Next Generation Multi-Scale Quantum Many-Body Simulation Software

Cengiz Sen University of Cincinnati, effective August 2007

Collaborators:

M. Jarrell, K. Tomko, Th. Maier, E. D'Azavedo, R. Scalettar, Z. Bai, S. Savrasov

OUTLINE

- Complexity at the nanoscale
- Present Approach
 - Improved cluster solvers at short-length scales
- Multi-Scale Many-Body Approach
 - Separation of length scales
 - Diagrammatic methods at intermediate-length scales
- Summary

Complexity at the nanoscale

- Complex phase diagrams and new states of matter: e.g. Cuprates, manganites, ruthenates, DMSs...
- Proper understanding require simulations at long length scales

E. Dagotto, Complexity in Strongly Correlated Electron Systems, Science, 309, 257 (2005)

Present Approach

DMF/DCA

Effective Medium

- A multi-scale approach
- Short length scales, within the cluster, treated explicitly.
- Long length scales treated within a mean field.

For a review of quantum cluster approaches: Th. Maier et al., Rev. Mod. Phys. 77, pp. 1027 (2005).

QMC Cluster Solver

Mean-Field Approximation, M. Jarrell, PRB 64, 195130/1-23 (2001).

$$G^{-1} = \overline{G}^{-1} + \Sigma \qquad \Sigma = G^{-1} - G_{c}^{-1}$$

$$\overline{G}(\mathbf{K}) = \sum_{\mathbf{\tilde{k}}} G(\mathbf{K} + \mathbf{\tilde{k}})$$

$$MEM$$

$$MEM$$

$$N(\omega), \chi(\omega)$$

$$MEM$$

$$\Delta nalysis Code$$

$$\overline{\chi}(T), n(\mathbf{k})$$

Parallelization of the QMC solver

Improved QMC solvers at short length scales – Hybrid QMC

Multi-scale Many-Body formalism

- Appropriate method for each length scale
 - short = explicit

.

- intermediate
 perturbative
- long = mean field
- Only MB processes from explicit calculation
 - Σ and Λ from QMC input to diagrammatic caclulation

Intermediate length scale – Diagrammatic Approach

•Large cluster: solve parquet and Bethe-Salpeter equations self consistently.

- • Σ , Λ from QMC
- • Γ , F, χ size nt >1600 •distribute data on Q

Parquet e.q. $\Gamma_a(K, K', Q) = \Lambda(K, K', Q) + (\Gamma_b \chi^0 F)(-K', -K, K+K'+Q)$

 $|\Gamma_a|$ +

Bethe-Salpeter e.q. $F(K, K', Q) = \Gamma_a(K, K', Q) + (F\chi^0 \Gamma_a)(K, K', Q)$

N. Bickers D. Hess V. Janis

Major Performance Bottlenecks

- Computational Bottleneck
 - Bethe-Salpeter Equation:
 - like 3D Matrix Multiplication
 - O(nt⁴) operations, so main loop is O(nt⁴)
 - Dramatically limits size of computation
- Communication Bottleneck
 - Parquet Equations
 - Rotation of matrices:
 - Complex and Global message transferring pattern
 - Each Parquet Equation: O(nt³) messages
- Both are recalculated on each iteration
- No Minus sign problem
 - Algebraic rather than exponential scaling!

Summary

- Present methods cannot address multi-scale phenomena displayed by correlated materials
 - Minus sign problem
 - Complexity (number of correlated orbitals)
- MSMB method treats each length scale with an appropriate method
 Effective Medium
 - short = explicit
 - intermediate = diagrammatic
 - long = mean field
- Challenges, Outreach, Collaboration
 - MP QMC for measurements of Γ, F, etc.
 - Large matrix (tensor) algebra
 - Web distribution of codes (9/07)

http://scicompforge.org/petamat