
Carnegie Mellon

Parallelism in Spiral

This work was supported by
DARPA DESA program, NSF-NGS/ITR, NSF-ACR, and Intel

Franz Franchetti

Electrical and
Computer Engineering
Carnegie Mellon University

Joint work with
Yevgen Voronenko
Markus Püschel

… and the Spiral team (only part shown)

Carnegie Mellon

The Problem

0

2

4

6

8

10

12

14

16

18

20

22

24

26

16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

Problem size

Discrete Fourier Transform (single precision): 2 x Core2 Extreme 3 GHz
Performance [Gflop/s]

What’s going on?

30x
best code

Numerical Recipes

Carnegie Mellon

Automatic Performance Tuning
Current vicious circle: Whenever a new platform comes out,
the same functionality needs to be rewritten and reoptimized

Automatic Performance Tuning
BLAS: ATLAS
Linear algebra: Bebop, Spike, Flame
Sorting
Fourier transform: FFTW
Linear transforms: Spiral
…others
New compiler techniques

Proceedings of the IEEE special issue, Feb. 2005
But what about parallelism … ?

Carnegie Mellon

Vision Behind Spiral

Numerical problem

Computing platform

algorithm selection

compilation

hu
m

an
 e

ffo
rt

au
to

m
at

ed

implementation
C program

au
to

m
at

edalgorithm selection

compilation

implementation

Numerical problem

Computing platform

Current Future

C code a singularity: Compiler has
no access to high level information

Challenge: conquer the high abstraction
level for complete automation

Carnegie Mellon

Organization

Spiral overview

Parallelization in Spiral

Results

Concluding remarks

Carnegie Mellon

Spiral
Library generator for linear transforms
(DFT, DCT, DWT, filters, ….) and recently more …

Wide range of platforms supported:
scalar, fixed point, vector, parallel, Verilog, GPU

Research Goal: “Teach” computers to write fast libraries
Complete automation of implementation and optimization
Conquer the “high” algorithm level for automation

When a new platform comes out:
Regenerate a retuned library

When a new platform paradigm comes out (e.g., vector or CMPs):
Update the tool rather than rewriting the library

Intel has started to use Spiral to generate parts of their MKL library

Carnegie Mellon

How Spiral Works

Algorithm Generation
Algorithm Optimization

Implementation
Code Optimization

Compilation
Compiler Optimizations

algorithm

C code

performance

Problem specification (transform)

Fast executable

Se
ar

ch

controls

controls

Spiral

Spiral:
Complete automation of the
implementation and
optimization task

Basic idea:
Declarative representation
of algorithms

Rewriting systems to
generate and optimize
algorithms

Carnegie Mellon

What is a (Linear) Transform?
Mathematically: Matrix-vector multiplication

Example: Discrete Fourier transform (DFT)

input vector (signal)
output vector (signal) transform = matrix

Carnegie Mellon

Transform Algorithms: Example 4-point FFT
Cooley/Tukey fast Fourier transform (FFT):

Algorithms reduce arithmetic cost O(n2) → O(nlog(n))
Product of structured sparse matrices
Mathematical notation exhibits structure: SPL (signal processing language)

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

j j

j j j

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Fourier transform

Identity Permutation

Diagonal matrix (twiddles)

Kronecker product

Carnegie Mellon

Examples: Transforms

Spiral currently contains 55 transforms

Carnegie Mellon

Examples: Breakdown Rules (currently ≈220)

Base case rules

“Teaches” Spiral about existing algorithm knowledge
(~200 journal papers)

Includes many new ones
(algebraic theory, Pueschel, Moura, Voronenko)

Carnegie Mellon

SPL to Sequential Code

Example: tensor product

Carnegie Mellon

Program Generation in Spiral (Sketched)
Transform
user specified

C Code:

Fast algorithm
in SPL
many choices

∑-SPL:

Iteration of this process
to search for the fastest

But that’s not all …

parallelization
vectorization

loop
optimizations

constant folding
scheduling
……

Optimization at all
abstraction levels

Carnegie Mellon

Organization

Spiral overview

Parallelization in Spiral

Results

Concluding remarks

Carnegie Mellon

SPL to Shared Memory Code: Basic Idea
Governing construct: tensor product

Independent operation, load-balanced

A
A
A
A

x y

Processor 0
Processor 1
Processor 2
Processor 3

Problematic construct: permutations produce false sharing

Task: Rewrite formulas to
extract tensor product + keep contiguous blocks

x y

[SC 06]

Carnegie Mellon

Step 1: Shared Memory Tags
Identify crucial hardware parameters

Number of processors: p
Cache line size: μ

Introduce them as tags in SPL

This means: formula A is to be optimized for p processors
and cache line size μ

Carnegie Mellon

Step 2: Identify “Good” Formulas
Load balanced, avoiding false sharing

Tagged operators (no further rewriting necessary)

Definition: A formula is fully optimized if it is one of the above
or of the form

where A and B are fully optimized.

