

Center for Scalable Application Development Software - Overview

John Mellor-Crummey, Keith Cooper (Rice)
Peter Beckman, Ewing Lusk (ANL)
Jack Dongarra (UTK)
Bart Miller (Wisconsin)

Katherine Yelick (UCB/LBNL)

Goals

- Provide open source software systems, tools, and components that address a spectrum of needs
 - directly usable by application experts
 - provided to the CS community to enable development of other tools
- Engage directly with DOE application teams
- Target architectures of critical interest to DOE
 - Cray XT
 - Blue Gene/P
 - multicore processors in general
- Outreach

Scope of Activities

- Community engagement
- Research and development
 - system software
 - communication for partitioned global address space languages
 - math libraries for multicore
 - performance tools
 - compilers
- Open source software infrastructure
 - performance tool components
 - compilers
- Application outreach

Community Engagement

CScADS Summer Workshop Series

- Goals
 - identify challenges and open problems for leadership computing
 - brainstorm on promising approaches
 - foster collaborations between computer and application scientists
 - engage the broader community of enabling technology researchers
- Workshops to engage SciDAC and INCITE application teams
 - Leadership class machines, petascale applications, and performance
 - Scientific data analysis and visualization for petascale computing
- Workshops to foster development of enabling technologies
 - Autotuning for petascale systems
 - Performance tools for petascale computing
 - Libraries and algorithms for petascale applications

R&D: System Software

Developing open software stack for leadership computing platforms

Focus

- compute node operating system
- I/O communication layer

- facilitates infusion of software research into production systems
- rapid (local) resolution of problems that might arise

Results

- Blue Gene/P compute node OS and I/O layer operational
- supports BG/P for high throughput computing (HTC) as well as HPC
- negligible performance penalty compared to IBM's s/w stack

R&D: PGAS Communication Layer

Goals: low latency; high bandwidth; efficient collectives

- Planned SC08 release of GASNet and Berkeley UPC
 - updated Portals conduit for Cray XT3/4/5 platforms with "firehose"
 - new BG/P conduit based on low level DCMF layer
 - updated Infiniband conduit using new OpenIB/OpenFabrics verbs API
 - LAPI conduit for IBM Power uses RDMA
 - jointly supported by PModels and others
- Optimization of UPC collectives for multicore

BG/P: GASNet vs. MPI latency (lower is better)

Autotuning collectives for Niagara2 (higher is better)

R&D: Parallel Linear Algebra

PLASMA: Parallel Linear Algebra s/w for Multicore Architectures

- Objectives
 - high utilization of each core
 - scaling to large number of cores
 - shared or distributed memory
- Methodology
 - DAG scheduling
 - explicit parallelism
 - implicit communication
- Arbitrary DAG with fully dynamic scheduling

R&D: HPCToolkit Performance Tools

Support measurement, analysis, and attribution of performance problems on petascale systems

- Partnership between
 - Performance Engineering Research Institute
 - Center for Scalable Application Development Software

- New capabilities
 - sampling-based measurement of fully-optimized parallel codes on both Cray XT and Blue Gene systems
 - uses on-the-fly binary analysis for stack unwinding of fully-optimized code
 - supports different kinds of executables
 - statically-linked: Blue Gene, Cray XT
 - dynamically-linked: Linux
 - strategies for pinpointing bottlenecks and quantifying inefficiencies
 - across scalable parallel systems
 - within multicore nodes

R&D: Performance Tool User Interfaces

<u>hpcviewer</u>

- correlates measurements with source
- provides actionable feedback
- supports scalability analysis on and between nodes with derived metrics

(status: deployment fall 2008)

<u>hpctraceviewer</u>

- displays temporal behavior of parallel applications
- provides hierarchical view call stack sample traces from HPCToolkit

(status: prototype summer 2008)

R&D: Compilers for Runtime Re-optimization

- A source of inefficiency in large-scale applications is the "glue" that holds together code from different sources
 - library code; code cribbed from other applications
 - often different languages with different programming models
- Classic compilers cannot improve this kind of code
 - compiler never sees all the pieces; can't optimize them together
 - good application for runtime re-optimization
- Opportunities in large-scale applications
 - improve procedure calls & chains of calls (libraries, CCA)
 - runtime inlining and specialization of calls
 - runtime selection of library components
- Ongoing work
 - experimentation to quantify opportunities and estimate benefits
 - compiler analysis for runtime estimation of benefits
 - compiler analysis to support runtime optimization

Open Source: Performance Tools

Performance Tool Components

- libmonitor: first-party interface between performance tools and OS
 - manages process init/fork/exec/exit, thread create/init/join, signal delivery etc.
 - clients: HPCToolkit, Open|Speedshop, SciCortex
- InstructionAPI
 - abstract representation of instruction decode and address modes.
- ControlFlowAPI
 - platform independent representation of CFG, associated query routines, and extensible data structures

Open Source: Compiler Technology

- LLNL's ROSE compiler: working with LLNL and LANL
 - adding full-featured Fortran support
 - adding support for Coarray Fortran 2.0
- LoopTool: memory hierarchy optimization of Fortran programs
 - source-to-source transformation of Fortran
 - capabilities include scalarization, loop fusion, blocking, unswitching
 - refined to ameliorate bottlenecks in S3D

Application Engagement: GTC

- GTC: simulates turbulent plasma in tokamak reactors
 - 3D particle-in-cell code; 1D decomposition along toroidal direction
 - charge: deposit charge from particles to grid points
 - solve: compute the electrostatic potential and field on grid points
 - push: compute the force on each particle from nearby grid points
- Grand challenge simulations require petascale systems
 - microprocessor-based petascale systems are scarce resources
 - efficient use requires effective use of multi-level memory hierarchies
- Data locality optimization of GTC by CScADS & PERI @ Rice
 - restructured program data and loops
 - adaptively reorder ions at run time
 - at run time, locality degrades gradually as ions in the plasma become disordered
 - periodic particle reordering restores locality and performance

Reduces GTC shaped plasma simulation time by 21% on Cray XT

Application Engagement: S3D

- Direct numerical simulation (DNS) of turbulent combustion
 - state-of-the-art code developed at CRF/Sandia
 - PI: Jaqueline H. Chen, SNL
 - 2007/2008 INCITE awards at NCCS
 - pioneering application for 250TF system

- Identified node performance bottlenecks with HPCToolkit
 - low temporal reuse in diffusive flux calculation among others
 - unnecessary array copying at subroutine interfaces
- Improved loop nests with LoopTool's semi-automatic transforms

Engagement: Other

- Enabling technologies engagement
 - APDEC: Chombo (structured AMR)
 - ITAPS/TASCS: Moab/iMESH (meshing)
 - PERI: performance tools development; Tiger teams
- Application engagement using HPCToolkit
 - UNEDF: MFDn (many Fermion dynamics nuclear)
 - USQCD: Chroma (quantum chromodynamics)
 - Center for Turbulence Research: Hybrid (shock + turbulence)
 - NETL: MFiX (multiphase flow with interface exchanges)
 - lowa State: CAM-EULAG (atmospheric modeling)
 - Gromacs (cellulosic ethanol)
- Working with Fortran 2008 J3 standards committee on parallelism via coarrays