from process 0 to process 1

— If there is insufficient storage at the destination, the send must wait for
the user to provide the memory space (through a receive)

= What happens with this code?

Process 0 Process 1

Send(1) Send(0)
Recv(l) Recv(0)

Some Solutions to the “unsafe’ Problem

= QOrder the operations more carefully:

Process O Process 1
Send(1) Recv(0)
Recv(l) Send(0)

e Supply receive buffer at same time as send:

Process 0 Process 1

Sendrecv(l) Sendrecv(0)

More Solutions to the “unsafe” Problem

= Supply own space as buffer for send

Process O Process 1
Bsend (1) Bsend(0)
Recv(l) Recv(0)

= Use non-blocking operations:

Process O Process 1
Isend(1) Isend(0O)
Irecv(l) Irecv(0)

Wartall Wartall

Communication Modes

= MPI provides multiple modes for sending messages:

— Synchronous mode (MP1_Ssend): the send does not complete until a
matching receive has begun. (Unsafe programs deadlock.)

— Buffered mode (MP1_Bsend): the user supplies a buffer to the system for its
use. (User allocates enough memory to make an unsafe program safe.

— Ready mode (MP1_Rsend): user guarantees that a matching receive has
been posted.

e Allows access to fast protocols
e undefined behavior if matching receive not posted

= Non-blocking versions (MP1__Issend, etc.)
= MPI_RecyV receives messages sent in any mode.

Buffered Mode

When MPI_Isend is awkward to use (e.g. lots of small messages), the user
can provide a buffer for the system to store messages that cannot
immediately be sent.

Iint bufsize;

char *buf = malloc(bufsize);
MP1_Buffer_attach(buf, bufsize);
MPI Bsend(... same as MPI _Send ...)

MP1_Buffer_detach(&buf, &bufsize);

MPI_Buffer_detach waits for completion.
Performance depends on MPI implementation and size of message.

10

MPI_Sendrecv

Allows simultaneous send and receive

Everything else is general.
— Send and receive datatypes (even type signatures) may be different
— Can use Sendrecv with plain Send or Recv (or Irecv or Ssend_init, ...)
— More general than “send left”

Process 0 Process 1

SendRecv(l) SendRecv(0)

11

Understanding Performance:
Unexpected Hot Spots

= Basic performance analysis looks at two-party exchanges

= Real applications involve many simultaneous communications

= Performance problems can arise even in common grid exchange patterns
= Message passing illustrates problems present even in shared memory

— Blocking operations may cause unavoidable memory stalls

a 12

Basic MPI: Looking Closely at a Simple
Communication Pattern

= Many programs rely on “halo exchange” (ghost cells, ghost points, stencils)
as the core communication pattern

— Many variations, depending on dimensions, stencil shape
— Here we look carefully at a simple 2-D case
= Unexpected performance behavior
— Even simple operations can give surprising performance behavior.
— Examples arise even in common grid exchange patterns
— Message passing illustrates problems present even in shared memory

e Blocking operations may cause unavoidable stalls

13

adjacent patches

Processor Parallelism

e Decomposition of a mesh into 1 patch
per process

o Update formula typically a(l,j) =
f(a(i-1,j),a(i+1,),a(l,j+1),a(l,j-1),...)
 Requires access to “neighbors” in

Process 3

Process 1

& Boundary point
@ nterior paint

Process O

[

Ll
l

|

I

I

I

[

14

Sample Code

= Do i=1,n_neighbors
Call MPI_Send(edge, len, MPI_REAL, nbr(i), tag,
comm, ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Recv(edge,len,MPI_REAL,nbr(i),tag,
comm,status,ierr)
Enddo

= What is wrong with this code?

15

Deadlocks!

= All of the sends may block, waiting for a matching receive (will for large
enough messages)

= The variation of
if (has down nbr)
Call MPI_Send(... down ...)
if (has up nbr)
Call MPI1_Recv(... up ...)

sequentializes (all except the bottom process blocks)

16

Sequentialization

Start Start Start
Send Send Send

Send
Send Recv
Send Recv

Start
Send

Send
Recv

Start
Send

Send
Recv

Start
Send

Send
Recv

Send Recv

Recv

17

Fix 1: Use lrecv

= Doi=1,n_neighbors
Call MPI_Irecv(edge,len,MPIl_REAL,nbr(i),tag,
comm,requests(i),ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Send(edge, len, MPI_REAL, nbr(i), tag,
comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

= Does not perform well in practice. Why?

18

Timing Model

= Sends interleave

= Sends block (data larger than buffering will allow)

= Sends control timing

= Receives do not interfere with Sends

= Exchange can be done in 4 steps (down, right, up, left)

19

Mesh Exchange - Step 1

= Exchange data on a mesh

Mesh Exchange - Step 2

= Exchange data on a mesh

Mesh Exchange - Step 3

= Exchange data on a mesh

Mesh Exchange - Step 4

= Exchange data on a mesh

Mesh Exchange - Step 5

= Exchange data on a mesh

Mllll

Mesh Exchange - Step 6

= Exchange data on a mesh

Timeline from IBM SP

ogllle Tlele: Me

-!.ﬂ.HFiIEFI -IFII_:':'LI I:I-'E!HD I:I'll.ﬁ.lT.ﬂ.Ll

o.oims g.01s0m a.013s 0.0za0 g.ozis g.0210 [Mrfy

* Note that process 1 finishes last, as predicted

26

Distribution of Sends

‘SEND' state length distribution

ocp2 o©.00c3 0.0C04 C.0005 D.0ODEBE O0.00D7

{in seconds)
68 states of 86 (703%)

p0.0o08

0.00DS

27

Why Six Steps?

= Ordering of Sends introduces delays when there is contention at the
receiver

= Takes roughly twice as long as it should
= Bandwidth is being wasted
= Same thing would happen if using memcpy and shared memory

28

Fix 2: Use Isend and Irecv

= Doi=1,n_neighbors
Call MPI_Irecv(edge,len,MPIl_REAL,nbr(i),tag,
comm,request(i),ierr)
Enddo
Do i=1,n_neighbors
Call MPI_Isend(edge, len, MPI_REAL, nbr(i), tag,
comm, request(n_neighbors+i), ierr)
Enddo
Call MPI1_Waitall(2*n_neighbors, request, statuses,
ierr)

29

Mesh Exchange - Steps 1-4

= Four interleaved steps

Timeline from IBM SP

Lagfilea Title: Ma

-BA.HHIEH :lIHEB\I' -ISEHD :lWMTA.LL

0.3555 0.3560 0.3565 0.3570 0.3575 0.3580 0.3585 0.3530 0.3595 0.3600 0.3605

Note processes 5 and 6 are the only interior processors; these perform
more communication than the other processors

31

Lesson: Defer Synchronization

= Send-receive accomplishes two things:
— Data transfer
— Synchronization

= |n many cases, there is more synchronization than required
= Use nonblocking operations and MPI_Waitall to defer synchronization

32

MPI Message Ordering

= Multiple messages from one process to another will be matched in order,
not necessarily completed in order

Rank 0 Rank 1 Rank 2
MPI _Isend(dest=1) MPI _Irecv(any_src, any tag) MPI _Isend(dest=1)
MPI_Isend(dest=1) MPI _Irecv(any_src, any tag) MPI _Isend(dest=1)

MPI_Irecv(any_src, any tag)

MPI_Irecv(any_src, any tag)

33

Argf,g!,’,!,fl,.e,e [

MPI Profiling Interface

(@ ENERGY

Tools Enabled by the MPI Profiling Interface

* The MPI profiling interface: how it works
= Some freely available tools

— Those to be presented in other talks
— A few that come with MPICH2
* SLOG/Jumpshot: visualization of detailed timelines
e FPMPI: summary statistics
e Collcheck: runtime checking of consistency in use of collective operations

35

The MPI Profiling Interface

\ |
Performance Visualization with Jumpshot

Processes

For detailed analysis of parallel program behavior, timestamped
events are collected into a log file during the run.

A separate display program (Jumpshot) aids the user in conducting a Logfile
post mortem analysis of program behavior.

