
Towards Dynamically

 Adaptive Programs

a.k.a. autotuning

Rudi Eigenmann

Purdue University

R. Eigenmann, Autotuning 2

Why Autotuning ?
my bias

Runtime decisions for compilers are necessary because
compile-time decisions are too conservative

Insufficient information about program input, architecture
When to apply what transformation, in which flavor?
Polaris compiler has some 200 switches

Example of an important switch: parallelism threshold

My goals:
Looking for tuning parameters and evidence of performance difference
Go beyond the “usual”: unrolling, blocking, reordering
Show performance on real programs

R. Eigenmann, Autotuning 3

Other Motivators

Architectures and environments get increasingly
heterogeneous, distributed and dynamic

-> Adapt behavior

 Information Power Grid

-> Roles for the compiler ?

R. Eigenmann, Autotuning 4

Is there Potential ?

You bet!

Imagine you (the compiler) had full knowledge of input
data and execution platform of the program

0 100%knowledge

P
er

fo
rm

an
ce

1

10

100
“Amdahl’s law
of dynamic
optimization”

You are here

R. Eigenmann, Autotuning 5

Very Early Work in the Polaris Parallelizer

Multi-version code

IF expression=true run serially

ELSE run in parallel

Runtime data-dependence analysis

Run in parallel, track data accesses

IF there was a conflict, backtrack, run serially

R. Eigenmann, Autotuning 6

Early Results on Fully-Dynamic Adaptation

ADAPT system (Michael Voss - 2000)

Features:

AL - adapt language

Used remote compilation

Allowed standard compilers and all options to be used

Triage & shelter

tune the most deserving program sections first

reduce tuning on un-deserving sections

Issues:

Scalability to large number of optimizations

Runtime overheads

R. Eigenmann, Autotuning 7

Recent Work
Offline Tuning - “Profile-time” tuning

Zhelong Pan

Challenges:
1. Explore the optimization space

Empirical optimization algorithm - CGO 2006

2. Comparing performance
 Fair Rating methods - SC 2004

Comparing two (differently optimized) subroutine invocations

3. Choosing procedures as tuning candidates
Tuning section selection - PACT 2006

Program partitioning into tuning sections

Two goals : increase program performance and reduce
tuning time

R. Eigenmann, Autotuning 8

Search
Algorithm

Version
Generation

Performance Evaluation
(Program Execution)

Start

Final
Version

Whole-Program Tuning

Search Algorithms

BE: batch elimination

Eliminates “bad” optimizations in a batch => fast

Does not consider interaction => not effective

IE: iterative elimination

Eliminates one “bad” optimization at a time => slow

Considers interaction => effective

CE: combined elimination (final algorithm)

Eliminates a few “bad” optimizations at a time

Other algorithms

optimization space exploration, statistical selection,
genetic algorithm, random search

Empirical search

R. Eigenmann, Autotuning 9

Performance Improvement

0

10

20

30

40

50

60

70

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

eR
el

at
iv

e
pe

rf
or

m
an

ce
 im

pr
ov

em
en

t p
er

ce
nt

ag
e

(%
)

Tuning Goal: determine the best combination of GCC options

Whole-program tuning train data set
Subroutine-level tuning train data set
Whole-program tuning ref data set
Subroutine-level tuning ref data set

geometric
mean

R. Eigenmann, Autotuning 10

A Mechanism for Subroutine-level Tuning

 Tuning Section Selection (TSS)

 Rating Method Analysis (RMA)

 Code Instrumentation (CI)

 Driver Generation (DG)

 Performance Tuning (PT)

 Final Version Generation (FVG)

Pre-Tuning

Post-Tuning

During Tuning

(1)

(6)

(5)

(4)

(3)

(2)

R. Eigenmann, Autotuning 11

Reduction of Tuning Time through
Subroutine-level Tuning

0.00

20.00

40.00

60.00

80.00

100.00

120.00
am

m
p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

G
eo

M
ea

n

N
or

m
al

iz
ed

 tu
ni

ng
 ti

m
e

Whole-program tuning
Subroutine-level tuning

R. Eigenmann, Autotuning 12

Ongoing Work
Seyong Lee

Beyond autotuning of compiler options

New applications of the tuning system

MPI parameter tuning

Tuning library selection - (ScalaPack, ...)

