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The Context:
Tree-based Overlay Networks

MRNet:
TBŌN Prototype
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Problem Statement:
Efficient, Scalable Application Performance

Necessary System
Knowledge in App.
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1. How much system-specific knowledge
does application (developer) need?

2. How much application-specific knowledge 
does system (developer) need?

3. How far can we get answering “NONE” and “NONE”?
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The Approach:
An Autonomous TBŌN Infrastructure

TBŌN Autonomy aka the self-* properties:
• Self-configuring

– Automatic TBŌN topology configuration

• Self-monitoring
– TBŌN health and performance

• Self-healing
– TBŌN Fault tolerance and failure recovery

• Self-optimizing
– Dynamic TBŌN reconfiguration to improve performance

Must maintain 
scalable, efficient 

performance!
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Research Challenges

• How can we provide a reliable TBŌN service in the 
presence of failures?
– Known aliases: “Escape from L.A.”, “My dissertation”

• How do we choose the “best” TBŌN topologies?
– Application load and system characteristics may vary over time

• How can we dynamically improve TBŌN performance?
– Throughput, latency, resource consumption, startup costs, …

• Can we design a flexible, elegant solution space?

Madison
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Outline:
Past, Present and Future Directions

• Past:
– TBŌN event/failure detection
– TBŌN failure recovery

• Present and future
– TBŌN performance monitoring
– TBŌN performance modeling
– Dynamic TBŌN self-configuration and optimization
– Other issues (as time permits)
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Recent MRNet Developments

• Before:
– MRNet only supported static topologies
– MRNet did not tolerate any failures

• As of MRNet 2.0 (August ’08)
– Event detection service

• Failure detection
• Dynamic topology configuration
• New MRNet instantiation protocol

– State composition for failure recovery
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MRNet Event Detection Service

Event Detection Service (EDS) thread
– In each MRNet process

– Passive detection of asynchronous events
• Failure events for failure detection
• Connection events for dynamic reconfiguration

– Connection-based (TCP) mechanisms
• Monitor watch list of event sockets

– Listening socket
– New Failure Detection Connection protocol message
– New Data Connection protocol message



Self-monitoring:
Detecting Functional Failures

• Each process monitors its 
peers (parent and children)

• Connect to peer EDS

• Send New Failure 
Detection Connection
message

• Add failure detection event 
sockets to watch list

• Socket error → peer failure
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Upon Failure Detection …

1. The MRNet tree must be reconfigured to 
reconnect orphaned subtrees

2. MRNet must recover any lost process or 
channel state (that it can)
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MRNet Self-healing:
Dynamic (Re)configuration

At initialization or after 
failures, orphan connect 
to new parent’s EDS

• Send New Data 
Connection protocol 
message

• Child/parent establish 
data socket

EDS

EDS

parent

orphan

data connection
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Self-healing: State Recovery

State Compensation
– Compensate for lost state using inherently 

redundant information from survivors

– Avoid overhead of explicit data replication

– State Composition
• Lightweight mechanism
• Requires associativity, commutativity and 

idempotence 
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What’s Next?
“Performance Failures”

• What is a performance failure?
– Generally, employing a sub-optimal topology

– Realizing (much) less than optimal performance
• Data aggregation latency and throughput
• Resource under-utilization
• Imbalanced topologies

– Per application?
– Per flow/stream?
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Per Flow Topologies

• “best” topology dependent upon
– Participating end-points
– Data aggregation operation
– Application data rate
– …

• “best” is different for different streams!
– How can we efficiently enable different 

topologies for different flows
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TBŌN Components for Autonomy

Monitoring

Detecting Deciding

Acting

Sensors EffectorsEvents

Symptoms
Diagnosis

Decisions

Actions

Sensors: hw/sw characteristics, runtime events, etc.Monitoring: collecting/correlating events to identify patterns and
symptoms, e.g. threshold checking, etc.
Detecting: evaluate symptoms to determine if problems exists
and action is necessary, e.g. do we have a bottleneck?

Deciding: determining how best to modify topologyActing: effecting the recommended topology changesKey Challenges:
• Decentralization
• Low (background) overhead
• Rapid execution
• Must provide more benefits than drawbacks!
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Other Issues: Many MRNets or 1

1 Network
per Application

1 Network shared 
across applications

Pros Simple
Ease-of-deployment
No interference 
between applications

Fast startup
Better resource 
utilization

Cons Slow startup
Poorer resource 
utilization

More complex
Persistent network
Help address 
collocation problems
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Other Issues: Native Services
• Separate service dependent from service 

independent mechanisms

• Improved portability and performance

• Process launching
– Currently rsh-based
– Leverage native resource manager or job launcher

• Might we gain enough startup performance improvement to 
forego persistent, shared network?

• IPC
– Currently TCP-based
– Leverage faster, local communication services
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What this means to you

• Simpler, yet better, TBŌN infrastructure
– Doing (much) more with less!

• We built it, you should come.

Questions?
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MRNet
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Scalable data multicast
and aggregation

Flexible topologies

User-defined filters

Trade-off: extra processing 
nodes for performance
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Information Dissemination

Use tree structure for
efficient global dissemination

• Failure report:
• 32 bits: {failed rank}

• Reconfiguration report:
• 64 bits: {child rank, parent rank}
• Disconnected subtrees intact

• Disseminating process sends
to parent and children

• Receiving processes send 
to peers other than source
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State Composition Interface

• Used to dynamically load new filter functions

• Also queries for get_FilterState routine
– If found, filter is recoverable

outPacket get_FilterState( void ** inFilterState );

int load_FilterState( const char * inSharedObject
const char * inFilterFunction );

• Inputs pointer reference to stream’s filter state

• Outputs “packetized” version of filter state