We use an indexed file format (SLOG-2) that uses a preview to select a
time of interest and quickly display an interval, without ever needing

to read much of the whole file. Jumpshot

37

Viewing Multiple Scales

"
TimeLine : 120_np=8_Iref=6_myri.slog2 <Ildentity Map> [=]o[x]
e <>aajafan] [#R6 2/a0
Lowwest { Mz Depth 4| Zoom Level Global Min Time Miew lhit Time Zoom Focus Time Miew Final Time Global Max Time Time Per Pixel I_ Wpow -
6/ [I (X 5 | 0.0as6675119 12.3159529034 251087589264 |25.1087589264 |(0.0352395654 SN i %

| Row Count

Jldentity Map

TimeLines - 3

8.0

[P NS ¥ = N
"'mi' SRS S] el 7| Detailed view shows opportunities
O e AN AN S 1’/::"“ i PP
s A ‘\" ap \"! ‘"y&‘ Oy AN ; ‘ ||n" AR W“I"““."V“F“ \ﬂ ﬁ‘ 1| - fOI’ Optlmlzatlon
‘1 \’(‘ A“:ﬂs}b‘l?.‘!‘l“‘\‘b JII._"D '—,T,Fﬁ
s -,r.‘,ﬁb, AR O
' f‘"‘Lv_u'.\” AR AL MA‘.N/*' VN | ”"UT”‘ Z°°’T&e“e'||%'323'5?;231":e ‘I‘:“Ju;:'iié?; i?é"lézé”g;&':e ‘{':"3“22‘22‘231.";3 a" L"SSUEZ'SZ';‘;é @ I e
A'S SN LS S W I/AT W W lt Identity Map [TimelLines - 8.0
'uu\ VA YW \'/“ AV, mwurnwv i # 5 B
o J w-uuruwj'b R Yoo [____Ill B N -_-
e s> > B
e e pravs .'.:::ﬂ,' :! 2“_,:. [||saum Sl SN
ne LA s N . i N i@ ||
E' = IS AT : R T A7 || —

[] 3

= = ' cluration (max) = 2.5411 sec
@ LinelD : 1oL time (min) = 2.2852754831, LinelD = 7
.00 a1l time (max) = 49263705015, LinelD = &
I ¥

duration (ave) = 1.10051 msec

| IE A7 (e

- S A N -

(0] time (ave) = 3 6481506572, LinelD = 7
[1]: time (ave) = 2.6492811626, LinelD = &

Mumber of Real Drawables = 1782

_Ilmm_ﬂamm__mwd (e

|| —————————— . || W

R S i — s B |

Ef‘| |’|§;<|_|>

#| Fit Al Ro
E h |- t 1000) f 5 1|2.305 1|2.3075 1|2.31 1|2.3125 1|2315 1‘2.3175 1|2.32 1|23225 1‘2.325 1|2.32: |QI{"?|
ach line represents SO o p——

messages
1000x zoom

38

\ |
Pros and Cons of this Approach

= Cons:
— Scalability limits
e Screen resolution
e Big log files, although
— Jumpshot can read SLOG files fast
— SLOG can be instructed to log few types of events

— Use for debugging only indirect
" Pros:

— Portable, since based on MPI profiling interface
— Works with threads
— Aids understanding of program behavior

e Almost always see something unexpected

39

Looking at MILC in SPEC2007

= Curious amount of All_reduce in initialization - why?

TimeLine : specmpi_milc_np16_merged.slog2 <Process View>
A | B> € ¥ & K 2 @
Lowest | hiax. Depth|4|Zoom Lewel Global Min Time Wiew |nit Time foom Focus Time “Wiew Final Time Global Max Time Time Per Pixel |7 W how -
15418 ' 1] 0.0062031746 00062031746 1,545.3130614161 3,090.6199196577 ||5,090.6199196577 |4.0137840474 C)% {ﬂ-? F Row Count
CumulativeBce...| w TimeLines - 16.0
{ : 15
——
{ ——..._"H____.
T,
H' — T 13
H- e e
H- === "
. --""_‘.‘—‘ -
{ _— i
o ——
== g
e SO —
= —
= >
T -
———
=y 7
" R ———
= D2
' ‘_ 5
— e
5 —
H- - e —————
= S - ——
{F e~ :
— i —
1 =

(D
| Fit Al R

I | I I I I I I I i
250.00 500.000 F50.00 1,000.00 1,250.00 1,500.00 1,750.00 2,000.00 2,250.00 2500.00 2,750.00 3,000 - QI{"?

Time {seconds) NG

El 8 TimeLine : specmpi_milc_np16_merged.slog2 <Process View> B [I
MILC alv i B ¢ vlalaga BHS & @
Lowve st | Mac. Depth 4| Zeom Level Glabal Min Time Vien Inft Time Taom Fedus Time View Binad Time Gleba Mux Time Time Per Prsel 4 |-
3 GobeToNTE e <anaans |eceionys ik sassaocess Thaseeionsesy Josorsaonsn 1S W) r:: -
Comalativelc. | » TimeLines - k0
. o su06-3
The answer, and how .
(WP
D:
Oz
ML) Drawable Info Bax
Os Bl o
E Preview _arrow 0 Ds *zz:m vor. a4
D 7 79254141 .mn: rank = 4
&
E message 1203220 Ds —
. Ds Oramable nfo Box
I:I Presdew_State 0 D ey
G
I cLoc Burrer_writezdisk 2040 .-
(W
Ll vrerecy waited 120230 e
& wond_rank | =
- MP"erEdUEE BESO = |n BEED B :Izsss alzsss Lm‘ alzis! Lun BT zlzsrl san &I\"’
EIm—| time ecanen 1 [T}

=
x
1

m
i

=

I

-

=
3]

a0

=
=
T
m
'l
0
[x
&

&0

=
x
Il"‘l
o
3
=
I_1
o
S
=
[=]
=

dBET2074E

ThmeLine : specmpi_milc_np16_merged. slog? <Process Views

[Jfwercomm size 24540 alv@o nee ¢daaman SN @00

Lowest / Max. np—.n<!:oo-|lml-;nw_umt-ne View Inf Time Zeom Foous Time View Final Time Global Mux Time _ Time Per Poiel :w |-

LIS '_ LES L.0CH0H e W7 058 LTV FRT Y RIS 1019919657 R OI0HARS Q g Row Coumt

D MP'_CDmm_SF:I“t 15 ;nuumm : TumelLines - Dl

SL0C-2 =

o "
_Jimeirecy 120330 De
Dt

D MPI_lzend 120330 D: o
[vE3

B v F 1 wai 240660 D+
Os

-T Preview_Ewernt] Ds ’

T MPE_Camm_finalize 15 Os .
- D
S | 1 FE_Comim_init 15 Do
q i | [» Du

Dz . 3
All D

D [Ssssssssssssaaiy ,

4 IEE A K|

@ worielrank [2 f ——— = - - - = = = = - - - Fiv Al oy

fl v Time Gecanest | [STRTTY]

41

MILC

= The answer - why
— Deep ininnermost of quadruply nested loop, an innocent-looking line of code:

If (i>myrank()) ...

And myrank is a function that calls MPI_Comm_rank

— It actually doesn’t cost that much here, but

— ltillustrates that you might not know what your code is doing what you
think it is
— Not a scalability issue (found on small # of processes)

42

Detecting Consistency Errors in MPI Collective
Operations

The Problem: the specification of MPI_Bcast:
MP1_Bcast(buf, count, datatype, root, comm)

requires that
— rootisaninteger between 0 and the maximum rank.
— rootis the same on all processes.

— The message specified by buf, count, datatype hasthe same
signature on all processes.

= The first of these is easy to check on each process at the entry to the
MPI_Bcast routine.

= The second two are impossible to check locally; they are consistency
requirements requiring communication to check.

= There are many varieties of consistency requirements in the MPI
collective operations.

