BitBlaze: Binary Analysis for
Computer Security

Dawn Song

Computer Science Dept.
UC Berkeley

Malicious Code---Critical Threat on the Internet

Diverse forms
— Worms, botnets, spyware, viruses, trojan horses, etc.

High prevelance
— CodeRed Infected 500,000 servers

— 61% U.S. computers infected with spyware [National Cyber
Security Alliance06]

— Millions of computers in botnets
Fast propagation
— Slammer scanned 90% Internet within 10 mins

Huge damage
— $10billion annual financial loss [ComputerEconomics05]

Defense I1s Challenging

Software inevitably has bugs/security vulnerabilities
— Intrinsic complexity
— Time-to-market pressure
— Legacy code
— Long time to produce/deploy patches
Attackers have real financial incentives to exploit them
— Thriving underground market

Large scale zombie platform for malicious activities
Attacks increase in sophistication

We need more effective techniques and tools for defense
— Previous approaches largely symptom & heuristics based

The BitBlaze Approach

e Semantics based, focus on root cause:

Automatically extracting security-related properties from
binary code K/ulnerable programs & malicious code) for
effective defense

« Automatically create high-quality detection & defense
mechanisms

— Automatic generation of vulnerability signatures to filter out
exploits

— Automatic detection and classification of malware
» Spyware, keylogger, rootkit, etc.
» Automatic detection of botnet traffic

 Able to handle binary-only setting

Binary Analysis: Imperative & Challenging

e Binary analysis is imperative
— Source code is often unavailable
» COTS programs
» Malicious code
— Binary is truthful
 Binary analysis is challenging
— Lack higher-level semantics

» Even disassembling is non-trivial

— Malicious code may obfuscate
» Code packing
» Code encryption
» Code obfuscation & dynamically generated code

 Need techniques & tools to address these issues

he BitBlaze Vision & Research Foci

1. Design and develop a unified binary analysis platform for

security applications
— Identify & cater common needs of different security applications

— Leverage recent advances in program analysis, formal methods,
binary instrumentation/analysis techniques to enable new

capabilities

2. Introduce binary-centric approach as a powerful arsenal
to solve real-world security problems

« COTS vulnerability analysis & defense
e« Malicious code analysis & defense
 Other security applications

The BitBlaze Binary Analysis Platform

A unique infrastructure:

— Novel fusion of static, dynamic analysis techniques, and formal
analysis techniques such as symbolic execution

— Vine: accurate static analysis using VinelL (Intermediate Language)
— TEMU: whole-system, fine-grained, symbolic emulation system
— Rudder: automatic exploration of program execution space

Vine: TEMU: Rudder:
Static Analysis] |Dynamic Analysis| | Mixed Execution
Component Component Component

BitBlaze Binary Analysis Platform

BitBlaze in Action: Addressing Security Problems

Effective new approaches for diverse security problems

— Over dozen projects

— Over 12 publications in security conferences
Exploit detection, diagnosis, defense

Inputs Exploits

" Detector

Engine

Vulnerability
Info

In-depth malware analysis

Others:
— Reverse engineering

— Deviation detection [Best Paper Award]

— Semantic binary diff

Filter
Generator

Talk Outline

* Motivating security applications
— Automatic patch-based exploit generation

e Components
— Vine: VinelR, static analysis on VinelR
— TEMU: whole-system, fine-grained, symbolic emulation system
— Rudder: automatic execution space exploration

e Future directions and conclusion

Automatic Patch-based Exploit Generation

e Given vulnerable program P, patched program P’,
automatically generate exploits for P

« Why care?
— Exploits worth money
» Typically $10,000 - $100,000

— Know thy enemy
» Security of patch distribution schemes?