OpenMP to MPI translator

Tuning SPMUL on clusters

R. Eigenmann, Autotuning 13

TCP Buffer Size Effect on NPB

TCP Buffer Size Effect

-15

-10

-5

0

5

10

15

Default (16K) 32K 64K 128K 256K 512K

TCP Buffer Size

S
p

e
e

d
 U

p
 (

%
)

BT.A.4

CG.A.8

CG.B.4

FT.A.16

IS.A.16

IS.A.4

IS.B.16

Target system: Dell IA-32 P4 nodes cluster

Used MPI: MPICH1

R. Eigenmann, Autotuning 14

All-to-all collective call performance

alltoall performance

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

default basic linear pairwise modified bruck

alltoall algorithms

S
p

e
e

d
 U

p
 (

%
)

FT.A.4

FT.A.8

FT.A.16

IS.C.4

IS.C.8

IS.B.16

Target system: Dell IA-32 P4 nodes cluster

Used MPI: Open MPI 1.2.2

R. Eigenmann, Autotuning 15

Segmentation Effect on Basic Linear Alltoall
Algorithm

alltoll performance (basic linear algorithm)

0

2

4

6

8

10

12

14

N
o
se

gm
en

t 32 64
12

8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

Segmentation (bytes)

S
p

e
e

d
 U

p
 (

%
)

FT.A.4

FT.A.8

FT.A.16

Target system: Dell IA-32 P4 nodes cluster

Used MPI: Open MPI 1.2.2

R. Eigenmann, Autotuning 16

Tuning SPMUL on Clusters
(towards petascale)

Adaptive Iteration-to-Process Mapping

 Automatically adapt Iteration-to-Process mapping considering
computational load imbalance and dynamic runtime-system
performance

Run-time Communication Selection

Packed data vs. Block data communication

Broadcasting vs. Point-to-point exchange

R. Eigenmann, Autotuning 17

Adaptive Iteration-to-Process Mapping

0
1
2
3

4
5
6
7

Initial Mapping
Measured Exe.

Time
Normalized Exe.

Time per Row
New Mapping

P0

P1

80

40

80 / 4 = 20

40 / 4 = 10

• Main Idea

Target Exe. Time
60 per process

R. Eigenmann, Autotuning 18

Runtime Communication Selection

Communication Methods
Block broadcasting method (CM1): each process broadcasts
locally written output blocks.
Block point-to-point exchange method (CM2): processes
exchange bounding blocks containing needed elements through
point-to-point communication.
Packed point-to-point exchange method (CM3): processes
exchange exactly needed element through point-to-point
communication.

Optimal method is re-selected at runtime whenever the
adaptive mapping system changes the distribution.

R. Eigenmann, Autotuning 19

Performance Improvement Through Adaptive Runtime
Tuning

Total speedups on 16 nodes

0
1
2
3
4

5
6
7
8

af
_s

he
ll
10

b
o
n
eS

1
0

ra
ja
t3
1

S
i4
1
G
e4

1
H
7
2

S
iO

2

g7
ja
c2

00
sc

ld
o
o
r

ap
p
u

A
S
IC

_
6
8
0
k
s

A
S
IC

_
6
8
0
k

cr
an

k
se

g
_
2

F
1

F
2

h
o
o
d

n
d
6
k

n
d
2
4
k

n
s3

D
a

p
o
is
so

n
3
D
b

sm
e3

D
b

sm
e3

D
c

sp
ar
si
ne

au
d
ik
w
_
1

d
ar
cy

0
0
3

in
li
ne

_1

k
k
t_
p
o
w
er

m
sd

o
o
r

Input mat rices

S
p

e
e

d
u

p

Org.

CTuned

Tuned

Speedups of the base parallel version (Org), computation-tuning only
version (CTuned), and tuned version (Tuned) on 16 nodes.

Our adaptive mapping (CTuned) reduces execution time up to 37.8% (14% avg)

Overall tuning system (CTuned) reduces execution time up to 66.7% (33.3% avg)

R. Eigenmann, Autotuning 20

OpenMP2GPU: Automatic Translation and Tuning of
OpenMP Programs on GPU

We are developing an automatic OpenMP-to-GPU translator,
takes OpenMP programs as inputs and generates GPU codes targeting
on NVIDIA CUDA-enabled GPUs.
which also provides several code variants that can be tuned at runtime.

Challenging Issues for Performance Tuning
Two major tuning targets:

To minimize and align global memory accesses
To minimize control flow divergence.