43

Datatype Signatures

= Consistency requirements for messages in MPI (buf, count, datatype) are not on
the MPI datatypes themselves, but on the signature of the message:

— {type,, type, ...} where type, is a basic MPI datatype

= So a message described by (bufl, 4, MPI_INT) matches a message
described by (buf2, 1, vectype), where vectype was created to be a
strided vector of 4 integers.

= For point-to-point operations, datatype signatures don’t have to match exactly
(it is OK to receive a short message into a long buffer), but for collective
operations, matches must be exact.

44

Approach

= Use the MPI profiling interface to intercept the collective calls, “borrow”
the communicator passed in, and use it to check argument consistency
among its processes.

= For example, process 0 can broadcast its value of root, and each other
process can compare with the value it was passed for root.

= For datatype consistency checks, we will communicate hash values of
datatype signatures.

= Reference: Falzone, Chan, Lusk, Gropp, “Collective Error Detection for MPI
Collective Operations”, Proceedings of EuroPVM/MPI 2005.

45

Types of Consistency Checks

= Call — checks that all processes have made the same collective call (not
MPI_Allreduce on some processes and MPI_Reduce on others).

— Used in all collective functions
= Root — checks that the same value of root was passed on all processes

— Used in Bcast, Reduce, Gather(v), Scatter(v), Spawn, Spawn_multiple, Connect
= Datatype — checks consistency of data arguments

— Used in all collective routines with data buffer arguments
= Op —checks consistency of operations

— Used in Reduce, Allreduce, Reduce_scatter, Scan, Exscan

46

N |
More Types of Consistency Checks

= MPI_IN_PLACE — checks whether all process or none of the processes
specified MPI_IN_PLACE instead of a buffer.

— Used in Allgather(v), Allreduce, and Reduce_scatter

= Local leader and tag — checks consistency of these arguments
— Used only in MPI_Intercomm_create

= High/low — checks consistency of these arguments
— Used only in MPI_Intercomm_merge

= Dims — checks consistency of these arguments

— Used in Cart_create and Cart_map

47

\ |
Still More Types of Consistency Checks

= Graph —checks graph consistency
— Used in Graph_create and Graph_map

= Amode — checks file mode argument consistency
— Used in File_open

= Size, datarep, flag — checks consistency of these I/O arguments
— Used in File_set_size, File_set_automicity, File_preallocate

= Etype — checks consistency of this argument
— Used in File_set_view

= QOrder — checks that split-collective calls are properly ordered
— Used in Read_all_begin, Read_all_end, other split collective I/0

a 48

Example Output

We try to make error output instance specific:

Validate Bcast error (Rank 4) — root parameter (4)
IS Inconsistent with rank 0”s (0)

Validate Bcast error (Rank 4) — datatype signhature
IS Inconsistent with Rank 0’s

Validate Barrier (rank 4) — collective call
(Barrier) is i1nconsistent with Rank 0’s (Bcast)

49

EXxperiences

* Finding errors

Found error in MPICH?2 test suite, in which a message with one MPI_INT was
allowed to match sizeof(int) MPI_BYTEs.

MPICH?2 allowed the match, but shouldn’t have.

Ran large astrophysics application (FLASH) containing many collective operations

e Collective calls all in third-party AMR library (Paramesh), but could still be examined
through MPI profiling library approach.

e Found no errors @ (&)

= Portability, Performance

Linux cluster (MPICH2)
Blue Gene (IBM’s BG/L MPI)

Relative overhead decreases as size of message increases

e The extra checking messages are much shorter than the real messages
Overhead can be relatively large for small messages

e Opportunities for optimization remain
Profiling library can be removed after finding errors

50

MPI| and Threads

MPI| and Threads

= MPI describes parallelism between processes (with separate address
spaces)

= Thread parallelism provides a shared-memory model within a process

= OpenMP and Pthreads are common models

— OpenMP provides convenient features for loop-level parallelism. Threads
are created and managed by the compiler, based on user directives.

— Pthreads provide more complex and dynamic approaches. Threads are
created and managed explicitly by the user.

52

Programming for Multicore

= Almost all chips are multicore these days

= Today’s clusters often comprise multiple CPUs per node sharing
memory, and the nodes themselves are connected by a network

= Common options for programming such clusters
— All MPI

e Use MPI to communicate between processes both within a node and across
nodes

e MPI implementation internally uses shared memory to communicate within a
node

— MPI + OpenMP
e Use OpenMP within a node and MPI across nodes
— MPI + Pthreads

e Use Pthreads within a node and MPI across nodes

= The latter two approaches are known as “hybrid programming”

53

MPI’s Four Levels of Thread Safety

= MPI defines four levels of thread safety. These are in the form of

commitments the application makes to the MPI implementation.

MPI_THREAD_SINGLE: only one thread exists in the application

MPI_THREAD_ FUNNELED: multithreaded, but only the main thread makes MPI
calls (the one that called MPI_Init or MPI_Init_thread)

MPI_THREAD_SERIALIZED: multithreaded, but only one thread at a time makes
MPI calls

MPI_THREAD_MULTIPLE: multithreaded and any thread can make MPI calls at
any time (with some restrictions to avoid races — see next slide)

= MPI defines an alternative to MPI_Init

MPI_Init_thread(requested, provided)

e Application indicates what level it needs;, MPIl implementation returns the level it
supports

54

Specification of MPI THREAD MULTIPLE

= When multiple threads make MPI calls concurrently, the outcome will
be as if the calls executed sequentially in some (any) order

= Blocking MPI calls will block only the calling thread and will not prevent
other threads from running or executing MPI functions

= |tis the user's responsibility to prevent races when threads in the same
application post conflicting MPI calls

— e.g., accessing an info object from one thread and freeing it from another
thread

= User must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among
threads

— e.g., cannot call a broadcast on one thread and a reduce on another thread
on the same communicator

55

Threads and MPI in MPI-2

= An implementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required to be
thread safe

= A fully thread-safe implementation will support MPI_THREAD MULTIPLE

= A program that calls MPI_Init (instead of MPI_Init_thread) should assume
that only MPI_THREAD_SINGLE is supported

= A threaded MPI program that does not call MPI_Init_thread is an incorrect
program (common user error we see)

56

An Incorrect Program

Process O Process 1

Thread 1 MPI1_Bcast(comm) MPI1_Bcast(comm)

= Here the user must use some kind of synchronization to ensure that
either thread 1 or thread 2 gets scheduled first on both processes

= QOtherwise a broadcast may get matched with a barrier on the same
communicator, which is not allowed in MPI

57

A Correct Example

Process O Process 1

Thread 1 MPI_Recv(src=1) MPI_Recv(src=0)

= Animplementation must ensure that the above example never
deadlocks for any ordering of thread execution

= That means the implementation cannot simply acquire a thread lock
and block within an MPI function. It must release the lock to allow
other threads to make progress.

58

The Current Situation

= All MPl implementations support MPI_THREAD_SINGLE (duh).

= They probably support MPI_THREAD_ FUNNELED even if they don’t admit
it.

— Does require thread-safe malloc
— Probably OK in OpenMP programs

= Many (but not all) implementations support THREAD MULTIPLE
— Hard to implement efficiently though (lock granularity issue)

= “Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED

— So don’t need “thread-safe” MPI for many hybrid programs
— But watch out for Amdahl’s Law!