— Patch testing

10

Running Example

read input | | |
: « All integers unsigned 32-bits

\ 4 e All arithmetic mod 232
If input 0 2==0 * Motivated by real-world vulnerability

F/ \T

S:=input+3| |s:=input+2

~ N

ptr := realloc(ptr, s)

11

Running Example

n read input

A 4

iInput = 232-2

< 232.2 0 2 ==

if input % 2==0

'

\T

S :=input + 3

S :=input + 2 [+—— s:=0(2%2-2 + 2 % 2%)

~

N

ptr := realloc(ptr, s) |« ptr := realloc(ptr,0)

™~

Using ptr is a problem

7

12

Running Example

E read input

. . *
If iInput % 2==0

"/

S :=input + 3

Integer Overflow when:
S < Input

S = input + 2

/

ptr .= realloc(ptr, s)

13

Running Example

E read input

A 4
If input % 2==0

F/ \T

S:=input+ 3| |[s:=input+ 2

~ e

ptr := realloc(ptr, s)

%

—

about overflowI

N—

| didn’t think

All 32-bit integers

Exploits:
232-3,
232-2,
232-1

™~

2 K
X

14

Program

Inputs

Input Validation Vulnerability &

* Programmer fails to sanitize inputs

e Large class of security-critical vulnerabilities
— “Buffer overflow”, “integer overflow”, “format string vulns”, etc.

 Responsible for many, many compromised computers

15

Patch

E reao_l Input P’ read input
H H

If input % 2== if input % 2==

/N N

S:=input+3] |s:=input+2 || |g:=input+3| |s:=input+ 2

ptr := realloc(ptr, §) |f s > input
/ F T
[Overflow when l//\ \
S < input Err ptr\grealloc(ptr S)
/ N\
~ Patch leaks —~~

1. Vulnerability point (where in code)

~—__2. Vulnerability condition (under what conditions) ___~

16

Patch

E reao_l Input P’ read input
H H

If input % 2== if input % 2==

"/ \ ' "/ \ '

S:=input+ 3| [s:=input+2|||s:=input+3| |s:=input+2

ptr := realloc(ptr, s) if s > input
"/ N
Error ptr := realloc(ptr, s)

Exploits for P are inputs that fail

vulnerability condition at vulnerability point
(s > Input) = false

Our Approach for Patch-based Exploit Generation (1)

Exploit Generation

1. Diff P and P’ to identify
candidate vuln point and
condition

2. Create input that satisfy
candidate vuln condition in P’

— l.e., candidate exploits
3. Check candidate exploits on P

Patch

P1

read input

v

If input % 2==

"/

\T

=input + 3

= input + 2

~

P

If s > input

"/

\T

Error

ptr := realloc(ptr, s)

18

Our Approach for Patch-based Exploit Generation (Il)

« Diff P and P’ to identify candidate vuln point and condition
— Currently only consider inserted sanity checks

— Use binary diffing tools to identify inserted checks
» Existing off-the-shelf syntactic diffing tools
» BinHunt: our semantic diffing tool

 Create candidate exploits
— I.e., input that satisfy candidate vuln condition in P’

 Validate candidate exploits on P
— E.g., dynamic taint analysis (TaintCheck)

19

Create Candidate Exploits

e Given candidate vulnerability point & condition

« Compute Weakest Precondition over program paths
— Using vulnerability condition as post condition
— Construct formulas representing conditions on input
» Whose execution path included
» Satisfying the vulnerability condition at vulnerability point
e Solve formula using solvers
— E.g., decision procedures
— Satisfying answers are candidate exploits

20

Different Approaches for Creating Formulas

Statically computing formula
— Covering many paths (without explicitly enumerating them)
— Sometimes hard to solve formula

Dynamically computing formula
— Formula easier to solve
— Covering only one path

Combined dynamic and static approach
— Covering multiple paths
— Tune for formula complexity

Experimental results
— Different approach effective for different scenarios

Other techniques to make formulas smaller and easier
to solve

21

Experimental Results

* 5 Microsoft patches
— Mostly 2007
— Integer overflow, buffer overflow, information disclosure, DoS

« Automatically generated exploits for all 5 patches
— In seconds to minutes
— 3 out of 5 have no publicly available exploits
— Automatically generated exploit variants for the other 2
« Diffing time
— A few minutes

