

Parallelism in Spiral

Franz Franchetti

Electrical and Computer Engineering Carnegie Mellon University

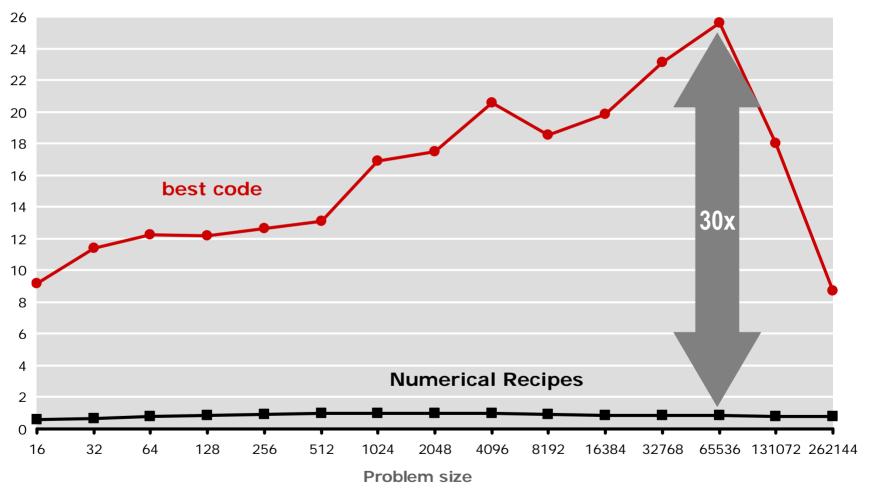
Joint work with Yevgen Voronenko Markus Püschel ... and the Spiral team (only part shown)

This work was supported by DARPA DESA program, NSF-NGS/ITR, NSF-ACR, and Intel

The Problem

Discrete Fourier Transform (single precision): 2 x Core2 Extreme 3 GHz

Performance [Gflop/s]



What's going on?

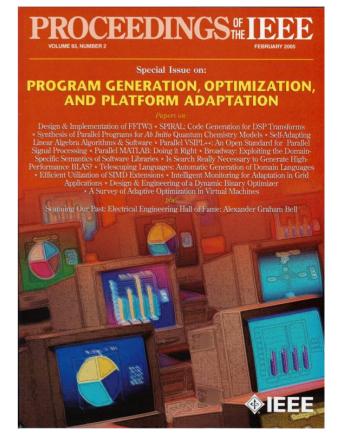
Automatic Performance Tuning

Current vicious circle: Whenever a new platform comes out, the same functionality needs to be rewritten and reoptimized

Automatic Performance Tuning

- BLAS: ATLAS
- Linear algebra: Bebop, Spike, Flame
- Sorting
- Fourier transform: FFTW
- Linear transforms: Spiral
- ...others
- New compiler techniques

But what about parallelism ... ?

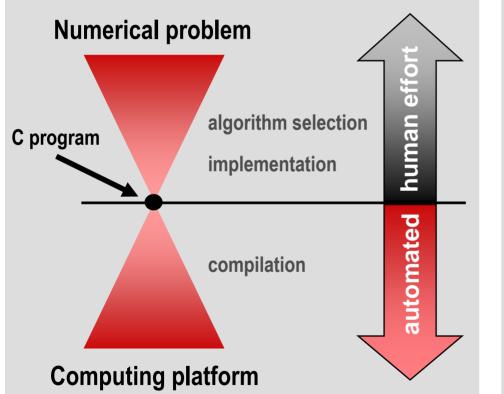


Carnegie Mellon

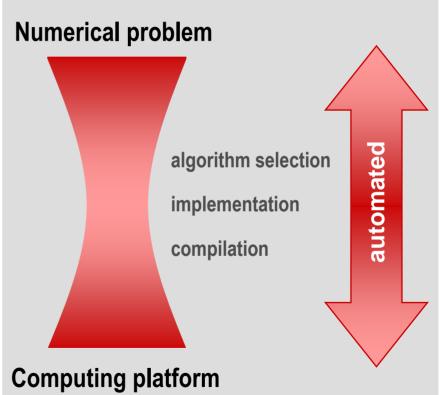
Proceedings of the IEEE special issue, Feb. 2005

Vision Behind Spiral

Current



Future



 C code a singularity: Compiler has no access to high level information Challenge: conquer the high abstraction level for complete automation

Organization

- Spiral overview
- Parallelization in Spiral
- Results
- Concluding remarks

Spiral

- Library generator for linear transforms (DFT, DCT, DWT, filters,) and recently more ...
- Wide range of platforms supported: scalar, fixed point, vector, parallel, Verilog, GPU
 - Research Goal: "Teach" computers to write fast libraries
 - Complete automation of implementation and optimization
 - Conquer the "high" algorithm level for automation
- When a new platform comes out: Regenerate a retuned library
- When a new platform paradigm comes out (e.g., vector or CMPs): Update the tool rather than rewriting the library

Intel has started to use Spiral to generate parts of their MKL library

SPIRAL

How Spiral Works

Problem specification (transform)

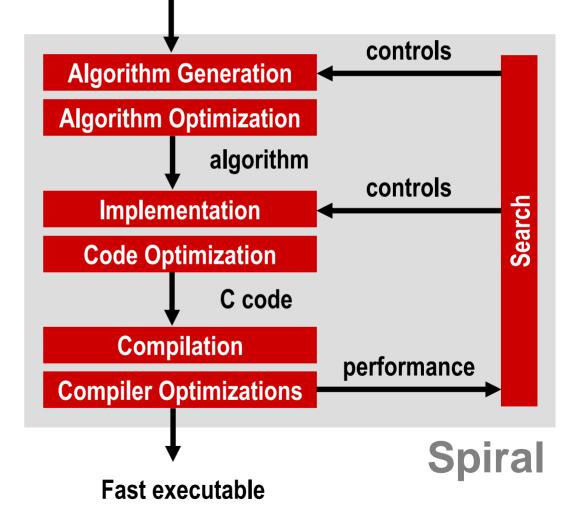
Spiral:

Complete automation of the implementation and optimization task

Basic idea:

Declarative representation of algorithms

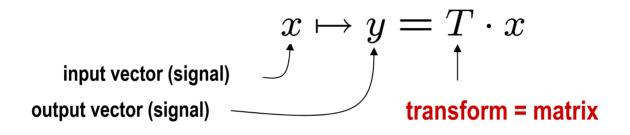
Rewriting systems to generate and optimize algorithms



SPIRAL www.spiral.net

What is a (Linear) Transform?

