
Autotuning Workshop, Snowbird, July 2007 1

Compilers and Runtime Systems for
Dynamically Adaptive Applications

(a.k.a. autotuning?)

Rudi Eigenmann

Purdue University

Autotuning Workshop, Snowbird, July 2007 2

Why Autotuning ?
my bias

Runtime decisions for compilers are necessary because compile-time
decisions are too conservative

Insufficient information about program input, architecture
When to apply what transformation in which flavor?
Polaris compiler has some 200 switches

Example of an important switch: parallelism threshold

Early runtime decisions:
Multi-version loops, runtime data-dependence test, 1980s

Idea for dynamic adaptation dates back to DARPAs HPCC program, early
1990s
My goals:

Looking for tuning parameters and evidence of performance difference
Go beyond the “usual”: unrolling, blocking, reordering
Show performance on real programs

Autotuning Workshop, Snowbird, July 2007 3

Is there Potential

You bet!

Imagine you (the compiler) had full knowledge of input
data and execution platform of the program

0 100%knowledge

P
er
fo
rm
an
ce

1

10

100
“Amdahl’s law”
of Autotuning

You are here

Autotuning Workshop, Snowbird, July 2007 4

Early Results on Fully-Dynamic Adaptation

ADAPT system (Michael Voss - 2000)

Features:

Triage

tune the most deserving program sections first

Used remote compilation

Allowed standard compilers and all options to be used

AL - adapt language

Issues:

Scalability

Shelter and re-tune

Autotuning Workshop, Snowbird, July 2007 5

Recent Work
Offline Tuning - “Profile-time” tuning

Zhelong Pan

Challenges:
1. Explore the optimization space

(Empirical optimization algorithm - CGO 2006)

2. Comparing performance
 (Fair Rating methods - SC 2004)

Comparing two (differently optimized) subroutine invocations

3. Choosing procedures as tuning candidates
(Tuning section selection)

Program partitioning into tuning sections

Two goals : increase program performance and reduce
tuning time

Autotuning Workshop, Snowbird, July 2007 6

Search
Algorithm

Version
Generation

Performance Evaluation
(Program Execution)

Start

Final
Version

Whole-Program Tuning

Search Algorithms

BE: batch elimination

Eliminates “bad” optimizations in a batch => fast

Does not consider interaction => not effective

IE: iterative elimination

Eliminates one “bad” optimization at a time => slow

Considers interaction => effective

CE: combined elimination (final algorithm)

Eliminates a few “bad” optimizations at a time

Other algorithms

optimization space exploration, statistical selection,
genetic algorithm, random search

Autotuning Workshop, Snowbird, July 2007 7

Performance Improvement

Tuning Goal: determine the best combination of GCC options

Autotuning Workshop, Snowbird, July 2007 8

Tuning at the Procedure Level

 Tuning Section Selection (TSS)

 Rating Method Analysis (RMA)

 Code Instrumentation (CI)

 Driver Generation (DG)

 Performance Tuning (PT)

 Final Version Generation (FVG)

Pre-Tuning

Post-Tuning

During Tuning

(1)

(6)

(5)

(4)

(3)

(2)

Autotuning Workshop, Snowbird, July 2007 9

Reduction of Tuning Time through
Procedure-level Tuning

62.22

50.99

105.76

69.23
63.14

89.28

50.59

87.32

36.96

102.97

68.28

2.33
7.06

11.21
4.03 1.79 2.33 3.38 4.22 2.59 1.61 3.36

0.00

20.00

40.00

60.00

80.00

100.00

120.00

a
m
m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

m
e
s
a

m
g
ri
d

s
ix
tr
a
c
k

s
w
im

w
u
p
w
is
e

G
e
o
M
e
a
n

N
o

rm
a
li
z
e
d

 t
u

n
in

g
 t

im
e

Whole PEAK

Autotuning Workshop, Snowbird, July 2007 10

Tuning Time Components

0%

20%

40%

60%

80%

100%

a
m
m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

m
e
s
a

m
g
ri
d

s
ix
tr
a
c
k

s
w
im

w
u
p
w
is
e

A
v
e
ra
g
e

P
e

rc
e

n
ta

g
e

 o
f

th
e

 t
o

ta
l

ti
m

e
 s

p
e

n
t

in
 t

u
n

in
g

TSS RMA CI DG PT FVG

Autotuning Workshop, Snowbird, July 2007 11

Ongoing Work
Seyong Lee

Biggest part of the tuning system is runtime

Compiler was just the first application

New applications of the tuning system

MPI parameter tuning

Tuning library selection - (ScalaPack, ...)