59

Performance with MPI_THREAD MULTIPLE

= Thread safety does not come for free

= The implementation must protect certain data structures or parts of
code with mutexes or critical sections

= To measure the performance impact, we ran tests to measure

communication performance when using multiple threads versus
multiple processes

— Details in our Parallel Computing (journal) paper (2009)

60

\ |
Tests with Multiple Threads versus Processes

4 4 44 -+

U TV TV T
U T TV T

61

Concurrent Bandwidth Test on Linux Cluster

4P-4P

4T-4T

[x]

g8T-5T -

ek

i
e
SR S S

R L B B B I B I N L L W R N I L W L S I L,
L e e L S

L

© I S A

B S B S S
e S e

IR
o (EaeEeeE

e Jatele!
bttt R n B RN R Rt
o S S

1200

1000

goo
600

(S/S1THW] YipTrpued

400
200

anT1eTnWN]

Open MFI

MPICHZ

MPICH2 version 1.0.5

Open MPI version 1.2.1

62

F A Ak A Ak AR A, AR
F e L HERERE R AREEER R KRB
B

e e L L L]
e
edeiidedddaiidaddaidediodiiiddedidniiadiiddadidaidaddaiid e e e e ey

R

4P-4P
4T-4T EX=Zd

8T-5T -

0.5

(s,831Ag9) YlpTmMpuEg 3AT1ETAWN]

Concurrent Bandwidth Test on a single SMP
(Sun and IBM)

IBM MPI

Sun MPI

63

\ |
Concurrent Latency Test on Linux Cluster

150

MPICHZ 4P-4F ——
MPICHZ 4T-4T ——
Open MPI 4P-4P —%—
Open MPI 4T7-4T7 —8—

140

130

Time (microsec.)

go

0o

G0

0 20n 400 600 Bon 1000
Size (bytes]

MPICH2 version 1.0.5
Open MPI version 1.2.1

64

Concurrent Latency Test on a single SMP

(Sun and IBM)

a0 r

25 F

20

15

Time (microsec.)

10+

sun MPI 4P-4F —+—
sun MPI 4T-4T ——
IBM MPI 4P-4F ——
IBM MPI 4T-4T —8—

- e)
e i ¥ o B

))
g - e

200 400 GO0
Size (hytes)

gao 1000

65

What MPI’s Thread Safety Means in the Hybrid
MPI+OpenMP Context

= MPI_THREAD_SINGLE
— There is no OpenMP multithreading in the program.
= MPI_THREAD_FUNNELED

— All of the MPI calls are made by the master thread. i.e. all MPI calls are
e QOutside OpenMP parallel regions, or
e Inside OpenMP master regions, or
e Guarded by call to MPI_Is_thread_main MPI call.
— (same thread that called MPI_Init_thread)

= MPI_THREAD_SERIALIZED
#pragma omp parallel

#pragma omp atomic

{

...MPI calls allowed here...

}
= MPI_THREAD_MULTIPLE

— Any thread may make an MPI call at any time

66

Visualizing Hybrid Programs with Jumpshot

= Recent additions to Jumpshot for multithreaded and hybrid programs that
use Pthreads

— Separate timelines for each thread id
— Support for grouping threads by communicator as well as by process

Timeline : pthread_sendrecv.slog2 <Com

IIEI b < Wﬂlﬂﬂﬂ Wﬂ 80

67

Using Jumpshot with Hybrid MPI+OpenMP
Programs

= SLOG2/Jumpshot needs two properties of the OpenMP
implementation that are not guaranteed by the OpenMP
standard

— OpenMP threads must be Pthreads

e Otherwise, the locking in the logging library (which uses Pthread locks)
necessary to preserve exclusive access to the logging buffers would need
to be modified

— These Pthread ids must be reused (threads are “parked” when not in
use)

e Otherwise Jumpshot would need zillions of time lines

68

Three Platforms for Hybrid Programming
Experiments

= Linux cluster
— 24 nodes, each with two Opteron dual-core processors, 2.8 Ghz each
— Intel 9.1 Fortran compiler
— MPICH2-1.0.6, which has MPI_THREAD MULTIPLE
— Multiple networks; we used GigkE
= |BM Blue Gene/P
— 40,960 nodes, each consisting of four PowerPC 850 MHz cores
— XLF 11.1 Fortran cross-compiler
— IBM’s MPI V1R1M2 (based on MPICH2), has MPI_THREAD MULTIPLE
— 3D Torus and tree networks
= SiCortex SC5832
— 972 nodes, each consisting of six MIPS 500 MHz cores
— Pathscale 3.0.99 Fortran cross-compiler
— SiCortex MPI implementation based on MPICH2, has MPI_THREAD_FUNNELED
— Kautz graph network

69

Experiments

= Basic
— Proved that necessary assumptions for our tools hold
e OpenMP threads are Pthreads

e Thread id’s are reused

= NAS Parallel Benchmarks
— NPB-MZ-MPI, version 3.1
— Both BT and SP
— Two different sizes (W and B)
— Two different modes (“MPI everywhere” and OpenMP/MPI)
e With four nodes on each machine
= Demonstrated satisfying level of portability of programs and tools across
three quite different hardware/software environments

70

It Might Not Be Doing What You Think

An early run:

[a]v|m

TimeLine : bt_mz_np4_3.slog2 <Process-Thread View>

B- €% 0 & ft& A B @ @

Lowest / Max, Depth 4|Zoom Level Global Min Time Wiew Init Time Zoom Focus Time Wiew Final Time Global Max Time
4
05 :

3

Time Per Pixel
0.0001039505 01529626906 01676964957 0.1924303001 05858665915 0.00001 19843

Do
(R
0z
Oz
K’
Oys
1
Go
O
vz
Do
(AR
Pz
Gyo

4] |¥ %

B ||

p— 1] —
L1111 —
— i

.
Il 1 | .

@ thread

-
@ world_rank |«
-

“[lots3
4] I

| | | | | | | | |
0.154 0185 0186 0187 0.188 0.188 0.149 0151 0182

Time (seconds)

Nasty interaction between the environment variables
OMP_NUM_THREADS and NPB_MAX_THREADS

71

More Like What You Expect

= BT class B on 4 BG/P nodes, using OpenMP on each node

= TimeLine : bt_B_np4x4_bgp.slog2 <Process-Thread View> r | X

Lowest / Max. Depth|4|Zoom Level Global Min Time Wiew Init Time Zoom Facus Time Wiew Final Time Global Max Time Time Per Pixel |7 1
0/10 P g 0.0001652659 76.5326630871 76.9326969552 77.3327306391 1537798645024 0.0010127438 % iﬁ? *

Cumulativebxe...|w & TimeLines - :

.~

30 —:
Do "
O
AE il

1

0o o |

0 e 4

- REEY bl |

72

Oy o 4 | I | ‘ H

S | {1 114
s e Wi

73
Go
b1
0z
RE

4] | »

[4]

Il [ir] D

@ world_rank
@ thread

77.10 77.20 7R3 |

Time {seconds)

=
o
o
=
-~
o
=1
=
~
=
=
=
=
=
o
=
-4
~1
=
=

MPI Everywhere

= BT class B on 4 BG/P nodes, using 16 MPI processes

m X

= TimeLine : bt B_np16x1_bgp.slog2 <Process View>

Lowest § Max. Depth|4|Zoom Level Global Min Time

/10 I

0.0001648247

Wiew [nit Time
64.5704268517

Zoom Focus Time
64.9616400564

Wiew Final Time
65.3528533268

Global Max Time
137.9960233541

Time Per Pixel
0.001065976

3 @

TimeLines -

CumulativeBec...| w

Gyo
1
Oz
RE
Ci4
Oys
Oys
Oy7
]
g
Gy1o
RS
01z
[13
14
Oy 1s -

|l

] v |

@ world_rank

Time (zeconds) < =

1

73

Observations on Experiments

Experiment Cluster BG/P SiCortex
Bt-mz.W.16x1 1.84 9.46 20.60
Bt-mz-W.4x4 0.82 3.74 11.26
Sp-mz.W.16x1 0.42 1.79 3.72
Sp-mz.W.4x4 0.78 3.00 7.98
Bt-mz.B.16.1 24.87 113.31 257.67
Bt-mz.B.4x4 27.96 124.60 399.23
Sp-mz.B.16x1 21.19 70.69 165.82
Sp-mz.B.4x4 24.03 81.47 246.76
Bt-mz.B.24x1 241.85
Bt-mz.B.4x6 337.86
Sp-mz.B.24x1 127.28
Sp-mz.B.4x6 211.78

= Timein seconds

= On the small version of BT (W), hybrid was better

= For SP and size B problems, MPI everywhere is better

= On SiCortex, more processes or threads are better than fewer

Observations

This particular benchmark has been studied much more deeply elsewhere

— Rolf Rabenseifner, “Hybrid parallel programming on HPC platforms,”
Proceedings of EWOMP’03.