Mathematically: Matrix-vector multiplication



Example: Discrete Fourier transform (DFT)

$$\mathbf{DFT}_n = [e^{-2k\ell\pi i/n}]_{0 \le k, \ell < n}$$

Transform Algorithms: Example 4-point FFT

Cooley/Tukey fast Fourier transform (FFT):

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ \cdot & 1 & 1 & 1 \\ 1 & \cdot & -1 & \cdot \\ \cdot & 1 & -1 & \cdot \\ \cdot & 1 & -1 & \cdot \\ \cdot & 1 & -1 & \cdot \\ \cdot & \cdot & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdot & \cdot \\ 1 & -1 & \cdot & \cdot \\ \cdot & 1 & 1 & \cdot \\ \cdot & \cdot & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdot & \cdot \\ \cdot & 1 & 1 & \cdot \\ \cdot & 1 & -1 & \cdot \\ \cdot & \cdot & 1 & -1 \end{bmatrix}$$
Fourier transform
Diagonal matrix (twiddles)
$$DFT_4 = (DFT_2 \otimes I_2) \top \frac{4}{2} (I_2 \otimes DFT_2) \perp \frac{4}{2}$$
Kronecker product Identity
Permutation

- Algorithms reduce arithmetic cost $O(n^2) \rightarrow O(nlog(n))$
- Product of structured sparse matrices
- Mathematical notation exhibits structure: SPL (signal processing language)

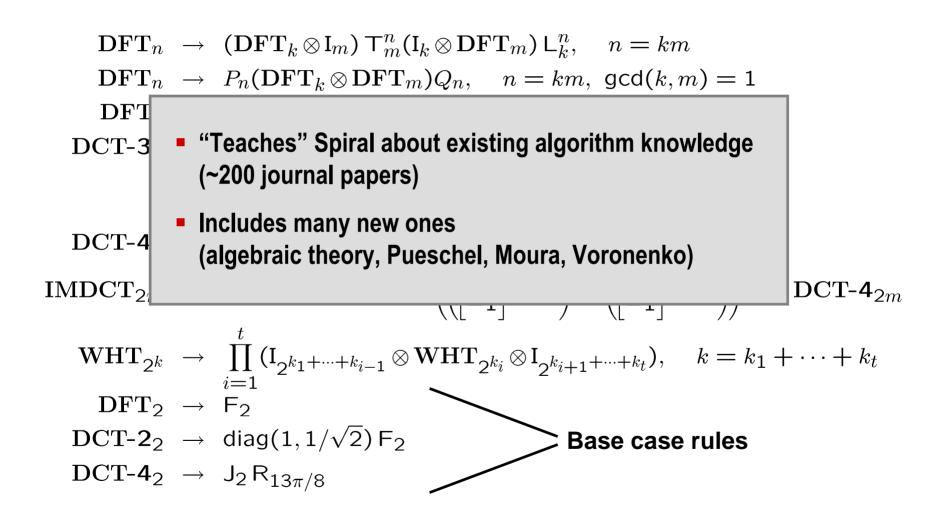
Examples: Transforms

$$\begin{aligned} \mathbf{D}\mathbf{C}\mathbf{T}\mathbf{-2}_{n} &= \left[\cos(k(2\ell+1)\pi/2n)\right]_{0\leq k,\ell < n},\\ \mathbf{D}\mathbf{C}\mathbf{T}\mathbf{-3}_{n} &= \mathbf{D}\mathbf{C}\mathbf{T}\mathbf{-2}_{n}^{T} \quad (\text{transpose}),\\ \mathbf{D}\mathbf{C}\mathbf{T}\mathbf{-4}_{n} &= \left[\cos((2k+1)(2\ell+1)\pi/4n)\right]_{0\leq k,\ell < n},\\ \mathbf{I}\mathbf{M}\mathbf{D}\mathbf{C}\mathbf{T}_{n} &= \left[\cos((2k+1)(2\ell+1+n)\pi/4n)\right]_{0\leq k<2n,0\leq \ell < n},\\ \mathbf{R}\mathbf{D}\mathbf{F}\mathbf{T}_{n} &= \left[r_{k\ell}\right]_{0\leq k,\ell < n}, \quad r_{k\ell} = \begin{cases} \cos\frac{2\pi k\ell}{n}, \quad k\leq \lfloor\frac{n}{2}\rfloor\\ -\sin\frac{2\pi k\ell}{n}, \quad k> \lfloor\frac{n}{2}\rfloor,\\ -\sin\frac{2\pi k\ell}{n}, \quad k> \lfloor\frac{n}{2}\rfloor,\\ \end{bmatrix},\\ \mathbf{W}\mathbf{H}\mathbf{T}_{n} &= \begin{bmatrix} \mathbf{W}\mathbf{H}\mathbf{T}_{n/2} \quad \mathbf{W}\mathbf{H}\mathbf{T}_{n/2}\\ \mathbf{W}\mathbf{H}\mathbf{T}_{n/2} \quad -\mathbf{W}\mathbf{H}\mathbf{T}_{n/2}\end{bmatrix}, \quad \mathbf{W}\mathbf{H}\mathbf{T}_{2} = \mathbf{D}\mathbf{F}\mathbf{T}_{2},\\ \mathbf{D}\mathbf{H}\mathbf{T} &= \begin{bmatrix} \cos(2k\ell\pi/n) + \sin(2k\ell\pi/n) \end{bmatrix}_{0\leq k,\ell < n}.\end{aligned}$$

Spiral currently contains 55 transforms

SPIRAL

Examples: Breakdown Rules (currently ≈220)

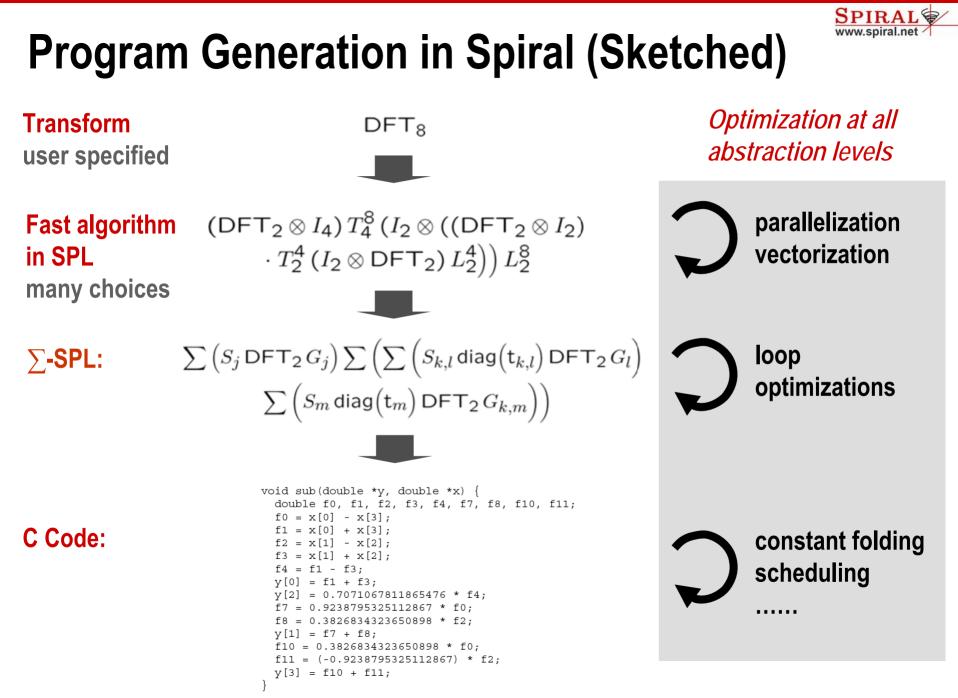


SPL to Sequential Code

SPL construct	code
$y = (A_n B_n) x$	t[0:1:n-1] = B(x[0:1:n-1]); y[0:1:n-1] = A(t[0:1:n-1];)
$y = (I_m \otimes A_n)x$	<pre>for (i=0;i<m;i++) y[i*n:1:i*n+n-1]="A(x[i*n:1:i*n+n-1])</pre"></m;i++)></pre>
$y = (A_m \otimes I_n)x$	<pre>for (i=0;i<m;i++) y[i:n:i+m-1]="A(x[i:n:i+m-1]);</pre"></m;i++)></pre>
$y = \left(\bigoplus_{i=0}^{m-1} A_n^i\right) x$	<pre>for (i=0;i<m;i++) y[i*n:1:i*n+n-1]="</td"></m;i++)></pre>
$y = D_{m,n}x$	<pre>for (i=0;i<m*n;i++) y[i]="Dmn[i]*x[i];</pre"></m*n;i++)></pre>
$y = L_m^{mn} x$	<pre>for (i=0;i<m;i++) (j="0;j<n;j++)" for="" y[i+m*j]="x[n*i+j];</pre"></m;i++)></pre>

