
1

M
itg

lie
d

 d
e

r
H

e
lm

h
o

ltz
-G

e
m

e
in

sc
h

a
ft

F

New developments around Scalasca

FJuly 20th 2009

Felix Wolf

Outline

• Short (!) introduction to Scalasca

• Space efficient time-series call-path profiling

• Scalable parallel task-local file I/O

• Configurable source-code instrumentation

2

2

The Scalasca team

• Scientific staff
 Dominic Eschweiler

 Wolfgang Frings

• Graduate students
 David Krings

 DivyaWolfgang Frings

 Markus Geimer

 Marc-Andre Hermanns

 Michael Knobloch

 Daniel Lorenz

 Bernd Mohr

 Christian Rössel

 Pavel Saviankou

 Felix Wolf

Divya
Sankaranarayanan

3

 Felix Wolf

 Brian Wylie

• Ph.D. fellows
 Daniel Becker

 David Böhme

 Zoltan Szebenyi

• Scalable performance-analysis toolset for parallel codes

• Integrated performance analysis process
 Performance overview on call-path level via runtime summarization

 In-depth study of application behavior via event tracing

 Automatic identification of wait states

 Switching between both options without recompilation or relinking

• Supported programming models
 MPI-1 basic OpenMP

4

MPI 1, basic OpenMP

 MPI-2, other one-sided models, and more complex OpenMP features
in progress

• Available under the New BSD open-source license

 http://www.scalasca.org/

3

Parallel pattern
search

Summary
report

Wait-state
report

Instr.
target
application

Measurement
library

HWC Local event
traces

Optimized measurement configuration

R
e

p
o

rt

m
a

n
ip

ul
at

io
n

Which problem?
Where in the

program?
Which

process?

pp

Instrumenter
compiler /

linker

Instrumented
executable

5

Source
modules

Releases

• 1.2 (July 2009) - mostly robustness and portability

• 1 3 (October 2009)• 1.3 (October 2009)
 Instrumentation

 Tau/PDT instrumentor integration

 Robustness of OPARI improved when working with multiple
directories

 Scalability

 Process-local traces mapped onto few physical files

 Improved communicator management

6

 Improved communicator management

 Performance analysis

 MPI RMA statistics & trace analysis

 Communication matrices

 Trace-based simulator

 Utilities - EPILOG to slog2 trace conversion

4

Time-dependent performance behavior

T
im

e
 [s

]

P
ro

ce
ss

 #

max

mean

min

7

MPI point-to-point time of 129.tera_tf

IterationIteration

Time-series call-path profiling

• Manual instrumentation to
distinguish iterations of the main
loop

• Complete call-tree recorded for
each iteration
 With multiple metrics collected

for every call-path

• Huge growth in the amount of
d ll d

8

data collected
 Reduced scalability

5

Incremental on-line clustering

• Exploits that many iterations are very

MPI point-to-point time in 107.leslie3d

similar
 Summarizes similar iterations in a

single iteration, their average

• On-line to save memory at run-time

• Process-local to
 Avoid communication

 Adjust to local temporal patterns

9

• The number of clusters can never
exceed a predefined maximum
 Merging of the two closest ones

Challenges addressed

• Distance calculation overhead
 Distance based on condensed version of iteration profile

• Phantom call paths
 Call tree equivalence preserved

• Small changes of the baseline obscured by large-scale
noise
 Distance function takes cluster size into account

10

6

Pretty Efficient Parallel Coulomb-solver (PEPC)

• Multi-purpose parallel tree code
 Molecular dynamics

 Laser-plasma interactions

• Developed at JSC by Paul Gibbon

• Runs on IBM SP and Blue Gene

11

Late Sender # particles owned by a process

Examples of reconstructed graphs (PEPC)
64 clusters

256 clusters

12

Original

7

Example of reconstructed call paths Quite good
summary values

Important
features still

visible

1.7% error on the
most important

call-path

13

Original Compressed

Time spent in MPI by PEPC with 128 clusters

8.1% error on
this call-path

Artifacts
introduced

Discussion

• Lossy compression method for time-series call path profiles
 Based on incremental on-line clustering

 Enables analysis of time-dependent behavior

 Will enable full PEPC time-series call-path profile

 Accurate representation both at iteration and call-path level

 64 clusters reasonable default

 Low overhead

• Future work

14

 Actual on-line implementation in measurement library

 Develop strategies on how to dynamically determine the optimal
number of clusters (64 not always adequate)

 Scalability of analysis and presentations

8

CUBE 4 roadmap

• Main goals
 Scalability of reading and

writing

 Time dimension in addition
to metric, call path, and
system dimension

 Time-series compression

 Display of temporal patterns
Program

CUBE 3

15

p y p p

Init Main loop Finalize

Iteration 1 Iteration n…

The file creation problem

• Metadata contention when creating thousands of files
simultaneously in one directory
 256 K files can take > 30 min on JUGENE

E if th t ti bl ld b l d• Even if the contention problem could be solved
 Handling 256 K physical files remains a challenge

16

Jaguar (Oakridge, Cray XT4, Lustre, fs:scr72b)

Jugene (JSC, IBM Blue Gene/P, GPFS, fs:work)

9

SIONlib: Scalable parallel I/O for task-local data

• Use cases
 Trace files

 Scratch/checkpoint files

• Map many logical files onto a few physical files
 Application-level file system

 Optimized I/O via block alignment

• Release 1.1
 Multiple physical files

T1

File

T2

File

T3

File

T4

File

17

Multiple physical files

 Fortran interface

 Documentation

 Convenience functions

• http://www.fz-juelich.de/jsc/sionlib/

File

Configurable source-code instrumentor

• Motivation
 Every tools provides its own source-code instrumentation

solution

• Configurable solution based on the TAU instrumentor

 Developed in collaboration with the TAU group (U. Oregon)

 Robust, well-tested, extensive filtering capabilities

• Distributed as part of PDT (i.e., separate from TAU)

18

10

Features

• Allows specification of code to be inserted for
 Entering/leaving a routine

 Additional declarations

 Inclusion of header files

 Aborting the application

 Initialization (i.e., at begin of “main”)

• Provides keyword substitution (to insert “instrumentor

19

knowledge”)

• Work in progress
 Handle Fortran line-length limit correctly

 Complete C++ template support

Thank you!

www.scalasca.org

Please download and try
Version 1.2

20