Carnegie Mellon

Step 3: Identify Rewriting Rules
Goal: Transform formulas into fully optimized formulas

Formulas rewritten, tags propagated
There may be choices

Carnegie Mellon

Simple Rewriting Example

fully optimized

Loop splitting + loop exchange

Carnegie Mellon

Parallelization by Rewriting

Fully optimized (load-balanced, no false sharing)
in the sense of our definition

Carnegie Mellon

Same Approach for Other Parallel Paradigms
Vectorization: [IPDPS 02, VecPar 06]Message Passing: [ISPA 06]

Cg/OpenGL for GPUs: Verilog for FPGAs: [DAC 05]

MPI

With Bonelli, Lorenz, Ueberhuber, TU Vienna

With Shen, TU Denmark With Milder, Hoe, CMU

Carnegie Mellon

Going Beyond Transforms
Transform =
linear operator with one vector input and one vector output

Key ideas:
Generalize to (possibly nonlinear) operators with several inputs and several
outputs
Generalize SPL (including tensor product) to OL (operator language)

Cooley-Tukey FFT in OL:

Viterbi in OL:

Mat-Mat-Mult:

Carnegie Mellon

OL Rewriting Rules
SPL rules reused
Only few OL-specific rules required

New OL rules

Carnegie Mellon

Example: Viterbi Decoder in OL
Viterbi decoder (forward part) as operator

Viterbi kernel (butterfly)

Viterbi algorithm as breakdown rule

First non-transform supported by Spiral

Carnegie Mellon

Viterbi: Vectorization Through Rewriting

Sufficient to vectorize one input
Vectorized kernel
In-register shuffle operation

Carnegie Mellon

Organization

Spiral overview

Parallelization in Spiral

Results

Concluding remarks

Carnegie Mellon

Benchmarks

platforms

kernels

vector dual/quad core
GPU FPGA

DFT

All Spiral code shown
is “push-button” generated
from scratch

“click”

FPGA+CPU

Carnegie Mellon

DFT (single precision): on 3 GHz 2 x Core 2 Extreme
performance [Gflop/s]

0

5

10

15

20

25

30

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

input size

Spiral 5.0 SPMD
Spiral 5.0 sequential
Intel IPP 5.0
FFTW 3.2 alpha SMP
FFTW 3.2 alpha sequential

Benchmark: Vector and SMP

2 processors

4 processors

2 processors 4 processors

Memory footprint < L1$ of 1 processor

25 Gflop/s!

4-way vectorized + up to 4-threaded + adapted to the memory hierarchy

Carnegie Mellon

Benchmark: Cell (1 processor = SPE)
DFT (single precision) on 3.2 GHz Cell BE (Single SPE)
performance [Gflop/s]

0

2

4

6

8

10

12

14

16

16 32 48 64 80 96 128 160 256 384 512 1024
input size

Generated using the simulator; run at Mercury (thanks to Robert Cooper)

Joint work with Th. Peter (ETH Zurich), S. Chellappa, M. Telgarsky, J. Moura (CMU)

Carnegie Mellon

DCT4, Multiples of 32: 4-way Vectorized
DCT (single precision) 2.66 GHz Core2 (4-way 32-bit SSE)
performance [Gflop/s]

0

1

2

3

4

5

6

7

8

9

10

32 64 96 128 160 192 224 256

input size

Spiral DCT4
FFTW 3.1.2 DCT4 (k11)
IPP 5.1 DCT2 (?)

novel algorithm (algebraic algorithm theory)

Carnegie Mellon

DFT, 8-way Vectorized: All Sizes Up To 80

0

2

4

6

8

10

12

14

16

18

2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77
input size

Spiral SSE2

Intel IPP 5.1

DFT (16-bit integer) on 2.66 GHz Core2 Duo (8-way SSE2)
performance [Gflop/s]

first 8-way DFTs for all sizes
arbitrary vector length /arbitrary DFT sizes in principle solved

Carnegie Mellon

Benchmark: GPU

0

1

2

3

4

5

6

8 10 12 14 16 18 20 22 24
log2(input size)

WHT (single precision) on 3.6 GHz Pentium 4 with Nvidia 7900 GTX
performance [Gflops/s]

Spiral CPU Spiral GPU

Joint work with H. Shen, TU Denmark

CPU + GPU

Carnegie Mellon

Benchmark: FPGA
DFT 256 on Xilinx Virtex 2 Pro FPGA
inverse throughput (gap) [us]