Example: tensor product

$$\mathbf{I}_m \otimes A_n = \begin{bmatrix} A_n & & \\ & \ddots & \\ & & A_n \end{bmatrix}$$



Organization

- Spiral overview
- Parallelization in Spiral
- Results

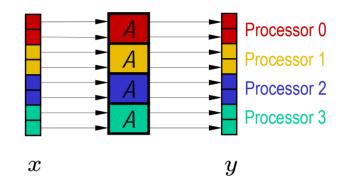
Concluding remarks

[SC 06]

SPL to Shared Memory Code: Basic Idea

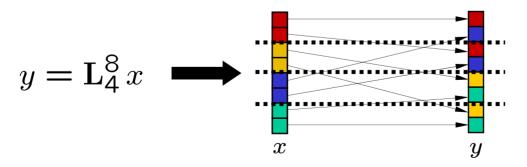
Governing construct: tensor product

$$y = (\mathbf{I}_p \otimes A) x$$



Independent operation, load-balanced

Problematic construct: permutations produce false sharing

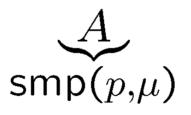


Task: Rewrite formulas to extract tensor product + keep contiguous blocks

Step 1: Shared Memory Tags

Identify crucial hardware parameters

- Number of processors: p
- Cache line size: µ
- Introduce them as tags in SPL



This means: formula A is to be optimized for p processors and cache line size $\boldsymbol{\mu}$

Step 2: Identify "Good" Formulas

Load balanced, avoiding false sharing

$$y = \left(I_p \otimes A\right) x \quad \text{with} \quad A \in \mathbb{C}^{m\mu \times m\mu}$$
$$y = \left(\bigoplus_{i=0}^{p-1} A_i\right) x \quad \text{with} \quad A_i \in \mathbb{C}^{m\mu \times m\mu}$$
$$y = \left(P \otimes I_\mu\right) x \quad \text{with} \quad P \text{ a permutation matrix}$$

Tagged operators (no further rewriting necessary)

$$\mathbf{I}_p \otimes_{\parallel} A, \quad \bigoplus_{i=0}^{p-1} ||A_i, \quad P \overline{\otimes} \mathbf{I}_{\mu}|$$

 Definition: A formula is fully optimized if it is one of the above or of the form

$$\mathbf{I}_m \otimes A$$
 or AB

where A and B are fully optimized.

SPIRAL www.spiral.net

Step 3: Identify Rewriting Rules

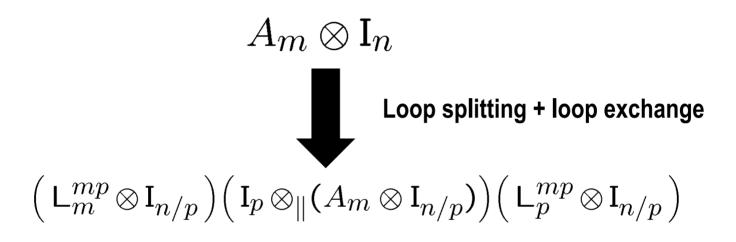
Goal: Transform formulas into fully optimized formulas

- Formulas rewritten, tags propagated
- There may be choices

$$\underbrace{AB}_{\operatorname{smp}(p,\mu)} \to \underbrace{A}_{\operatorname{smp}(p,\mu)} \underbrace{B}_{\operatorname{smp}(p,\mu)} \operatorname{smp}(p,\mu)}_{\operatorname{smp}(p,\mu)} \to \underbrace{\left(\operatorname{L}_{m}^{mp} \otimes \operatorname{I}_{n/p} \right) \left(\operatorname{I}_{p} \otimes (A_{m} \otimes \operatorname{I}_{n/p}) \right) \left(\operatorname{L}_{p}^{mp} \otimes \operatorname{I}_{n/p} \right)}_{\operatorname{smp}(p,\mu)} \\ \underbrace{L}_{m}^{mn}}_{\operatorname{smp}(p,\mu)} \to \underbrace{\left\{ \underbrace{\left(\operatorname{I}_{p} \otimes \operatorname{L}_{m/p}^{mn/p} \right) \left(\operatorname{L}_{p}^{pn} \otimes \operatorname{I}_{m/p} \right)}_{\operatorname{smp}(p,\mu)} \underbrace{\left(\operatorname{L}_{m}^{pm} \otimes \operatorname{I}_{n/p} \right) \left(\operatorname{I}_{p} \otimes \operatorname{L}_{m}^{mn/p} \right)}_{\operatorname{smp}(p,\mu)} \\ \underbrace{L}_{m}^{m} \otimes A_{n}}_{\operatorname{smp}(p,\mu)} \to \operatorname{I}_{p} \otimes_{\parallel} \left(\operatorname{I}_{m/p} \otimes A_{n} \right) \\ \underbrace{\left(P \otimes \operatorname{I}_{n} \right) }_{\operatorname{smp}(p,\mu)} \to \left(P \otimes \operatorname{I}_{n/\mu} \right) \overline{\otimes} \operatorname{I}_{\mu} \\ \underbrace{\operatorname{smp}(p,\mu)} \\ \underbrace{\operatorname{Smp}(p,\mu)} \\ \underbrace{\operatorname{Smp}(p,\mu)} \xrightarrow{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu) = \operatorname{Smp}(p,\mu) \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{smp}(p,\mu)} \to \operatorname{Smp}(p,\mu) \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{smp}(p,\mu)} \xrightarrow{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu)} \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{smp}(p,\mu)} \xrightarrow{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu) \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{Smp}(p,\mu)} \xrightarrow{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu) \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{Smp}(p,\mu)} \xrightarrow{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu)} \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{Smp}(p,\mu)} \xrightarrow{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu) \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{Smp}(p,\mu)} \xrightarrow{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu)} \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu)} \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{Smp}(p,\mu)} \operatorname{Smp}(p,\mu)} \\ \underbrace{\operatorname{Smp}(p,\mu)}_{\operatorname{Smp}(p,\mu)} \\ \operatorname{Smp}(p,\mu)} \\ \underbrace{\operatorname{Smp}(p,\mu)} \\ \operatorname{Smp}(p,\mu)} \\ \operatorname{Smp}(p,\mu)} \\$$

