
Dept. of Computer and Information Sciences : University of Delaware

John Cavazos

Department of
Computer and Information Sciences

University of Delaware

Intelligent Compilation

Dept. of Computer and Information Sciences : University of Delaware

Proposition
► Proposition: “The focus on specialized

tuning systems is too narrow …”
► Specialized tuning systems are

compiler component

Dense
Matrix

Optimizer

Code Analyzer

Simple Code Generation

Dept. of Computer and Information Sciences : University of Delaware

Proposition
► Proposition: “The focus on specialized

tuning systems is too narrow …”
► Specialized tuning systems are

compiler component

Dense
Matrix

Optimizer

Code Analyzer

Simple Code Generation

Sparse
Matrix

Optimizer

Dept. of Computer and Information Sciences : University of Delaware

Proposition
► Proposition: “The focus on specialized

tuning systems is too narrow …”
► Specialized tuning systems are

compiler component

Dense
Matrix

Optimizer

Code Analyzer

Simple Code Generation

Sparse
Matrix

Optimizer

Another
“Motif”

Optimizer

Dept. of Computer and Information Sciences : University of Delaware

Proposition
► Proposition: “The focus on specialized

tuning systems is too narrow …”
► Specialized tuning systems are

compiler component

Dense
Matrix

Optimizer

Code Analyzer

Simple Code Generation

Sparse
Matrix

Optimizer

… Another
“Motif”

Optimizer

General
Purpose

Optimizer

Dept. of Computer and Information Sciences : University of Delaware

Proposition
► Proposition: “The focus on specialized

tuning systems is too narrow …”
► Specialized tuning systems are

compiler component

Dense
Matrix

Optimizer

Code Analyzer

Simple Code Generation

Sparse
Matrix

Optimizer

… Another
“Motif”

Optimizer

General
Purpose

Optimizer

Intelligent
Compiler

Dept. of Computer and Information Sciences : University of Delaware

Traditional Compilers
►  “One size fits all” approach
►  Tuned for average performance
►  Aggressive opts often turned off
►  Target hard to model analytically

Compilers

Applications

Operating System/Virtualiz’n

Hardware

Dept. of Computer and Information Sciences : University of Delaware

Proposed Solution
►  Intelligent Compilers

►  Use Machine Learning
►  Learn to optimize

►  Specialized to each Application/Data/Hardware

Intelligent Compilers
(Neural Networks, Decision Trees,

Genetic Algorithms, etc.)

Feedback

Applications

Operating System/Virtualiz’n

Hardware

Dept. of Computer and Information Sciences : University of Delaware

Intelligence in a compiler
► Global

►  Controlling compiler flags [CGO 2007]

► Local
►  Individual methods [OOPSLA 2006]
►  Individual loop bodies [PLDI 2008]

► Individual Optimization Heuristic
►  How and When to Perform Instruction Scheduling

[NIPS 1997, PLDI 2005]
 http://www.cis.udel.edu
/~cavazos

Dept. of Computer and Information Sciences : University of Delaware

Overall Approach
► Training of Model

► Generate training data
► Automatically construct a heuristic
► Can be expensive, but can be done offline

► Testing of Model
►  During Compilation

► Extract features
► Model outputs probability distribution
► Generate optimizations from distribution

► Offline versus online learning

Dept. of Computer and Information Sciences : University of Delaware

Outline
► Using Performance Counters
► Intelligent Polyhedral Search
► Method-Specific Compilation

Dept. of Computer and Information Sciences : University of Delaware

Putting Perf Counters to Use
► Important aspects of

pr
o
grams captured with performance counters

► Automatically construct model (Offline)
► Map performance counters to good opts

► Model predicts optimizations to apply
► Uses performance counter characterization

Dept. of Computer and Information Sciences : University of Delaware

Performance Counters
► Many performance counters available
► Examples:

 Mnemonic Description Avg Values
► FPU_IDL (Floating Unit Idle) 0.473
► VEC_INS (Vector Instructions) 0.017
► BR_INS (Branch Instructions) 0.047
► L1_ICH (L1 Icache Hits) 0.0006

Dept. of Computer and Information Sciences : University of Delaware

Characterization of 181.mcf
►  Perf cntrs relative to 4 benchmark suites

Dept. of Computer and Information Sciences : University of Delaware

Characterization of 181.mcf
►  Perf cntrs relative to 4 benchmark suites

Dept. of Computer and Information Sciences : University of Delaware

Characterization of 181.mcf
►  Using -Ofast and search with a Model.

Dept. of Computer and Information Sciences : University of Delaware

Characterization of 181.mcf
►  Using -Ofast and search with a Model.

Dept. of Computer and Information Sciences : University of Delaware

Characterization of 181.mcf
►  Using -Ofast and search with a Model.

Dept. of Computer and Information Sciences : University of Delaware

Training PC Model

Compiler
 and

Dept. of Computer and Information Sciences : University of Delaware

 Programs to train model (different from test program).

Compiler
 and

Training PC Model

Dept. of Computer and Information Sciences : University of Delaware

Baseline runs to capture performance counter values.