OpenMP to MPI translator

Autotuning Workshop, Snowbird, July 2007 12

TCP Buffer Size Effect on NPB

TCP Buffer Size Effect

-15

-10

-5

0

5

10

15

Default (16K) 32K 64K 128K 256K 512K

TCP Buffer Size

S
p

e
e

d
 U

p
 (

%
)

BT.A.4

CG.A.8

CG.B.4

FT.A.16

IS.A.16

IS.A.4

IS.B.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: MPICH1

Autotuning Workshop, Snowbird, July 2007 13

Alltoall collective call performance
(without segmentation)

alltoall performance

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

default basic linear pairwise modified bruck

alltoall algorithms

S
p

e
e

d
 U

p
 (

%
)

FT.A.4

FT.A.8

FT.A.16

IS.C.4

IS.C.8

IS.B.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: Open MPI 1.2.2

Autotuning Workshop, Snowbird, July 2007 14

Segmentation Effect on Basic Linear Alltoall
Algorithm

alltoll performance (basic linear algorithm)

0

2

4

6

8

10

12

14

N
o
se

gm
en

t 32 64
12

8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

Segmentation (bytes)

S
p

e
e

d
 U

p
 (

%
)

FT.A.4

FT.A.8

FT.A.16

Target system: Hamlet (Dell IA-32 P4 nodes) clusters in Purdue RAC

Used MPI: Open MPI 1.2.2

Autotuning Workshop, Snowbird, July 2007 15

OpenMP to MPI Reduction Translation

Translation w/o reduction
Call MPI_AllGather(…)
DO J=s_index, e_index
 w(J) = 0.0
 DO K=row(J), row(J+1)
 w(J) = w(J) + a(K)*p(colidx(K))
 ENDDO
ENDDO

Reduction Translation
DO J=1, nrows
 w(J) = 0.0
 DO K=row(J), row(J+1)
 IF (colidx(K) is local)
 w(J) = w(J) + a(K)*p(colidx(K))
 ENDIF
 ENDDO
ENDDO
Call MPI_AllReduce(…)

OpenMP code

!$OMP PARALLEL DO PRIVATE(J, K)
 DO J=1, nrows
 w(J) = 0.0
 DO K=row(J), row(J+1)
 w(J) = w(J) + a(K)*p(colidx(K))
 ENDDO
 ENDDO

Allgather vs. Allreduce (32 processors)

0

100

200

300

400

500

600

700

800

900

4 8 32 128 512 1024 2048 4096

Data size in bytes

E
x

e
c

u
ti

o
n

 T
im

e
 i

n
 u

s
e

c
s

Allgather

Allreduce

Autotuning Workshop, Snowbird, July 2007 16

Variants of Communication Libraries for
Sparse Matrix Vector Multiplication

Simple Translation

 - without SMVM recognition

Call MPI_AllGatherv(…)
DO J=1, NA
 DO K=row(J), row(J+1)
 …
 ENDDO
ENDDO

OPT1 (w/ SMVM recognition)

DO J=1, NA
 DO K=row(J), row(J+1)
 …
 ENDDO
ENDDO
Call MPI_AllReduce(…)

OPT2 (w/ SMVM recognition)
DO J=1, NA
 DO K=row(J),
row(J+1)
 …
 ENDDO
ENDDO
DO PID=1, NPROCS
 Call MPI_Reduce(…)
ENDDO

OPT3 (w/ SMVM recognition)
DO J=1, NA
 DO K=row(J),
row(J+1)
 …
 ENDDO
ENDDO
DO I = 1, LOG2NPROCS
 Call MPI_IRecv(…)
 Call MPI_ISend(…)
ENDDO

Autotuning Workshop, Snowbird, July 2007 17

SPMUL

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 8 16 32

Number of Processors

E
x
e
c
u

ti
o

n
 T

im
e
 i
n

 S
e
c
o

n
d

s

0

2

4

6

8

10

12

14

S
p

e
e
d

u
p

Allgatherv version

Allreduce Opt 1

Allgatherv version

Allreduce Opt 1

Autotuning Workshop, Snowbird, July 2007 18

A Related Project

Autotuning in iShare - an Internet Sharing System

 Publish - Discover - Adapt

1. Published autotuner (available)

2. Tuning upon matching disvovered application and
platform (current work)

Autotuning Workshop, Snowbird, July 2007 19

Conclusions and Discussion

Dynamic Adaptation is one of the most exciting research topics, but
there are still

issues to Sink your Teeth in

Runtime overhead: when to shelter/re-tune

Fine-grain tuning

Model-guided pruning of search space

Architecture of an autotuner

If we could agree, we could plug-in our modules

AutoAuto - autotuning autoparallelizer

How to get order(s) of magnitude improvement

Wanted: tuning parameters and their performance effects