SPIRAL www.spiral.net

Simple Rewriting Example



fully optimized

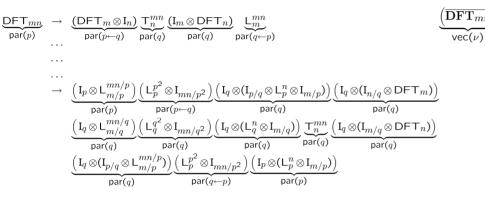
Parallelization by Rewriting

$$\underbrace{\operatorname{DFT}_{mn}}_{\operatorname{smp}(p,\mu)} \rightarrow \underbrace{\left((\operatorname{DFT}_{m} \otimes \operatorname{I}_{n}) \operatorname{T}_{n}^{mn}(\operatorname{I}_{m} \otimes \operatorname{DFT}_{n}) \operatorname{L}_{m}^{mn}\right)}_{\operatorname{smp}(p,\mu)} \\
\cdots \\
\rightarrow \underbrace{\left(\operatorname{DFT}_{m} \otimes \operatorname{I}_{n}\right)}_{\operatorname{smp}(p,\mu)} \underbrace{\operatorname{T}_{n}^{mn}}_{\operatorname{smp}(p,\mu)} \underbrace{\left(\operatorname{I}_{m} \otimes \operatorname{DFT}_{n}\right)}_{\operatorname{smp}(p,\mu)} \underbrace{\operatorname{L}_{m}^{mm}}_{\operatorname{smp}(p,\mu)} \\
\cdots \\
\rightarrow \underbrace{\left((\operatorname{L}_{m}^{mp} \otimes \operatorname{I}_{n/p\mu}) \otimes_{\mu} \operatorname{I}_{\mu}\right) \left(\operatorname{I}_{p} \otimes_{\parallel} (\operatorname{DFT}_{m} \otimes \operatorname{I}_{n/p})\right) \left((\operatorname{L}_{p}^{mp} \otimes \operatorname{I}_{n/p\mu}) \otimes_{\mu} \operatorname{I}_{\mu}\right)} \\
\left(\underbrace{\left(\operatorname{L}_{m}^{p-1} \operatorname{T}_{n}^{mn,i}\right)}_{i=0} \left(\operatorname{I}_{p} \otimes_{\parallel} (\operatorname{I}_{m/p} \otimes \operatorname{DFT}_{n})\right) \left(\operatorname{I}_{p} \otimes_{\parallel} \operatorname{L}_{m/p}^{mn/p}\right) \left((\operatorname{L}_{p}^{pm} \otimes \operatorname{I}_{m/p\mu}) \otimes_{\mu} \operatorname{I}_{\mu}\right)} \\$$

Fully optimized (load-balanced, no false sharing) in the sense of our definition

Same Approach for Other Parallel Paradigms

Message Passing: [ISPA 06]



With Bonelli, Lorenz, Ueberhuber, TU Vienna

Cg/OpenGL for GPUs:

$$\underbrace{\left(\underbrace{\mathbf{DFT}_{rk}}_{gpu(t,c)}\right)}_{gpu(t,c)} \rightarrow \underbrace{\left(\underbrace{\prod_{i=0}^{k-1} \mathsf{L}_{r}^{r^{k}} \left(\mathbf{I}_{r^{k-1}} \otimes \mathbf{DFT}_{r}\right) \left(\mathsf{L}_{r^{k-i-1}}^{r^{k}} (\mathbf{I}_{r^{i}} \otimes \mathsf{T}_{r^{k-i-1}}^{r^{k-i}}) \underbrace{\mathsf{L}_{r^{i+1}}^{r^{k}}}_{\operatorname{vec}(c)}\right)}_{gpu(t,c)} \\ \cdots \\ \rightarrow \underbrace{\left(\underbrace{\prod_{i=0}^{k-1} (\mathsf{L}_{r}^{r^{n}/2} \vec{\otimes} \mathbf{I}_{2}) \left(\mathbf{I}_{r^{n-1}/2} \otimes \times \underbrace{(\underline{\mathbf{DFT}_{r} \vec{\otimes} \mathbf{I}_{2}) \mathsf{L}_{r}^{2r}}_{\operatorname{shd}(t,c)}\right) \mathsf{T}_{i}}_{\operatorname{shd}(t,c)} \\ \left(\mathsf{L}_{r}^{r^{n}/2} \vec{\otimes} \mathbf{I}_{2}) (\mathbf{I}_{r^{n-1}/2} \otimes \times \underbrace{\mathsf{L}_{r}^{2r}}_{\operatorname{shd}(t,c)}) (\mathsf{R}_{r}^{r^{n-1}} \vec{\otimes} \mathbf{I}_{r})} \right)} \right)$$

With Shen, TU Denmark

Vectorization: [IPDPS 02, VecPar 06]

$$\begin{split} \underbrace{\left(\overline{\mathbf{DFT}_{mn}}\right)}_{\operatorname{vec}(\nu)} & \rightarrow \underbrace{\left(\left(\mathbf{DFT}_{m}\otimes \mathbf{I}_{n}\right)\mathsf{T}_{n}^{mn}(\mathbf{I}_{m}\otimes \mathbf{DFT}_{n})\mathsf{L}_{m}^{mn}\right)}_{\operatorname{vec}(\nu)} \\ & \cdots \\ & \rightarrow \underbrace{\left(\overline{\mathbf{DFT}_{m}\otimes \mathbf{I}_{n}}\right)^{\nu}}_{\operatorname{vec}(\nu)}\underbrace{\left(\overline{\mathbf{T}_{n}^{mn}}\right)^{\nu}}_{\operatorname{vec}(\nu)}\underbrace{\left(\overline{\mathbf{I}_{m}\otimes \mathbf{DFT}_{n}}\right)\mathsf{L}_{m}^{mn}}_{\operatorname{vec}(\nu)}^{\mu} \\ & \cdots \\ & \rightarrow \underbrace{\left(\mathbf{I}_{mn/\nu}\otimes \underbrace{\mathsf{L}_{\nu}^{2\nu}}_{\operatorname{sse}}\right)\left(\overline{\mathbf{DFT}_{m}\otimes \mathbf{I}_{n/\nu}}\vec{\otimes} \mathbf{I}_{\nu}\right)\left(\overline{\mathbf{T}_{n}^{mn}}\right)^{\nu}}_{\operatorname{sse}} \\ & \left(\mathbf{I}_{m/\nu}\otimes (\overline{\mathsf{L}_{\nu}^{n}}\vec{\otimes} \mathbf{I}_{\nu})(\mathbf{I}_{n/\nu}\otimes (\mathsf{L}_{\nu}^{2\nu}\vec{\otimes} \mathbf{I}_{\nu})(\mathbf{I}_{2}\otimes \underbrace{\mathsf{L}_{\nu}^{\nu^{2}}}_{\operatorname{sse}})(\mathsf{L}_{2}^{2\nu}\vec{\otimes} \mathbf{I}_{\nu}))\left(\overline{\mathbf{DFT}_{n}}\vec{\otimes} \mathbf{I}_{\nu}\right)\right) \\ & \left(\left(\mathsf{L}_{m}^{mn}\otimes \mathbf{I}_{2}\right)\vec{\otimes} \mathbf{I}_{\nu}\right)\left(\mathbf{I}_{mn/\nu}\otimes \underbrace{\mathsf{L}_{2}^{2\nu}}_{\operatorname{sse}}\right) \end{split}$$