Several compiler techniques, such as tiling and loop unrolling, can be
applied.
However, optimizations may conflict with each other due to hardware
resource limits (ex: # of registers and shared memory size)
Runtime tuning is necessary to strike a balance among conflicting
optimizations.

R. Eigenmann, Autotuning 21

Offloading Computation to GPU

In all cases, tuned work sharing on CPPU and GPU is fastest.

R. Eigenmann, Autotuning 22

Performance of NPB OMP EP

SpeedUp (w/o global access optimization)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Base Loop Unrolling

(LU)

Array Caching

(AC)

LU + AC

Applied optimizatioins

S
p
ee

d
U

p

SpeedUp (w/ global access optimization)

0

2

4

6

8

10

12

14

16

18

Base Loop Unrolling

(LU)

Array Caching

(AC)

LU + AC

Applied optimizations

S
p
ee

d
U

p
Performance of translated version of NPB OMP EP, executed on NVIDIA GeForce
8400 GS. The speedups are over serial version of EP, run on Intel Core™2 Duo
CPU @2.2GHz. The left graph shows speedups when global memory optimization
is not applied, and the right graph shows speedups when the global optimization is
applied. The results show that local array caching technique (AC) behaves
differently depending on other optimizations.

R. Eigenmann, Autotuning 23

Automatic Tuning for Multicore

Starting point was the Polaris compiler - 200 switches

Early results on dynamic serialization

Goal: parallelizing compiler that never lowers the
performance of a program

OpenMP to MPI translation

Tuning NICA architectures

Multicore + niche capabilities (accelerators and more)

 => Purdue Project

R. Eigenmann, Autotuning 24

Compiler Infrastructure

Cetus

Successor to Polaris

Source-to-source translator for C, C++, Java

Supported by the U.S. National Science Foundation

Written in Java

cetus.ecn.purdue.edu

R. Eigenmann, Autotuning 25

Questions and Propositions

Autotuning compilers are not just compilers.

The core is a runtime adaptation engine that picks from among
variants.

Compiler-generated code is one of several ways of creating code
variants (others are libraries and user code)

Compiler is used to analyze and instrument the code. But this is not
classical compilation.

The Engine finds the best through models and experiments

In our case: focus on experiments - empirical search

Empirical search is extremely powerful but can be slow. Pruning through
model is future

R. Eigenmann, Autotuning 26

Questions and Propositions

Big issue: where/when to generate and prune code
variants

Offline - maybe even at system generation time

fully dynamically

Offline training, runtime selection

Parameterized code variants

staged compilers

library variants

user-generated (autotuning language)

R. Eigenmann, Autotuning 27

Questions and Propositions
How to do fine-grained autotuning?

Access to more detailed optimization parameters

Tuning individual code sections

How to detect when to re-tune (recognize phase or
environment changes)

shelter code (near-zero tuning overheads) as long as possible

retune when important changes happen

=> Combine the benefits of offline and adaptive tuning

How to create an autotuning architecture?
what's a good architecture to integrate multiple contributions?

this is a general issue in all research

Agreeing on terminology may be a starting point

R. Eigenmann, Autotuning 28

Questions and Propositions
What is special about petascale?

tuning for parallelism

tuning for high performance is different from JIT compilation

Performance metrics:

Use ordinary real benchmarks

Long running benchmarks are especially important, as they show phase
behavior

 Use the same metrics: performance, productivity, power

What architectures/platforms should we target?

All. Heterogeneous architecture are especially interesting.

What improvements should we expect from autotuning, at both the
compiler level and the library level?

Up to orders of magnitude.

So far, we achieved < 2x

R. Eigenmann, Autotuning 29

Questions and Propositions

Will we allow future compilers to change data structures and
algorithms?

Yes, note this is a global optimization.

The traditional boundaries between applications, libraries,
compilers, and operating systems is too rigid and needs to be
changed.

Yes. Compilation optinos, library variants, program parameters can all be
orchestrated by a smart tuning engine.

What can we do to build common tool bases for compiler-based
autotuning and for construction of self-tuning or autotuning
libraries?

This is important and should be discussed further.

R. Eigenmann, Autotuning 30

Conclusions

Dynamic Adaptation is one of the most exciting research topics with
tremendous potential

It will only get more important, as architectures/environments get
more complex and languages get higher level

There is room for 10s of PhD theses

Perhaps the biggest issue: how to synergize the community

Can we create an autotuning architecure, in which we can all plug in
our contributions?