22

Exploit Generation Results

Time (s) DSA_Setltem | ASPNet | GDI IGMP PNG
_Filter
Dynamic 5.68 11.57 10.34 N/A N/A
Total
Formula 5.51 4.64 10.33 N/A N/A
Solver 0.17 6.93 0.01 N/A N/A
Static 83.47 N/A 26.41 N/A N/A
Total
Formula 2.32 N/A 4.99 N/A N/A
Solver 81.15 N/A 21.42 N/A N/A
Combined 11.51 N/A 29.07 13.57 104.28
Forumla 6.72 N/A 25.29 13.31 104.14
Solver 4,79 N/A 3.78 0.26 0.14

23

Talk Outline

* Motivating security applications
— Automatic patch-based exploit generation

e Components
— Vine: VinelR, static analysis on VinelR
— TEMU: whole-system, fine-grained, symbolic emulation system
— Rudder: automatic execution space exploration

e Future directions and conclusion

24

Vine

e Static analysis component

Control flow,
Data flow analysis,
Optimizations,
Value Set Analysis

Binar . | i
—»y' Disassemble p—— Cor:;/elgmg

Disassembl
Y Symbolic execution,

Computing WP

Computing Chop, slicing
Program Transformation

Output
Program

25

Vine IR

 Simple RISC-like language, well-typed

lval ;= exp

goto exp

If exp then goto exp, else exp,
return exp

call exp

assert exp

special exp

unknown (effects)

« Handle x86, and ARM in progress

26

TEMU

 Work for both Windows & Linux, applications & kernel

e Build on QEMU

Function
Call
Sequence
Log
instructions
Slicing
Dynamic
Binary Record Data Annotated
Instrumentation Dependency Trace Layerec_al,
(Taint Analysis) Panoptl_c
Symbolic
Execution
Symbolic
Execution w
Symbolic
System

Environment 21

Rudder

« Compute path predicate
* Obtain new path predicate by reverting branches
* Solve path predicate to obtain new input to go down a

different path

Path predicate
generator

Solving
Path Selector » New Path
Predicate

, Inputto

Rudder

New path

28

BitScope

e Built on top of TEMU & Rudder
 Work for packed code, self-encrypted code

Malicious
Binary

» CFG

» Solutions / Inputs

—» Impacts / Behaviors

» Single-path Dependency Info

BitScope
- Extractor
Symbolic
system

environment [—»

Rudder:

> .
Mixed
Path execution

Selector engine

—>
T \F

O O

—» Multi-path Dependency Info.

29

BitScope: THE In-depth Malware Analysis infrastructure

ldentify/analyze malicious behavior based on root cause
— Privacy-breaching malware: spyware, keylogger, backdoor, etc.
— Malware perturbing system by hooking: rootkit, etc.

Understand how malware get into the system
— What mechanisms/vulnerabilities does it exploit

Explore hidden behavior, detect trigger-based behavior

— Automatically identifying botnet program commands, time bombs,
etc.

Semantic & correlation analysis of malware input/output
behavior

— Understanding the semantics of botnet program commands, etc.

30

Challenges

 Performance & scalability for large programs

« Sample components we can take advantage of

— Better identification of functions & resolution of indirect jumps
» Some of our VSA techniques may help

— Better stack-walker
— Binary aliasing analysis
— More efficient binary instrumentation

31

Conclusion

« BitBlaze binary analysis platform

— A unique fusion of dynamic, static analysis & formal analysis
(symbolic execution, WP, etc.)

o Security Applications
— Vulnerability discovery, diagnosis, defense
— In-depth malware analysis
— Reverse engineering
— Binary diffs

« Components may support other applications

32

Contact

* http://bitblaze.cs.berkeley.edu

« dawnsong@cs.berkeley.edu

e BitBlaze team:

David Brumley, Juan Caballero, Ivan Jager, Cody Hartwig,
Min Gyung Kang, Zhenkali Liang, James Newsome,
Pongsin Poosankam, Prateek Saxena, Heng Yin

33