Verilog for FPGAs: [DAC 05]

$$\begin{split} \underbrace{\left(\mathbf{DFT}_{rk}\right)}_{\mathsf{stream}(r^{s})} & \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \mathsf{L}_{r}^{rk} \left(\mathbf{I}_{rk-1} \otimes \mathbf{DFT}_{r}\right) \left(\mathsf{L}_{rk-i-1}^{rk} (\mathbf{I}_{ri} \otimes \mathsf{T}_{rk-i-1}^{rk-i}) \mathsf{L}_{ri+1}^{rk}\right)\right] \mathsf{R}_{r}^{rk}}_{\mathsf{stream}(r^{s})} \\ & \cdots \\ & \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \underbrace{\mathsf{L}_{r}^{rk}}_{\mathsf{stream}(r^{s})} \underbrace{\left(\mathbf{I}_{rk-1} \otimes \mathbf{DFT}_{r}\right)}_{\mathsf{stream}(r^{s})} \underbrace{\left(\mathsf{L}_{rk-i-1}^{rk} (\mathbf{I}_{ri} \otimes \mathsf{T}_{rk-i-1}^{rk-i}) \mathsf{L}_{ri+1}^{rk}\right)}_{\mathsf{stream}(r^{s})}\right] \underbrace{\mathsf{R}_{r}^{rk}}_{\mathsf{stream}(r^{s})} \\ & \cdots \\ & \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \underbrace{\mathsf{L}_{r}^{rk}}_{\mathsf{stream}(r^{s})} \left(\mathbf{I}_{rk-s-1} \otimes \mathsf{s}(\mathsf{I}_{rs-1} \otimes \mathbf{DFT}_{r})\right) \underbrace{\mathsf{T}_{i}'}_{\mathsf{stream}(r^{s})}\right] \underbrace{\mathsf{R}_{r}^{rk}}_{\mathsf{stream}(r^{s})} \\ & \cdots \\ & \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \underbrace{\mathsf{L}_{r}^{rk}}_{\mathsf{stream}(r^{s})} \left(\mathbf{I}_{rk-s-1} \otimes \mathsf{s}(\mathsf{I}_{rs-1} \otimes \mathbf{DFT}_{r})\right) \underbrace{\mathsf{T}_{i}'}_{\mathsf{stream}(r^{s})}\right] \underbrace{\mathsf{R}_{r}^{rk}}_{\mathsf{stream}(r^{s})} \\ \end{split}$$

With Milder, Hoe, CMU

Going Beyond Transforms

Transform =

linear operator with one vector input and one vector output

Key ideas:

- Generalize to (possibly nonlinear) operators with several inputs and several outputs
- Generalize SPL (including tensor product) to OL (operator language)

Cooley-Tukey FFT in OL:DFT \rightarrow (DFT \otimes I) \circ $D \circ$ (I \otimes DFT) \circ L.Viterbi in OL:Vit $\rightarrow \pi \circ (\prod (I \otimes V) \circ (L \times I)) \circ (C \times C \times I)$ Mat-Mat-Mult:MMM \rightarrow I \otimes MMMMMM \rightarrow (I \otimes L) \circ (MMM \otimes I) \circ (I \times (I \otimes L))

OL Rewriting Rules

- SPL rules reused
- Only few OL-specific rules required

$$\begin{split} \underbrace{\left(\mathbf{I}_{k}\otimes\mathbf{L}_{n}^{mn}\right)}_{\mathsf{smp}(p,\mu)} \circ \underbrace{\mathbf{L}_{km}^{mn}}_{\mathsf{smp}(p,\mu)} \rightarrow \left(\mathbf{L}_{k}^{kn}\otimes\mathbf{I}_{m/\mu}\right)\bar{\otimes}\mathbf{I}_{\mu} \\ \underbrace{\mathbf{L}_{n}^{kmn}}_{\mathsf{smp}(p,\mu)} \circ \underbrace{\left(\mathbf{I}_{k}\otimes\mathbf{L}_{m}^{mn}\right)}_{\mathsf{smp}(p,\mu)} \rightarrow \left(\mathbf{L}_{n}^{kn}\otimes\mathbf{I}_{m/\mu}\right)\bar{\otimes}\mathbf{I}_{\mu} \\ \underbrace{\mathbf{A}\circ\mathbf{B}}_{\mathsf{smp}(p,\mu)} \rightarrow \underbrace{\mathbf{A}\circ\mathbf{B}}_{\mathsf{smp}(p,\mu)} \circ \underbrace{\mathbf{B}}_{\mathsf{smp}(p,\mu)} \\ \underbrace{\mathbf{A}^{k\times m \rightarrow n}\otimes\mathbf{I}^{1\times p \rightarrow p}}_{\mathsf{smp}(p,\mu)} \rightarrow \underbrace{\mathbf{L}_{n}^{pn}}_{\mathsf{smp}(p,\mu)} \circ \left(\mathbf{I}_{1\times p \rightarrow p}\otimes_{\parallel}\mathbf{A}^{k\times m \rightarrow n}\right) \circ \underbrace{\left(\mathbf{I}_{k}\times\mathbf{L}_{p}^{pm}\right)}_{\mathsf{smp}(p,\mu)} \\ \underbrace{\left(\mathbf{A}\times\mathbf{B}\right)}_{\mathsf{smp}(p,\mu)} \circ \underbrace{\left(\mathbf{C}\times\mathbf{D}\right)}_{\mathsf{smp}(p,\mu)} \rightarrow \underbrace{\left(\mathbf{A}\circ\mathbf{C}\right)}_{\mathsf{smp}(p,\mu)} \times \underbrace{\left(\mathbf{B}\circ\mathbf{D}\right)}_{\mathsf{smp}(p,\mu)} \\ \mathbf{New OL rules} \end{split}$$

Example: Viterbi Decoder in OL

Viterbi decoder (forward part) as operator

$$\operatorname{Vit}_{m,n,N}^{e,f,\mathbf{x}}: \mathbb{R}^{nN} \to \mathbb{R}^{2^m} \times \mathbb{N}^{2^m n}$$

Viterbi kernel (butterfly)

 $\mathsf{V}^{e,f}_{i,j}: \mathbb{R}^2 \times \mathbb{R}^{2n} \times \mathbb{R}^{nN} \to \mathbb{R}^2 \times \mathbb{R}^{2n} \times \mathbb{R}^{nN}; \left(\mathbf{x}, \mathbf{d}, \mathbf{c}\right) \mapsto \left(\mathbf{y}, \mathbf{d}', \mathbf{c}\right) \quad, \quad 0 \leq i < n, \ 0 \leq j < 2^{m-1}$

