
Autonomous
Tool Infrastructure

Dorian Arnold
Department of Computer Science

University of New Mexico

CScADS Petascale Tools Workshop
July 20-24, 2009



2

The Context:
Tree-based Overlay Networks

MRNet:
TBŌN Prototype



3

Problem Statement:
Efficient, Scalable Application Performance

Necessary System
Knowledge in App.

S
ys

te
m

ea
se

-o
f-u

se

Necessary Application
Knowledge in System

S
ys

te
m

G
en

er
al

ity

1. How much system-specific knowledge
does application (developer) need?

2. How much application-specific knowledge 
does system (developer) need?

3. How far can we get answering “NONE” and “NONE”?



4

The Approach:
An Autonomous TBŌN Infrastructure

TBŌN Autonomy aka the self-* properties:
• Self-configuring

– Automatic TBŌN topology configuration

• Self-monitoring
– TBŌN health and performance

• Self-healing
– TBŌN Fault tolerance and failure recovery

• Self-optimizing
– Dynamic TBŌN reconfiguration to improve performance

Must maintain 
scalable, efficient 

performance!



5

Research Challenges

• How can we provide a reliable TBŌN service in the 
presence of failures?
– Known aliases: “Escape from L.A.”, “My dissertation”

• How do we choose the “best” TBŌN topologies?
– Application load and system characteristics may vary over time

• How can we dynamically improve TBŌN performance?
– Throughput, latency, resource consumption, startup costs, …

• Can we design a flexible, elegant solution space?

Madison



6

Outline:
Past, Present and Future Directions

• Past:
– TBŌN event/failure detection
– TBŌN failure recovery

• Present and future
– TBŌN performance monitoring
– TBŌN performance modeling
– Dynamic TBŌN self-configuration and optimization
– Other issues (as time permits)



7

Recent MRNet Developments

• Before:
– MRNet only supported static topologies
– MRNet did not tolerate any failures

• As of MRNet 2.0 (August ’08)
– Event detection service

• Failure detection
• Dynamic topology configuration
• New MRNet instantiation protocol

– State composition for failure recovery



8

MRNet Event Detection Service

Event Detection Service (EDS) thread
– In each MRNet process

– Passive detection of asynchronous events
• Failure events for failure detection
• Connection events for dynamic reconfiguration

– Connection-based (TCP) mechanisms
• Monitor watch list of event sockets

– Listening socket
– New Failure Detection Connection protocol message
– New Data Connection protocol message



Self-monitoring:
Detecting Functional Failures

• Each process monitors its 
peers (parent and children)

• Connect to peer EDS

• Send New Failure 
Detection Connection
message

• Add failure detection event 
sockets to watch list

• Socket error → peer failure

EDS

EDS EDS EDS EDS

LS   
FDES0

FDES1

FDES2

FDES3

FDES4

LS   
FDES0

LS   
FDES0

LS   
FDES0

LS   
FDES0

watch list



10

Upon Failure Detection …

1. The MRNet tree must be reconfigured to 
reconnect orphaned subtrees

2. MRNet must recover any lost process or 
channel state (that it can)



11

MRNet Self-healing:
Dynamic (Re)configuration

At initialization or after 
failures, orphan connect 
to new parent’s EDS

• Send New Data 
Connection protocol 
message

• Child/parent establish 
data socket

EDS

EDS

parent

orphan

data connection



12

Self-healing: State Recovery

State Compensation
– Compensate for lost state using inherently 

redundant information from survivors

– Avoid overhead of explicit data replication

– State Composition
• Lightweight mechanism
• Requires associativity, commutativity and 

idempotence 



13

What’s Next?
“Performance Failures”

• What is a performance failure?
– Generally, employing a sub-optimal topology

– Realizing (much) less than optimal performance
• Data aggregation latency and throughput
• Resource under-utilization
• Imbalanced topologies

– Per application?
– Per flow/stream?



14

Per Flow Topologies

• “best” topology dependent upon
– Participating end-points
– Data aggregation operation
– Application data rate
– …

• “best” is different for different streams!
– How can we efficiently enable different 

topologies for different flows



15

TBŌN Components for Autonomy

Monitoring

Detecting Deciding

Acting

Sensors EffectorsEvents

Symptoms
Diagnosis

Decisions

Actions

Sensors: hw/sw characteristics, runtime events, etc.Monitoring: collecting/correlating events to identify patterns and
symptoms, e.g. threshold checking, etc.
Detecting: evaluate symptoms to determine if problems exists
and action is necessary, e.g. do we have a bottleneck?

Deciding: determining how best to modify topologyActing: effecting the recommended topology changesKey Challenges:
• Decentralization
• Low (background) overhead
• Rapid execution
• Must provide more benefits than drawbacks!



16

Other Issues: Many MRNets or 1

1 Network
per Application

1 Network shared 
across applications

Pros Simple
Ease-of-deployment
No interference 
between applications

Fast startup
Better resource 
utilization

Cons Slow startup
Poorer resource 
utilization

More complex
Persistent network
Help address 
collocation problems



17

Other Issues: Native Services
• Separate service dependent from service 

independent mechanisms

• Improved portability and performance

• Process launching
– Currently rsh-based
– Leverage native resource manager or job launcher

• Might we gain enough startup performance improvement to 
forego persistent, shared network?

• IPC
– Currently TCP-based
– Leverage faster, local communication services



18

What this means to you

• Simpler, yet better, TBŌN infrastructure
– Doing (much) more with less!

• We built it, you should come.

Questions?



19

MRNet

FE

BE BE BE BE BE BE BE BE

Scalable data multicast
and aggregation

Flexible topologies

User-defined filters

Trade-off: extra processing 
nodes for performance

Front-end

Back-ends

Packet
Filter

Filter
State

FE

BE BE BE BE BE BE BE BE

Tree of
Communication

Processes

CP

CP CP

CP CP CP CP

CP CP



20

Information Dissemination

Use tree structure for
efficient global dissemination

• Failure report:
• 32 bits: {failed rank}

• Reconfiguration report:
• 64 bits: {child rank, parent rank}
• Disconnected subtrees intact

• Disseminating process sends
to parent and children

• Receiving processes send 
to peers other than source



21

State Composition Interface

• Used to dynamically load new filter functions

• Also queries for get_FilterState routine
– If found, filter is recoverable

outPacket get_FilterState( void ** inFilterState );

int load_FilterState( const char * inSharedObject
const char * inFilterFunction );

• Inputs pointer reference to stream’s filter state

• Outputs “packetized” version of filter state