Compiler
 and

Training PC Model

Dept. of Computer and Information Sciences : University of Delaware

Obtain performance counter values for a benchmark.

Compiler
 and

Training PC Model

Dept. of Computer and Information Sciences : University of Delaware

Best optimizations runs to get speedup values.

Compiler
 and

Training PC Model

Dept. of Computer and Information Sciences : University of Delaware

Best optimizations runs to get speedup values.

Compiler
 and

Training PC Model

Dept. of Computer and Information Sciences : University of Delaware

New program interested in obtaining good performance.

Compiler
 and

Using PC Model

Dept. of Computer and Information Sciences : University of Delaware

Baseline run to capture performance counter values.

Compiler
 and

Using PC Model

Dept. of Computer and Information Sciences : University of Delaware

Feed performance counter values to model.

Compiler
 and

Using PC Model

Dept. of Computer and Information Sciences : University of Delaware

Model outputs a distribution that is use to generate sequences

Compiler
 and

Using PC Model

Dept. of Computer and Information Sciences : University of Delaware

Optimization sequences drawn from distribution.

Compiler
 and

Using PC Model

Dept. of Computer and Information Sciences : University of Delaware

► Trained on data from Random Search
► 500 evaluations for each benchmark

► Leave-one-out cross validation
► Training on N-1 benchmarks
► Test on Nth benchmark

► Logistic Regression

PC Model

Dept. of Computer and Information Sciences : University of Delaware

► Variation of ordinary regression
►  Inputs

► Continuous, discrete, or a mix
► 60 performance counters

► All normalized to cycles executed

► Ouputs
► Restricted to two values (0,1)
► Probability an optimization is beneficial

Logistic Regression

Dept. of Computer and Information Sciences : University of Delaware

► PathScale compiler
► Compare to highest optimization level
► 121 compiler flags

► AMD Athlon processor
► Real machine; Not simulation

► 57 benchmarks

► SPEC (INT 95, 2000), MiBench, Polyhedral

Experimental Methodology

Dept. of Computer and Information Sciences : University of Delaware

► Combined Elimination [CGO 2006]
► Pure search technique

► Evaluate optimizations one at a time
► Eliminate negative optimizations in one go

► Out-performed other pure search
techniques

► PC Model

Evaluated Search Strategies

Dept. of Computer and Information Sciences : University of Delaware

PCModel/CE (SPEC INT 95/SPEC 2000)

Obtained > 25% on 7 benchmarks and 17% over highest opt.

Dept. of Computer and Information Sciences : University of Delaware

Two Additional Approaches
► Intelligent Polyhedral Search [PLDI 2008]

► Method-Specific Compilation [OOPSLA 2006]

Dept. of Computer and Information Sciences : University of Delaware

Intelligent Polyhedral Search

Dept. of Computer and Information Sciences : University of Delaware

Intelligent Polyhedral Search

Dept. of Computer and Information Sciences : University of Delaware

Intelligent Polyhedral Search

Dept. of Computer and Information Sciences : University of Delaware

Intelligent Polyhedral Results

Relative to gcc -O3 -ftree-vectorize -msse2

Dept. of Computer and Information Sciences : University of Delaware

Method-Specific Compilation
►  Integrate Machine Learning into a Java JIT compiler

►  Use simple code properties

►  Extracted from one linear pass of bytecodes

►  Model controls up to 20 optimizations

►  Outperforms hand-tuned heuristic

►  Up to 29% SPEC JVM98

►  Up to 33% DaCapo+

Dept. of Computer and Information Sciences : University of Delaware

►  Using performance counters
►  Out-performs production compiler in few

evaluations

►  Intelligently traverses Polyhedral Space
►  Using code characteristics

►  Can outperform hand-tuned heuristic
►  Opts applied only when beneficial

Conclusions

Dept. of Computer and Information Sciences : University of Delaware

Backup Slides

Dept. of Computer and Information Sciences : University of Delaware

Static vs Dynamic Features

Dept. of Computer and Information Sciences : University of Delaware

1. L1 Cache Accesses
2. L1 Dcache Hits
3. TLB Data Misses
4. Branch Instructions
5. Resource Stalls
6. Total Cycles
7. L2 Icache Hits
8. Vector Instructions

 9. L2 Dcache Hits
10. L2 Cache Accesses
11. L1 Dcache Accesses
12. Hardware Interrupts
13. L2 Cache Hits
14. L1 Cache Hits
15. Branch Misses

Most Informative Performance Counters

Most Informative Features

Dept. of Computer and Information Sciences : University of Delaware

► Combined Elimination
► Dependent on dimensions of space
► Easily stuck in local minima

► RAND
► Probabilistic technique
► Depends on distribution of good points
► Not susceptible to local minima

Note: CE may improve in space with many bad opts.

Why is CE worse than RAND?

Dept. of Computer and Information Sciences : University of Delaware

► Characterizing large programs hard
► Performance counters effectively

summarize program's dynamic behavior
► Previously* used static features [CGO 2006]

► Does not work for whole program
characterization

Program Characterization

