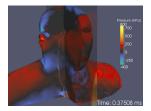
Introduction Visualization Challanges

Visualization Challenges in Computational Solid Mechanics

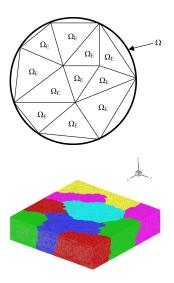
Piotr Fidkowski

Raul Radovitzky Group, MIT

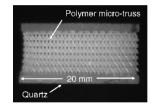
July 26, 2010

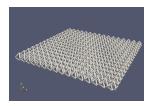


Introduction


- Research group at MIT Institute for Soldier Nanotechnologies
- Interested in the dynamics of solids, especially over relatively short timescales
- Applications in:
 - Traumatic Brain Injury
 - Blast and ballistic protection
 - Brittle fracture
 - Wave propogation in anisotropic media
- Solve non-linear partial differential equations for deformation and failure of materials

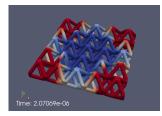
Introduction isualization Challanges/

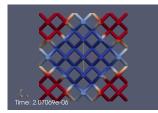

Our Group Code


- Use continuous and discontinuous galkerin finite element method on unstructured meshes combined with particle methods
- Fortran/C/C++ group code with MPI parallelization
 - Scales to at least 10k processors
 - Have run problems as large as 1.03 billion nodes
- Output data as VTK files
 - All nodal data on an unstructured grid
 - Require point, vector and tensor data support
 - 10 million elements \sim 5 GB per timestep

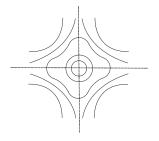
Micro truss arrays

- Micro truss arrays are materials with a truss microstructures
- Truss elements on the scale of micrometers to millimeters
- Filled or hollow elements made of metal or polymer
- Interested in wave propogation properties in microtruss arrays, including scattering, attenuation, dispersion relations

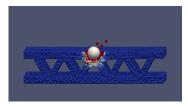

Figure: Courtesy AJ Jacobsen

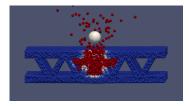


Introduction Visualization Challanges


Wave propagation in micro truss arrays

What we have:


What we want:



- Surfaces of constant phase and constant amplitude
- 2D and 3D
- Potentially hundreds of millions of elements

- 4 同 6 4 日 6 4 日 6

Particle Method Data

- Some of our research is coupling FEM with particle methods
 - More flexible for extreme damage, fracture
- Currently render particles as spheres
 - Color of sphere represents field of interest
 - Start having performance issues with millions of spheres
- We would like to be able to reconstruct surfaces from particle data

Discontinuous Galerkin Data

- In DG FEM, functions are continuous only within a single element
- Much of our data is defined at quadrature points

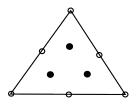


Figure: Nodes (empty) and quadrature points (filled)

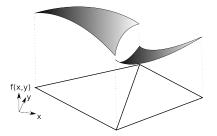


Figure: Discontinuous functions on two neighbouring elements

• We are transitioning to using higher order elements with DG

- 4 同 6 4 日 6 4 日 6

Higher Order Elements

Figure: 2nd order triangle

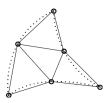


Figure: What VTK renders

- We are transitioning to higher order elements, VTK only supports 2nd order
- Need interpolation and rendering schemes for abitrary higher order elements
 - Render curved geometry of element
 - Render higher order state variables within the element
- Ideally have an existing tool to do it, we don't want to write our own custom shaders for element data