Viterbi algorithm as breakdown rule

$$\mathsf{Vit}_{m,n,N}^{e,f,x} \to \pi_{(\mathbf{x},\mathbf{d})} \circ \left(\prod_{i=0}^{n-1} \left(\mathsf{I}_{2^{m-1} \times 2^{m-1} \times 1} \otimes_{j} \mathsf{V}_{i,j}^{e,f} \right) \circ \left(\mathsf{L}_{2^{m-1}}^{2^{m}} \times \mathsf{I}_{2^{m}n \times nN} \right) \right) \circ \left(\mathsf{C}_{\mathbf{x}} \times \mathsf{C}_{\mathbf{0}} \times \mathsf{I}_{nN} \right)$$

First non-transform supported by Spiral

Viterbi: Vectorization Through Rewriting

$$\underbrace{ \underbrace{ \mathsf{Vit}_{m,n,N}^{e,f,x}}_{\mathsf{vec}(\nu)} \rightarrow \underbrace{ \pi_{(\mathbf{x},\mathbf{d})} \circ \left(\prod_{i=0}^{n-1} \left(\mathbf{I}_{2^{m-1} \times 2^{m-1} \times 1} \otimes_{j} \mathbf{V}_{i,j}^{e,f} \right) \circ \left(\mathbf{L}_{2^{m-1}}^{2^{m}} \times \mathbf{I}_{2^{m}n \times nN} \right) \right) \circ \left(\mathbf{C}_{\mathbf{x}} \times \mathbf{C}_{\mathbf{0}} \times \mathbf{I}_{nN} \right) }_{\mathsf{vec}(\nu)} \\ \rightarrow \pi_{(\mathbf{x},\mathbf{d})} \circ \left(\prod_{i=0}^{n-1} \left(\underbrace{\mathbf{I}_{2^{m-1} \times 2^{m-1} \times 1} \otimes_{j} \mathbf{V}_{i,j}^{e,f} \right) \circ \left(\mathbf{L}_{2^{m-1}}^{2^{m}} \times \mathbf{I}_{2^{m}n \times nN} \right) }_{\mathsf{vec}(\nu)} \right) \circ \left(\mathbf{C}_{\mathbf{x}} \times \mathbf{C}_{\mathbf{0}} \times \mathbf{I}_{nN} \right) \\ \cdots \\ \rightarrow \pi_{(\mathbf{x},\mathbf{d})} \circ \left(\prod_{i=0}^{n-1} \left(\mathbf{I}_{2^{m-1} \times 2^{m-1} \times 1} \otimes_{i} \left(\underbrace{(\mathbf{L}_{2^{\nu}}^{2^{\nu}})}_{\mathsf{reg}(\nu)} \mathbf{I}_{2^{m} \times nN} \right) \circ \left(\underbrace{\mathbf{V}_{i,4j+k}^{e,f} \otimes_{k} \mathbf{I}_{\nu \times 1 \times 1} \right) \right) \right) \circ \left(\underbrace{(\mathbf{L}_{2^{m-1}/\nu}^{2^{m}} \otimes_{i} \mathbf{I}_{\nu}) \times \mathbf{I}_{2^{m}n \times nN} \right) \\ \left(\mathbf{C}_{\mathbf{x}} \times \mathbf{C}_{\mathbf{0}} \times \mathbf{I}_{nN} \right)$$

Sufficient to vectorize one input Vectorized kernel In-register shuffle operation

Organization

- Spiral overview
- Parallelization in Spiral
- Results
- Concluding remarks

Benchmarks

kernels

All Spiral code shown is "push-button" generated from scratch

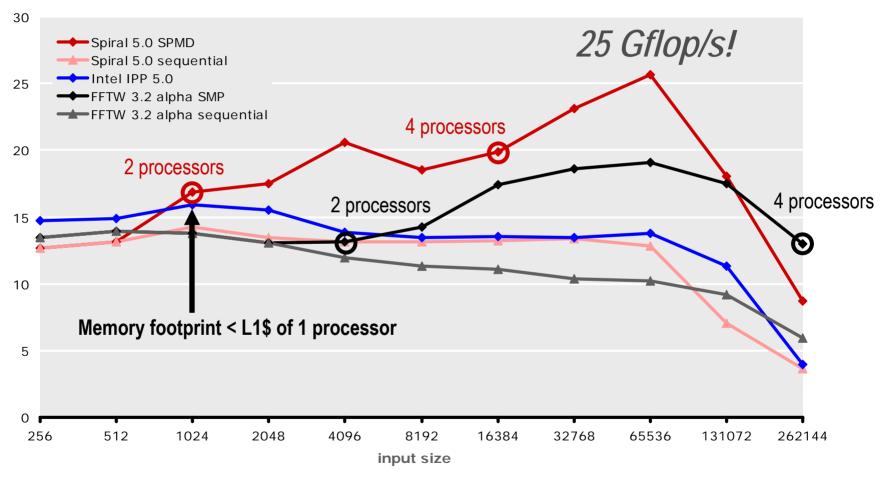
vector dual/quad core FPGA+CPU GPU FPGA

SPIRAL www.spiral.net

Benchmark: Vector and SMP

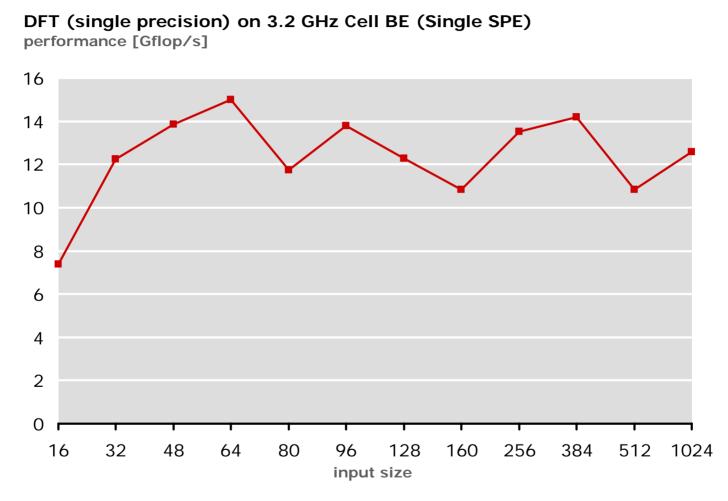
DFT (single precision): on 3 GHz 2 x Core 2 Extreme

performance [Gflop/s]



4-way vectorized + up to 4-threaded + adapted to the memory hierarchy

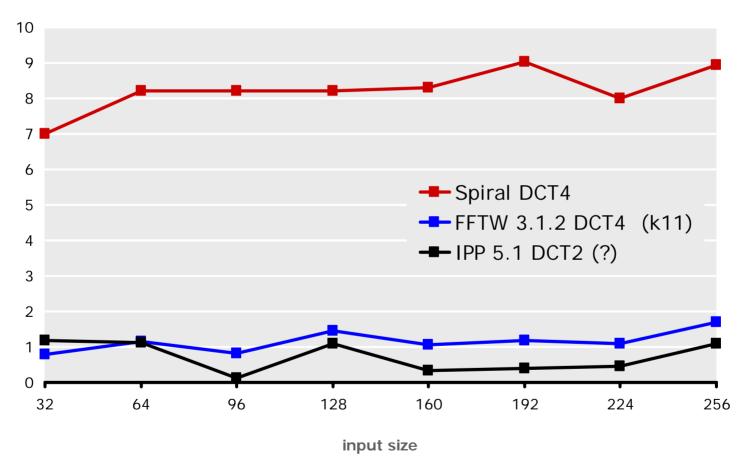
Benchmark: Cell (1 processor = SPE)