— Barbara Chapman, Gabriele Jost, and Ruud van der Pas, Using OpenMP:
Portable Shared Memory Parallel Programming, MIT Press, 2008.

Adding “hybridness” to a well-tuned MPI application is not going to speed
it up. So this NPB study doesn’t tell us much.

More work is needed to understand the behavior of hybrid programs and
what is needed for future application development.

75

Argf,g!;!.,'ﬂu.e,e _

A Few Words of Warning
about Threads

@ U.5. DEPARTMENT OF

Thread Programming is Hard

“The Problem with Threads,” IEEE Computer

— Prof. Ed Lee, UC Berkeley
— http://ptolemy.eecs.berkeley.edu/publications/papers/06/problemwithThreads/

“Why Threads are a Bad Idea (for most purposes)”

— John Ousterhout
— http://home.pacbell.net/ouster/threads.pdf

“Night of the Living Threads”

http://weblogs.mozillazine.org/roc/archives/2005/12/night of the living threads.html

Too hard to know whether code is correct

"= Too hard to debug
— 1 would rather debug an MPI program than a threads program

77

Ptolemy and Threads

Ptolemy is a framework for modeling, simulation, and design of
concurrent, real-time, embedded systems

Developed at UC Berkeley (PI: Ed Lee)
It is a rigorously tested, widely used piece of software
Ptolemy Il was first released in 2000

Yet, on April 26, 2004, four years after it was first released, the code
deadlocked!

The bug was lurking for 4 years of widespread use and testing!
A faster machine or something that changed the timing caught the bug

78

An Example | encountered recently

= We received a bug report about a very simple multithreaded MPI
program that hangs

= Run with 2 processes
= Each process has 2 threads

= Both threads communicate with threads on the other process as shown
in the next slide

= |spent several hours trying to debug MPICH2 before discovering that
the bug is actually in the user’s program ®

a 79

2 Proceses, 2 Threads, Each Thread Executes
this Code

for(j=0;j<2;j++){
if (rank ==1) {
for(i=0;i<3;i++)
MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MP|_COMM_WORLD);
for(i=0;i<3;i++)
MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MP|_COMM_WORLD, &stat);

}
else{ /*rank==0*/

80

What Happened

Rank O Rank 1

3 recvs 3 sends
Thread 1 _?ls_quS_ . _:i r_e(_:v_s_ 4_

3 recvVsS <<= 3 sends

3 sends 3 recvs

3 recvs 3 sends

3 sends 3 recvs
Thread 2 3recvs <= 3 sends

3 sends 3 IeCVS <=

= All 4 threads stuck in receives because the sends from one iteration got
matched with receives from the next iteration

= Solution: Use iteration number as tag in the messages

81

Shared-Memory Programming is also Hard

We (Thakur, Ross, Latham) developed a distributed byte-range locking
algorithm using MPI one-sided communication

Published at Euro PYM/MPI 2005

Six months later, a group at Univ. of Utah model checked the algorithm
and discovered a race condition that results in deadlock

| could reproduce the bug after being told about it ®
Our own testing had not caught it, nor did the reviewers of our paper
The bug is timing related, caused by a specific interleaving of events

It is very hard for the human mind to figure out all possible
interleavings

82

Formal Verification as a Tool

= |n collaboration with Univs. of Utah and Delaware, we have had
success in using formal methods to verify and debug MPI and threaded

programs

= Two approaches
1 Build a model of the program (by hand) using a modeling language, such
as Promela. Verify it using a model checker such as SPIN

-- Tedious, error prone
2 Verify the program without creating a model (in-situ model checking)

= We are exploring both options with our collaborators at Utah and
Delaware (Profs. Ganesh Gopalakrishnan and Stephen Siegel)

83

Commercial Uses of Formal Verification for
Software

Coverity is a company founded by Stanford professor, Dawson Engler

Their software detects bugs in Linux and FreeBSD kernel code and
reports to the respective mailing lists

Also funded by Dept of Homeland Security to detect bugs and
vulnerabilities in commonly used open-source software such as Perl,
Python, TCL,...

Microsoft uses FV to verify device-driver code

84

One-Sided Communication

85

One-Sided Communication

A process can directly access another process’s memory (with a function call)

Three data transfer functions
— MPI_Put, MPI1 _Get, MPI _Accumulate

MP1_Put

v

MP1_Get

Three synchronization methods

— MPI_Win_fence

— MPI1_Win_post/start/complete/wait
— MPI_Win_lock/Zunlock

86

Remote Memory Access Windows and Window
Objects

Process 0 Process 1
Get

<_

\\ N

Put
window Process 2 Process 3
‘) \
\
O @O _ _
= address spaces _ 9 - window object

Window Creation

= MP1_Win_create exposes local memory to RMA
operation by other processes in a communicator

— Collective operation
— Creates window object

MPI_Win_Create(base, size, disp_unit, info, comm, win)

= MPI_Win_Tfree deallocates window object

88

Fence Synchronization

Process O
MP1_Win_fence(win)

MP1_Put(l)
MP1_Get(1)

MPI_Win_fence(win)

Process 1
MPI_Win_fence(win)

MP1_Put(0)
MP1_Get(0)

MPI_Win_fence(win)

= MPI_Win_Tfence is collective over the communicator associated with

the window object

= (The numbers in parentheses refer to the target ranks)

89

Post-Start-Complete-Wait Synchronization

Process O Process 1 Process 2
MPI_Win_post(0,2)

MPI_Win_start(l) MPI _Win_start(l)

MP1_Put(l) MPI1_Put(l)

MPI_Get(1) MP1_Get(1)

MPI_Win_complete(1) MPI_Win_complete(l)

MPI _Win_wait(0,2)

= Scalable: Only the communicating processes need to synchronize
= (The numbers in parentheses refer to the target ranks)

90

Lock-Unlock Synchronization

Process 0 Process 1 Process 2

MPI_Win_create MPI _Win_create MPI _Win_create

MP1 _Win_lock(shared,1) MP1 _Win_lock(shared,1l)
MPI1_Put(l) MPI_ Put(l)

MPI1_Get(1) MPI_Get(1)
MPI_Win_unlock(l) MPI_Win_unlock(l)

MPI _Win_free MPI _Win_free MPI _Win_free

“Passive” target: The target process does not make any synchronization
call

(The numbers in parentheses refer to the target ranks)

91

Performance Tests

= “Halo” exchange or ghost-cell exchange operation
— Each process exchanges data with its nearest neighbors
— Part of mpptest benchmark
— One-sided version uses all 3 synchronization methods

!

!

— Sun Fire SMP at Univ. of Aachen, Germany

"= Ran on

— IBM p655+ SMP at San Diego Supercomputer Center

92

One-Sided Communication on Sun SMP with Sun
MPI

Halo Performance on Sun

80
70 Sy
60 - 1\ =
50), Caa —o— sendrecv-8
N ’ P N —8— psendrecv-8
3 40 l '». X7 A _\._\ =- putall-8
g y = —>¢— putpscwalloc-8

NN 50 putlocksharednb-8

\

V /

o X SRR A ek —¥— putlockshared-8
) é?«‘ LIS Ta A0

200 400 600 800 1000 1200
Bytes

93

MPI

One-Sided Communication on IBM SMP with IBM

uSec

350

300 ~

250

200

150 A

100 A

Halo Performance (1BM-7)

1200

—&— sendrecv-2

—— psendrecv-2
put-2

—>¢— putpscw-2

—X¥— sendrecv-4
psendrecv-4

—t+— put-4
putpscw-4

94

Dynamic Process Management

95

Intercommunicators

= MPI has two kinds of communicators: intra and inter communicators

= |ntracommunicators

— Contain a single group of processes

— MPI_COMM_WORLD is an intracommunicator
= |ntercommunicators

— Contain a local group and a remote group

— Point-to-point communication is between a process in one group and a
process in the other.