0

1

2

3

4

5

6

7

8

0 5000 10000 15000 20000 25000
Area [slices]

Xilinx Logicore 3.2

Spiral

better

Joint work with P. Milder, J. Hoe (CMU)

competitive with professional designs
much larger set of performance/area trade-offs

(Pareto-optimal designs)

Carnegie Mellon

Benchmark: Hardware Accelerator (FPGA)
Xilinx Virtex 2 Pro FPGA: 1M gates @ 100 MHz + 2 PowerPC 405 @ 300 MHz

Fixed set of accelerators speed up a whole library

better

0

100

200

300

400

500

600

700

16 32 64 128 256 512 1024 2048 4096 8192

Problem size

[Mflop/s]

Software only

Software + hardware

Joint work with P. D’Alberto (Yahoo), A. Sandryhaila, P. Milder, J. Hoe,
J . M. F. Moura (CMU), J. Johnson (Drexel)

6.5x

native sizes

Carnegie Mellon

Benchmarks

platforms

kernels

vector dual/quad core
GPU FPGA

DFT

filter

GEMM

Viterbi

All Spiral code shown
is “push-button” generated
from scratch

“click”

FPGA+CPU

Carnegie Mellon

Benchmark: Finite Impulse Response Filter

0

5

10

15

20

25

30

35

40

45

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
log2(input size)

theoretical peak performance: 74.66 Gflop/s Spiral 8 taps

Spiral 32 taps

IPP 32 taps

IPP 8 taps

FIR filter (double precision) on 2.33 GHz 2x Core 2 Quad (8 threads)
performance [Gflop/s]

Carnegie Mellon

Beyond Transforms : Viterbi Decoding
Viterbi decoding (8-bit) on 2.66 GHz Core 2 Duo
performance [Gbutterflies/s]

0

0.5

1

1.5

2

2.5

6 7 8 9 10 11 12 13
log2(size of state machine)

Spiral 16-way vectorized

Spiral scalar

Karn's Viterbi decoder
(hand-tuned assembly)

1 butterfly
= ~22 ops

Vectorized using practically the same rules as for DFT

Joint work with S. Chellappa, CMU Karn: http://www.ka9q.net/code/fec/

Carnegie Mellon

First Results: Matrix-Matrix-Multiply

DGEMM on 3 GHz Core 2 Duo (1 thread)
performance [Gflop/s]

0

2

4

6

8

10

12

2 4 8 16 32 64 128 256 512

N (matrix size is N x N)

Goto

Spiral

triple loop

work with F. de Mesmay, CMU

Carnegie Mellon

Organization

Spiral overview

Parallelization in Spiral

Results

Concluding remarks

Carnegie Mellon

Conclusions
Automatic generation of very fast and fastest numerical
kernels is possible and desirable

High level language and approach
Algorithm generation
Algorithm optimization

Same approach for loop optimization, different forms of
parallelism, SW and HW implementations

Carnegie Mellon

Spiral Web Interface @spiral.net (beta version)

1. Select platform

2. Select functionality

3.
“click”

http://www.spiral.net/

	Parallelism in Spiral
	The Problem
	Automatic Performance Tuning
	Vision Behind Spiral
	Organization
	Spiral
	How Spiral Works
	What is a (Linear) Transform?
	Transform Algorithms: Example 4-point FFT
	Examples: Transforms
	Examples: Breakdown Rules (currently ≈220)
	SPL to Sequential Code
	Program Generation in Spiral (Sketched)
	Organization
	SPL to Shared Memory Code: Basic Idea
	Step 1: Shared Memory Tags
	Step 2: Identify “Good” Formulas
	Step 3: Identify Rewriting Rules
	Simple Rewriting Example
	Parallelization by Rewriting
	Same Approach for Other Parallel Paradigms
	Going Beyond Transforms
	OL Rewriting Rules
	Example: Viterbi Decoder in OL
	Viterbi: Vectorization Through Rewriting
	Organization
	Benchmarks
	Benchmark: Vector and SMP
	Benchmark: Cell (1 processor = SPE)
	DCT4, Multiples of 32: 4-way Vectorized
	DFT, 8-way Vectorized: All Sizes Up To 80
	Benchmark: GPU
	Benchmark: FPGA
	Benchmark: Hardware Accelerator (FPGA)
	Benchmarks
	Benchmark: Finite Impulse Response Filter
	Beyond Transforms : Viterbi Decoding
	First Results: Matrix-Matrix-Multiply
	Organization
	Conclusions
	Spiral Web Interface @spiral.net (beta version)