Generated using the simulator; run at Mercury (thanks to Robert Cooper)

Joint work with Th. Peter (ETH Zurich), S. Chellappa, M. Telgarsky, J. Moura (CMU)

DCT4, Multiples of 32: 4-way Vectorized

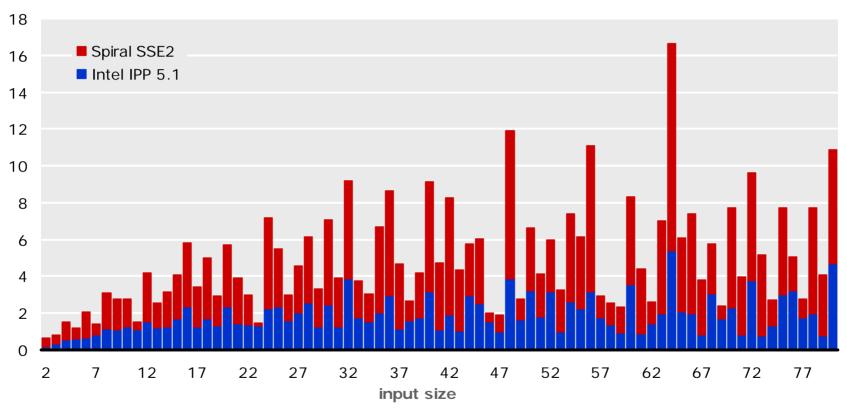


novel algorithm (algebraic algorithm theory)

DFT, 8-way Vectorized: All Sizes Up To 80

DFT (16-bit integer) on 2.66 GHz Core2 Duo (8-way SSE2)

performance [Gflop/s]

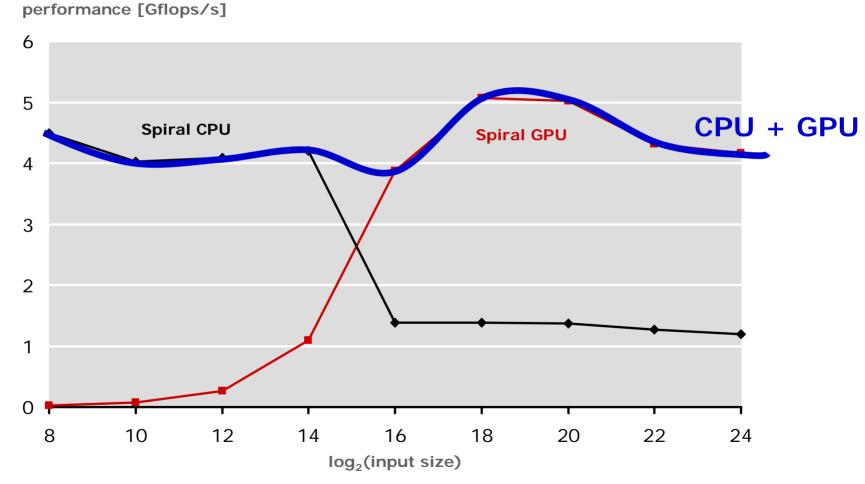


first 8-way DFTs for all sizes

arbitrary vector length /arbitrary DFT sizes in principle solved

Benchmark: GPU

WHT (single precision) on 3.6 GHz Pentium 4 with Nvidia 7900 GTX

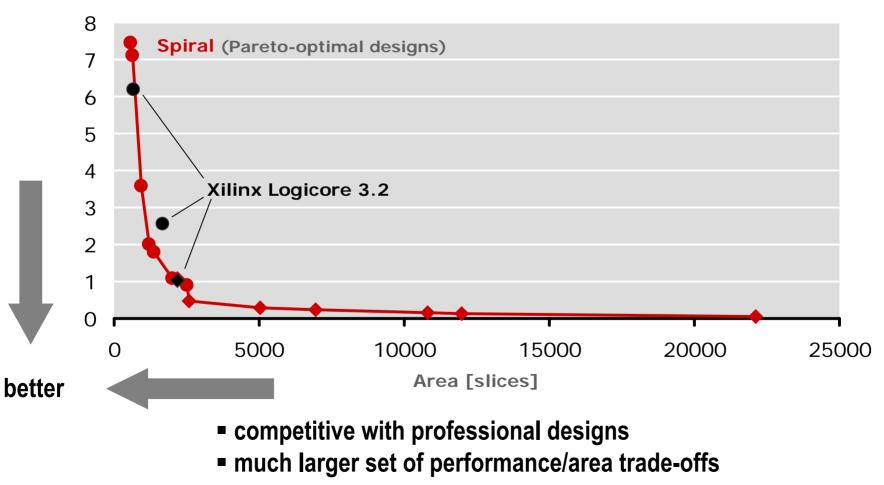


Joint work with H. Shen, TU Denmark

Benchmark: FPGA

DFT 256 on Xilinx Virtex 2 Pro FPGA

inverse throughput (gap) [us]

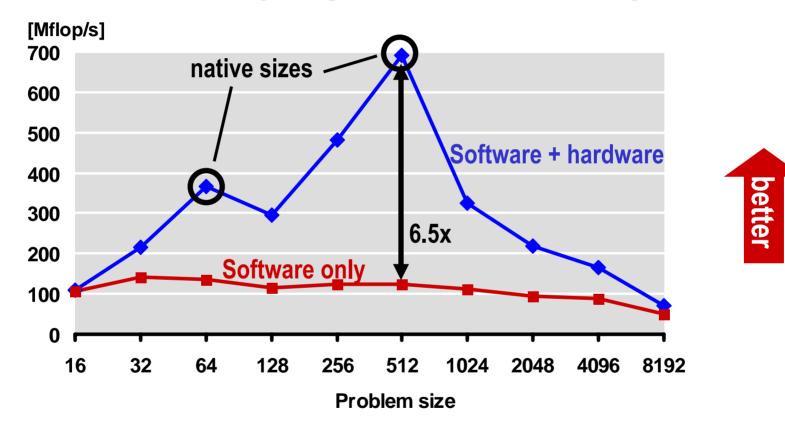


Joint work with P. Milder, J. Hoe (CMU)