— Can be merged into a normal (intra) communicator
— Created by MP1_Intercomm_create in MPI-1
— Play a more important role in MPI-2, created in multiple ways

Intercommunicators

Local group Remote group

= |n MPI-1, created out of separate intracommunicators
= |n MPI-2, created by partitioning an existing intracommunicator

" |n MPI-2, the intracommunicators may come from different
MPI_COMM_WORLDs

= We'll cover the creation of intercommunicators with the MPI-1
MPI_Intercomm_create in our discussion of fault tolerance, then
create intercommunicators with the MPI-2 dynamic process routines

97

\ |
Dynamic Process Management

= |ssues
— maintaining simplicity, flexibility, and correctness
— interaction with operating system, resource manager, and process manager
— connecting independently started processes

= Spawning new processes is collective, returning an intercommunicator.
— Local group is group of spawning processes.

— Remote group is group of new processes.
— New processes have own MP1_COMM_WORLD.
— MP1_Comm_get parent lets new processes find parent communicator.

98

Spawning Processes

MP1_Comm_spawn(command, argv, numprocs, info, root,
comm, iIntercomm, errcodes)

= Tries to start NUMPrOCS process running command, passing them
command-line arguments argv

= The operation is collective over comm
= Spawnees are in remote group of Intercomm
= Errors are reported on a per-process basis in errcodes

= Info used to optionally specify hostname, archname, wdir, path, file,
softness.

99

\ |
Spawning Multiple Executables

= MPI_Comm_spawn_multiple(...)

= Arguments command, argv, numprocs, iInfo all become arrays
= Still collective

100

In the Children

= MPI_Init (only MPI programs can be
spawned)

= MP1_COMM _WORLD is processes spawned with one call to
MP1_Comm_spawn

= MPI_Comm_get parent obtains parent intercommunicator
— Same as intercommunicator returned by MP I _Comm_spawn in parents

— Remote group is spawners
— Local group is those spawned

101

Manager-Worker Example

= Single manager process decides how many workers to create and which
executable they should run

= Manager spawns n workers, and addresses them as 0, 1, 2, ..., n-1in
new intercomm

= Workers address each otheras0, 1, ... n-1in MP1 _COMM_WORLD,
address manager as 0 in parent intercomm

= One can find out how many processes can usefully be spawned

a 102

Establishing Connections

= Two sets of MPI processes may wish to establish connections, e.g.,
— Two parts of an application started separately
— Avisualization tool wishes to attach to an application

— A server wishes to accept connections from multiple clients Both server and
client may be parallel programs

= Establishing connections is collective but asymmetric (“Client”/“Server”)

= Connection results in an intercommunicator

103

Establishing Connections Between Parallel
Programs

In server In client
MPIl_Comm_accept MPI|_Comm_connect

-_— z—-—
/

New intercommunicator

6 N\ 104

Connecting Processes

= Server:
— MPI1_Open_port(info, port_name)
e system supplies port_name
e might be host:num; might be low-level switch #

— MP1_Comm_accept(port _name, info, root, comm,
intercomm)

e collective over comm
e returns intercomm; remote group is clients

= (Client:

— MP1_Comm_connect(port name, info, root, comm,
intercomm)

e remote group is server

105

Optional Name Service

MP1 _Publish _name(service name, info, port _name)

MP1_Lookup name(service name, info, port _name)

= allow connection between service_name known to users and system-
supplied port_name

= MPI implementations are allowed to ignore this service

106

Bootstrapping

= MPI_Join(fd, intercomm)

= collective over two processes connected by a socket.
= fdis a file descriptor for an open, quiescent socket.
= pntercommis a new intercommunicator.

= Can be used to build up full MPI communication.

= fd is not used for MPI communication.

107

Argonne°

NATIONAL LABORATORY

MPI| at Exascale

Rajeev Thakur
Mathematics and Computer Science Division
Argonne National Laboratory

@ U.S. DEPARTMENT OF

MPI on the Largest Machines Today

= Systems with the largest core counts in June 2010 Top500 list

Juelich BG/P 294,912 cores
Oak Ridge Cray XT5 224,162 cores
LLNL BG/L 212,992 cores
Argonne BG/P 163,840 cores

LLNL BG/P (Dawn) 147,456 cores
(All these systems run MPICH2-based MPI implementations)

= |nacouple of years, we will have systems with more than a million cores

= For example, in 2012, the Sequoia machine at Livermore will be an IBM
Blue Gene/Q with 1,572,864 cores (~1.6 million cores)

a 109

Future Extreme Scale Platforms

= Hundreds of thousands of “nodes”

= Each node has large numbers of cores, including
— Regular CPUs and accelerators (e.g., GPUs)

Mgmt Compute 1/O Storage
Nodes Nodes Nodes Targets

110

Multiple Cores Per Node

Many amall cores

N
N O
N
0
N O
LI e]

All small cores

BN
BREN

Different Classes of Chips

Home
Games/Graphics

Business
Scientific

All Targe Cores

Memory Floating

Point Cores + 3D Stacked Memory

O] o e s

111

Scaling MPI to Exascale

= MPI already runs on the largest systems today at ~300,000 cores

= What would it take to scale MPI to exascale systems with millions of
cores?

= On exascale, MPl is likely to be used as part of a “hybrid programming”
model (MPI+X), much more so than it is today

— MPI being used to communicate between “address spaces”

— With some other “shared-memory” programming model (OpenMP, UPC,
CUDA, OpenCL) for programming within an address space

= How can MPI support efficient “hybrid” programming on exascale
systems?

112

Scaling MPI to Exascale

= Although the original designers of MPI were not thinking of exascale, MPI
was always intended and designed with scalability in mind. For example:

— A design goal was to enable implementations that maintain very little global
state per process

— Another design goal was to require very little memory management within
MPI (all memory for communication can be in user space)

— MPI defines many operations as collective (called by a group of processes),
which enables them to be implemented scalably and efficiently

= Nonetheless, some parts of the MPI specification may need to be fixed for

exascale
— Being addressed by the MPI Forum in MPI-3

113

Factors Affecting MPI Scalability

Performance and memory consumption

A nonscalable MPI function is one whose time or memory consumption
per process increase linearly (or worse) with the total number of
processes (all else being equal)

For example

— If memory consumption of MPI_Comm_dup increases linearly with the no.
of processes, it is not scalable

— If time taken by MPI_Comm_spawn increases linearly or more with the no.
of processes being spawned, it indicates a nonscalable implementation of
the function

Such examples need to be identified and fixed (in the specification and
in implementations)

The goal should be to use constructs that require only constant space
per process

114

Requirements of a message-passing library at
extreme scale

No O(nprocs) consumption of resources (memory, network
connections) per process

Resilient and fault tolerant

Efficient support for hybrid programming (multithreaded
communication)

Good performance over the entire range of message sizes and all
functions, not just latency and bandwidth benchmarks

Fewer performance surprises (in implementations)

These issues are being addressed by the MPI Forum for MPI-3 and by
MPI implementations

115

Scalability Issues in the MPI Specification

= Some functions take parameters that grow linearly with number of
processes

= E.g., irregular (or “v”) version of collectives such as MPI_Gatherv

= Extreme case: MPI_Alltoallw takes six such arrays
— On a million processes, that requires 24 MB on each process

= On low-frequency cores, even scanning through large arrays takes time
(see next slide)

= Solution: The MPI Forum is considering a proposal to define sparse,
neighborhood collectives that could be used instead of irregular
collectives

116

Zero-byte MPI_Alltoallv time on BG/P

Alltoallv Average Time

30000

25000 /

=@=Alltoallv Time /

5000 /

0'_.|
™

Average Time (us)

| = N
o=} L o
o o] (o]
o (s] o
o o o

.’I.I.’I.I.I.I | AN I Y D N |
© &) VA T N P N S 0 SN N P
sfbe?‘.;»,\go%'s'\,mucb.@o;»@_&

Number of Processes

4
®

= This is just the time to scan the parameter array to determine it is all
0 bytes. No communication performed.

117

Scalability Issues in the MPI Specification

Graph Topology

— In MPI 2.1 and earlier, requires the entire graph to be specified on each
process

— Already fixed in MPI 2.2 — new distributed graph topology functions

One-sided communication
— Synchronization functions turn out to be expensive
— Being addressed by RMA working group of MPI-3

Representation of process ranks

— Explicit representation of process ranks in some functions, such as
MPI_Group_incl and MPI_Group_excl

— Concise representations should be considered

118

Scalability Issues in the MPI Specification

All-to-all communication
— Not a scalable communication pattern

— Applications may need to consider newer algorithms that do not require
all-to-all

Fault tolerance
— Large component counts will result in frequent failures
— Greater resilience needed from all components of the software stack
— MPI can return error codes, but need more support than that
— Being addressed in the fault tolerance group of MPI-3

119

MPI Implementation Scalability

= MPI implementations must pay attention to two aspects as the number
of processes is increased:

— memory consumption of any function, and
— performance of all collective functions

e Not just collective communication functions that are commonly optimized
e Also functions such as MPI_Init and MPI_Comm_ split

120

Process Mappings

= MPI communicators maintain mapping from ranks to processor ids
= This mapping is often a table of O(nprocs) size in the communicator

= Need to explore more memory-efficient mappings, at least for common
cases

= More systematic approaches to compact representations of
permutations (research problem)

— See recent paper at HPDC 2010 by Alan Wagner et al. from the University
of British Columbia

121

Communicator Memory Consumption

= NEK5000 is a well-known fluid dynamics code developed by Paul Fischer
and colleagues at Argonne

= When they first tried to scale this code on the BG/P, it failed on as little as
8K processes because the MPI library ran out of communicator memory

= NEK5000 calls MPI_Comm_dup about 64 times (because it makes calls to
libraries)

= 64 is not alarge number, and, in any case, MPI_Comm_dup should not
consume O(nprocs) memory (it doesn’t in MPICH2)

= We ran an experiment to see what was going on...

122

Communicator Memory Consumption with original MPI on
BG/P

= Run MPI_Comm_dup in a loop until it fails. Vary the no. of processes

Maximum Number of Communicators
v 9000
(@]
4§ 8000 T —0—0—0—0—0—0— 0\\
= 7000 \
£ 6000 \
€ 5000 \
&f 4000 \
(@]
= 3000 \
<2 2000
€ 1000 e
= 0 \0\,_‘
" b 0 D (> DO N A A A
N o ,\'/'\/ f\‘/o <,)'\/ N YN 9D ,\/‘o o;L (ob‘,\,)c/b
Number of Processes

123

What was going on --- and the fix

= The default MPI_Comm_dup in IBM’s MPI was allocating memory to store
process mapping info for optimizing future calls to collective
communication (Alltoall)

= Allocated memory was growing linearly with system size

= One could disable the memory allocation with an environment variable,
but that would also disable the collective optimizations

= On further investigation we found that they really only needed one buffer
per thread instead of one buffer per new communicator

= Since there are only four threads on the BG/P, we fixed the problem by
allocating a fixed buffer pool within MPI

= We provided IBM with a patch that fixed the problem

124

Communicator Memory Consumption Fixed

Maximum Number of Communicators
2 9000
ggooo,llllllll -
O
' 7000 \
£ 6000 \
£ 5000 —e— Default %
&f 4000
o —— Buffer Pool \
Z 3000 \
S 2000
€ 1000 AN
= 0 T
“ © 0 N (X AD O DA A A
RN e O S
Number of Processes

= NEK5000 code failed on BG/P at large scale because MPI ran out of
communicator memory. We fixed the problem by using a fixed buffer pool
within MPI and provided a patch to IBM.

125

MPI Memory Usage on BG/P after 32 calls to
MPl_Comm_dup

Percentage Memory Usage (32 dups)
25
5 /
S 20 —&— Default
2 —— Buffer Pool
g 15 |
(<))
=
§ 10
("
>
[V}
X 5
———=8
0
4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K128K
Number of Processes

= Using a buffer pool enables all collective optimizations and takes up only a
small amount of memory

126

Scalability of MPI Init

eager versus lazy connection MPI_Init time

30 T T T 1 T T T T T T T T T T
eager connhections ——

lazy connections --->---

©
=
<
[
o

0 >_-ﬁ—=i:!;h*--?l--x--!--*—-#-*«g—-—x-——y——x——x-x—-*——*r*—*-*e—x—-x

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
size of MPI_COMM_WORLD

= Cluster with 8 cores per node. TCP/IP across nodes

= Setting up all connections at Init time is too expensive at large scale; must
be done on demand as needed

127

Scalable Algorithms for Collective
Communication

MPI implementations typically use
— O(lg p) algorithms for short messages (binomial tree)

— O(m) algorithms, where m=message size, for large messages
e E.g., bcast implemented as scatter + allgather

O(lg p) algorithms can still be used on a million processors for short
messages

However, O(m) algorithms for large messages may not scale, as the
message size in the allgather phase can get very small

— E.g., fora 1 MB bcast on a million processes, the allgather phase involves 1
byte messages

Hybrid algorithms that do logarithmic bcast to a subset of nodes,
followed by scatter/allgather may be needed

Topology-aware pipelined algorithms may be needed
Use network hardware for broadcast/combine

128

Enabling Hybrid Programming

MPI is good at moving data between address spaces

Within an address space, MPI can interoperate with other “shared
memory” programming models

Useful on future machines that will have limited memory per core
(MPI + X) Model: MPI across address spaces, X within an address space

Examples:
— MPI + OpenMP
— MPI + UPC/CAF (here UPC/CAF address space could span multiple nodes)
— MPI + CUDA/OpenCL on GPU-accelerated systems

Precise thread-safety semantics of MPI enable such hybrid models

MPI Forum is exploring further enhancements to MPI to support
efficient hybrid programming

129

MPI1-3 Hybrid Proposal on Endpoints

= |n MPI today, each process has one communication endpoint (rank in
MPI_COMM_WORLD)

= Multiple threads communicate through that one endpoint, requiring the
implementation to do use locks etc., which are expensive

= This proposal (originally by Marc Snir) allows a process to have multiple
endpoints

= Threads within a process attach to different endpoints and communicate
through those endpoints as if they are separate ranks

= The MPI implementation can avoid using locks if each thread
communicates on a separate endpoint

130

MPI-3 Hybrid Proposal on Endpoints

= Today, each MPI process has one communication endpoint (rank in
MP|_COMM_WORLD)

= Multiple threads communicate through that one endpoint, requiring the
implementation to do use locks etc. (expensive)

Current MPI Design

appl appl appl
thread thread thread

Process Praocess

thread thread
Process Process

T mm mm e omm o oEm oEm Em o
afd EEI EEN BN NN BN EEN BN B -y
S oEE B B Ee B En Em Em e

-

Single threaded Multi threaded

Separate address spaces for each endpoint

131

MPI-3 Hybrid Proposal on Endpoints

= The proposal is to allow a process to have multiple endpoints

= Threads within a process attach to different endpoints and communicate
through those endpoints as if they are separate ranks

= The MPI implementation can avoid using locks if each thread
communicates on a separate endpoint

Proposed MPI Design

appl appl appl
thread thread thread

appl appl
thread thread

g I N O

ﬁ-----ﬁ

Process Process
Single threaded Multiple threads
(per endpoint) (per endpoint)

Multiple endpoints are mapped in the same address space

132

Fewer Performance Surprises

= Sometimes we hear...

“T replaced

MPI__Allreduce

by
MPI_Reduce + MPI_Bcast

And got better resulfs..” Should ot happen..

133

Or...

"T replaced

MPI_Send(n)

by

MPI_Send(n/k) + MPI_Send(n/k) + ... + MPI_Send(n/k)

And got better results.."

134

Or...

“T replaced

MPI_Bcast(n)

by
<this homemade algorithm with MPI_Send(n) and MPI_Recv(n)>

And got better resulfs..” Should not happen..

135

Self-Consistent MPI Performance Guidelines

Although MPI is portable, there is a lot of performance variability
among MPIl implementations

— Lots of performance surprises

We (Traff, Gropp, Thakur) have defined some common-sense
performance guidelines for MPI

— “Self-Consistent MPI Performance Guidelines”, IEEE TPDS, 2010

Tools could be written to check for these requirements

136

General Principles

If there is an obvious way - intended by the MPI standard - of
Improving communication time,

—>

a sound MPI implementation should do so!