SPIRAL www.spiral.net

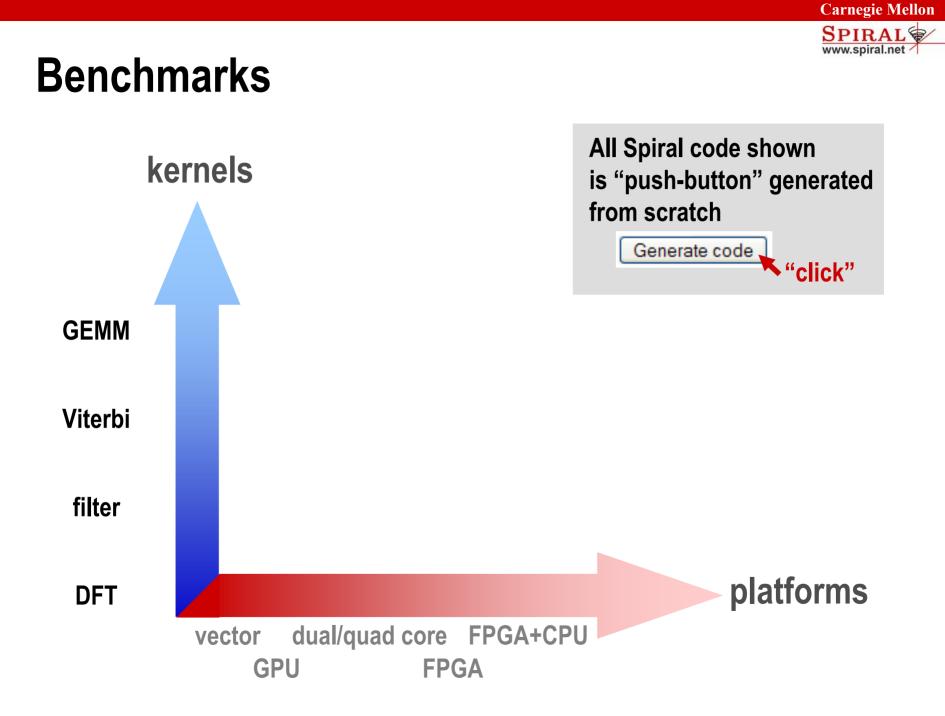
Benchmark: Hardware Accelerator (FPGA)

Xilinx Virtex 2 Pro FPGA: 1M gates @ 100 MHz + 2 PowerPC 405 @ 300 MHz



Fixed set of accelerators speed up a whole library

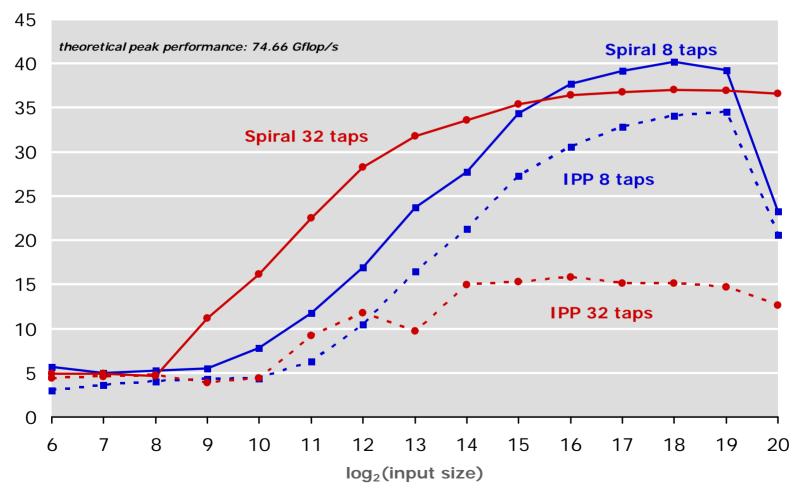
Joint work with P. D'Alberto (Yahoo), A. Sandryhaila, P. Milder, J. Hoe, J. M. F. Moura (CMU), J. Johnson (Drexel)



Benchmark: Finite Impulse Response Filter

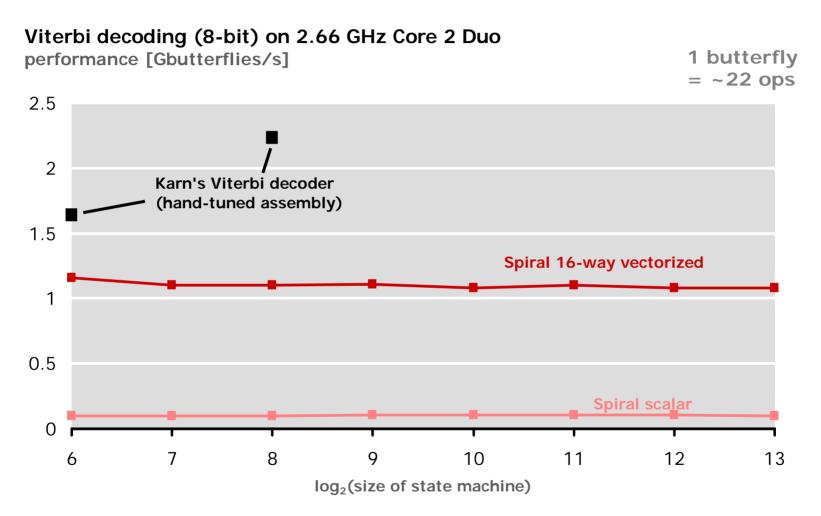
FIR filter (double precision) on 2.33 GHz 2x Core 2 Quad (8 threads)

performance [Gflop/s]



www.spiral.net

Beyond Transforms : Viterbi Decoding



Vectorized using practically the same rules as for DFT

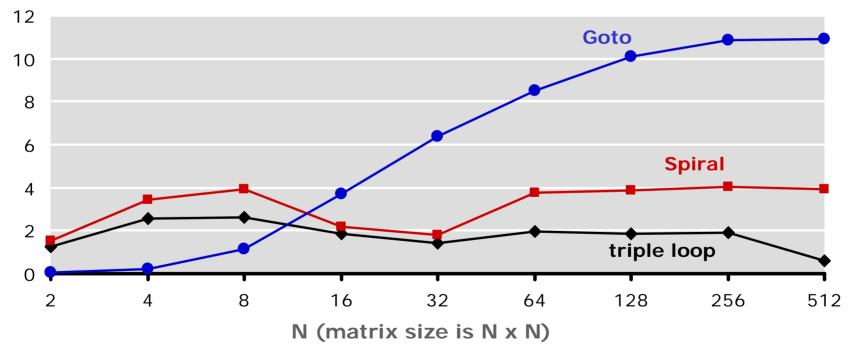
Joint work with S. Chellappa, CMU

Karn: http://www.ka9q.net/code/fec/

First Results: Matrix-Matrix-Multiply

DGEMM on 3 GHz Core 2 Duo (1 thread)

performance [Gflop/s]



Organization

- Spiral overview
- Parallelization in Spiral
- Results
- Concluding remarks

Conclusions

 Automatic generation of very fast and fastest numerical kernels is possible and desirable

High level language and approach

- Algorithm generation
- Algorithm optimization
- Same approach for loop optimization, different forms of parallelism, SW and HW implementations

Spiral Web Interface @spiral.net (beta version)

Prog	gram Generation Interface of	collapse		
Targe	et platform for optimization:	2x Intel Xeon 3.6 GHz with 2048K L2 cache		
	parameter	value	explanation	
1. Select platform	Transform	DCT2 (Discrete Cosine Transform, type 2)	The transform for which you want to request C code	
•	Data type	double 💌	The data type of input and output vector	
2. Select functionality	Y Transform size	6 💌	The size of the transform = the length of the input vector	
	Optimize for	runtime 💌	What you want to optimize the code for	
3. Generate code	Search method	Dynamic Programming	The search method SPIRAL uses (Dynamic Programming is a good choice)	
	Compiler profile	gcc -03 💌	Compiler and compiler options used for compilation	
	Generate code			
Brov	Browse Archive expand			
Filte	r by Platform: All Platforms S	Selected		
Filte	r by Transform: All Transforms	Selected		

Filter by Size: All Sizes Selected 👻

Query Database