- And not the user!

137

Sample Requirements

= Subdividing messages into multiple messages should not reduce the

communication time
— MPI_Send(1500 bytes) <= MPI_Send(750 bytes) + MPI_Send(750 bytes)

= Replacing an MPI function with a similar function that provides
additional semantic guarantees should not reduce the communication
time
— MPI_Send <= MPI|_Ssend

= Replacing a specific MPI operation by a more general operation by
which the same functionality can be expressed should not reduce
communication time

— MPI_Scatter <= MPI|_Bcast

138

Example: Broadcast vs Scatter

Broadcast

Rank O Rank 1 Rank 2 Rank 3
I D I e

Scatter
Rank O Rank 1 Rank 2 Rank 3
I T | [] [1]

= Scatter should be faster (or at least no slower) than broadcast

139

MPI_Bcast vs MPI_Scatter

45

MPI-Brast
MPI-Scatter

40 +
35 F
30 r
64 processes

25

20

Time (microsec.)

15

10+

0 S00 1000 1500 2000 2500 3000 3500 4000 4500
Size (hytes)

= On BG/P, scatter is 3-4 times slower than broadcast
= Broadcast has been optimized using hardware, scatter hasn’t

140

Eager vs Rendezvous Messages

CommPe for NP Processor =00,0,0x Ina =4, 4, Z, 1> mesh] bpps Blockng

Hrrs (L)

Time (microsec)

0 | 1 | 1 1 1 | 1
] =00 1000 1500 200 =00 000 I00 S0 3500

Bl (bybas)

Size (bytes)

= Large jump in time when message delivery switches from eager to
rendezvous

= Sending 2 750-byte messages is faster than 1 1500-byte message

141

Recent Efforts of the MPI Forum

MPI| Standard Timeline

= MPI-1(1994)

— Basic point-to-point communication, collectives, datatypes, etc
= MPI-2 (1997)

— Added parallel I/0, RMA, dynamic processes, C++ bindings, etc

= - Stable for 10 years ----

= MPI-2.1 (2008)
— Minor clarifications and bug fixes to MPI-2
= MPI-2.2 (2009)
— Today’s official standard
— Small updates and additions to MPI 2.1. Backward compatible
= MPI-3 (in progress, expected late 2011)
— Major new features and additions to extend MPI to exascale
— Organized into several working groups

143

N
MPI 2.2 (Today’s Official MPI Standard)

= Led by Bill Gropp
= Officially approved by the MPI Forum at the Sept 2009 meeting

= Small updates to the standard
— Does not break backward compatibility

= Spec can be downloaded from the MPI Forum web site
www.mpi-forum.org

Also available for purchase as a book from
https://fs.hirs.de/projects/par/mpi/mpi22/

Supported by MPICH2 1.2

oﬁi\i__? - 144

New Features in MPI 2.2

Scalable graph topology interface

— Existing interface requires the entire graph to be specified on all processes,
which requires too much memory on large numbers of processes

— New functions allow the graph to be specified in a distributed fashion
(MPI_Dist_graph_create, MPI_Dist_graph_create_adjacent)
A local reduction function
— MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op)
— Needed for libraries to implement user-defined reductions

MPI_Comm_create extended to enable creation of multiple disjoint
communicators

Regular (non-vector) version of MPI_Reduce_scatter called
MPI_Reduce_scatter block

145

New Features in MPI 2.2

= MPI_IN_PLACE option added to MPI_Alltoall, Alltoallv, Alltoallw, and
Exscan

= The restriction on the user not being allowed to access the contents of
the buffer passed to MPI_Isend before the send is completed by a test or
wait has been lifted

= New C99 datatypes (MPI_INT32_T, MPI_C_DOUBLE_COMPLEX, etc) and
MPI_AINT/ MPI_OFFSET

a 146

\ |
New Features being considered in MPI-3

= Note: All these are still under discussion in the Forum and not final

= Support for hybrid programming (Lead: Pavan Balaji, Argonne)
— Extend MPI to allow multiple communication endpoints per process
— Helper threads: application sharing threads with the implementation

= |mproved RMA (Leads: Bill Gropp, UIUC, and Rajeev Thakur, Argonne)
— Fix the limitations of MPI-2 RMA
— New compare-and-swap, fetch-and-add functions
— Collective window memory allocation
— Test for completion of individual operations
— Otbhers...

147

\ |
New Features being considered in MPI-3

= New collectives (Lead: Torsten Hoefler, UIUC)
— Nonblocking collectives already voted in (MPI_lbcast, MPI_Ireduce, etc)

— Sparse, neighborhood collectives being considered as alternatives to
irregular collectives that take vector arguments

= Fault tolerance (Lead: Rich Graham, Oak Ridge)
— Detecting when a process has failed; agreeing that a process has failed

— Rebuilding communicator when a process fails or allowing it to continue in
a degraded state

— Timeouts for dynamic processes (connect-accept)
— Piggybacking messages to enable application-level fault tolerance

148

New Features being considered in MPI-3

= Fortran 2008 bindings (Lead: Craig Rasmussen, LANL)
— Full and better quality argument checking with individual handles
— Support for choice arguments, similar to (void *) in C
— Passing array subsections to nonblocking functions
— Many other issues

= Better support for Tools (Lead: Martin Schulz, LLNL)

— MPIT performance interface to query performance information internal to an
implementation

— Standardizing an interface for parallel debuggers

149

N
MPI Forum Mailing Lists and Archives

= Web site: http://lists.mpi-forum.org/

= Lists
— mpi-forum
— mpi-22, mpi-3
— mpi3-coll
— mpi3-rma
— mpi3-ft
— mpi3-fortran
— mpi3-tools
— mpi3-hybridpm

= Further info: http://meetings.mpi-forum.org/

= Wiki: https://svn.mpi-forum.org/trac/mpi-forum-web/wiki

150

Argf,g!,’,!,fl,.e,e [

What are we doing in MPICH2

(@ ENERGY

Goals of the MPICH2 project

Be the MPIl implementation of choice for the highest-end parallel
machines

— 7 of the top 10 machines in the June 2010 Top500 list use MPICH2-based
implementations

Carry out the research and development needed to scale MPI to exascale
— Optimizations to reduce memory consumption
— Fault tolerance
— Efficient multithreaded support for hybrid programming
— Performance scalability

Work with the MPI Forum on standardization and early prototyping of
new features

152

MPICHZ2 collaboration with vendors

= Enable vendors to provide high-performance MPIl implementations on the
leading machines of the future

= Collaboration with IBM on MPI for the Blue Gene/Q

— Aggressive multithreaded optimizations for high concurrent message rates
— Recent publications in Cluster 2010 and EuroMPI 2010

= Collaboration with Cray for MPI on their next-generation interconnect
(Gemini)

= Collaboration with UIUC on MPICH2 over LAPI for Blue Waters

= Continued collaboration with Intel, Microsoft, and Ohio State (MVAPICH)

153

Conclusions

= MPI has succeeded because

— features are orthogonal (complexity is the product of the number of
features, not routines)

— complex programs are no harder than easy ones
— open process for defining MPI led to a solid design

— programmer can control memory motion and program for locality (critical
in high-performance computing)

— precise thread-safety specification has enabled hybrid programming

= MPI is ready for scaling to extreme scale systems with millions of cores
barring a few issues that can be (and are being) fixed by the MPI Forum
and by MPI implementations

i54

The MPI Standard (1 & 2)

The Complete Reference: The Complete Reference:

The MPI-1 Core The MPI-2 Extensions

MPI 2.2 Standard

156

Tutorial Material on MPI, MPI-2

Using MPI

Portable Parallel Programming

with the Message Passing Interface,
Second Editiofl

MPI —
Eine Einfiihrung

ierung mit dem

William Gropp

Ewing Lusk

Anthony Skjellum

Using MPI 2
Advanced Features of the

Message Passing Interface

William Gropp

Ewing Lusk

Rajeev Thakur

iy

