
Register Allocation in Kernel Generators

Matteo Frigo

Cilk Arts

July 9, 2007



Summary

◮ Poor register allocation =⇒ poor kernel performance.

◮ Kernel generators must do register allocation one way or the
other.

◮ Register allocation can be factored into two subproblems:
◮ Scheduling.
◮ Register allocation of straight-line code.

◮ Ordinary compilers can register-allocate straight-line code.

◮ Compilers cannot schedule properly. Kernel generators are
responsible for the schedule.

◮ FFTW uses a fixed “cache oblivious” schedule. Although
independent of the processor, this schedule seems to be hard
to beat.

◮ Other problems may require more sophistication.



Impact of inefficient register allocation

32-point complex FFT in FFTW, PowerPC 7447

add/sub fma load store code size cycles

C source:
236 136 64 64 ≈ 600 lines

Output of gcc-3.4 -O2:
236 136 484 285 5620 bytes ≈ 1550

Output of gcc-3.4 -O2 -fno-schedule-insns:
236 136 134 125 2868 bytes ≈ 640

◮ Twice as many instructions (all register spills).

◮ 2.5x slowdown.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

keep going for a while...



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Register allocation in gcc -O2

Assume 4 complex registers and “butterfly” instruction.



Why the gcc -O2 strategy cannot work

Theorem
If

◮ you compute the FFT level by level; and

◮ n ≫ number of registers

then

◮ any register allocation policy incurs Θ(n log n) register spills.

Corollary

O(1) spills/flop no matter how many registers the machine has.



Better strategy: blocking



Better strategy: blocking



Better strategy: blocking



Better strategy: blocking



Better strategy: blocking



Better strategy: blocking



Better strategy: blocking



Better strategy: blocking



Better strategy: blocking



Better strategy: blocking



Analysis of the blocking schedule

Theorem (Upper bound)

With R registers,

◮ a schedule exists such that

◮ a register allocation exists such that

◮ the execution incurs O(n log n/ log R) register spills.

Proof.
Block for R registers. Loading R inputs allows you to compute
log R levels without spilling, i.e., log R flops per spill.

Theorem (Lower bound, Hong and Kung ’81)

Any execution of the butterfly graph with R registers incurs
Ω(n log n/ log R) register spills.



Complexity of register allocation

Theorem (Motwani et al., 1995)

Given dag, find schedule of the dag and register assignment that
minimizes the number of register spills: NP-hard.

Theorem (Belady 1966)

Given a schedule of the dag, find register assignment that
minimizes the number of register spills: ≈ linear time.

Corollary

◮ You are responsible for the schedule.

◮ You don’t have worry about the register assignment. The
compiler can do it.



Belady’s algorithm

◮ Traverse the schedule in execution order.

◮ If an instruction needs a value not in a register, obtain a
register and load the value.

◮ If you need to evict a value from a register, evict the one used
furthest in the future.



Register allocation in FFTW

◮ The FFTW “codelet” generator produces C.

◮ The generator schedules the C code.
◮ The scheduling algorithm is FFT-specific.
◮ This is scheduling for register allocation, not “instruction

scheduling” for pipelining purposes.

◮ We assume (i.e., hope) that the C compiler implements the
optimal register allocation for the given schedule.



Ordinary compilers handle straight-line code well

Cycle counts on Pentium III, circa 2002

FFT(8) FFT(16) FFT(32) FFT(64)

Belady 150 350 838 2055

gcc-2.95 -O2 165 372 913 2254

gcc-2.95 -O 151 354 845 2091

gcc-3.2 -O2 152 390 892 2236

gcc-3.2 -O 148 356 910 2278

icc-6.0 -O3 166 397 946 2291



Cycle counts on PowerPC 7400, circa 2002

FFT(8) FFT(16) FFT(32) FFT(64)

Belady 112 272 688 1648

gcc-2.95 -O2 112 368 1168 2896

gcc-2.95 -O2 -fno-schedule-insns

112 320 784 1840

gcc-3.1 -O2 112 432 1312 3120

gcc-3.1 -O2 -fno-schedule-insns

112 288 768 1712



Number of spills on PowerPC 7400

FFT(8) FFT(16) FFT(32) FFT(64)

Loads:
Belady 5 21 75 146
gcc-3.1 6 26 107 251

Stores:
Belady 5 21 64 133
gcc-3.1 6 23 73 155

(gcc-3.1 -mcpu=750 -O2 -fno-schedule-insns)



How does FFTW produce the schedule?

Blocking:

Could generate a different program for each R. (But we don’t.)

Cache oblivious:
It turns out that a universal schedule works well for all R.



Cache oblivious FFT

Cooley-Tukey with p = q =
√

n [Vitter and Shriver]

If n > 1:

1. Recursively compute
√

n FFTs of size
√

n.

2. Multiply O(n) elements by the twiddle factors.

3. Recursively compute
√

n FFTs of size
√

n.

Analysis:

R = # of registers.

S(n) = # of spills in optimal register allocation.

S(n) ≤
{

O(n) if n ≤ Θ(R) ;

2
√

nS(
√

n ) + O(n) if n > Θ(R) .

S(n) ≤ O(n log n/log R) . Optimal.



Cache oblivious schedule



Cache oblivious schedule



Cache oblivious schedule



Cache oblivious schedule



Machine-specific code does not seem to help

SPIRAL MIPS

FFTW MIPS

SPIRAL PII

FFTW PII

SPIRAL SPARC

FFTW SPARC

Transform size

M
F
L
O

P
S

2 4 8 16 32 64

600

400

200

[Xiong et al., PLDI 2001]



Does this technique apply to other problems?

Anecdotal evidence

◮ FFT, RFFT, DCT, FFT+SIMD:
◮ Butterfly-like graphs, O(n log n) time, O(n log n/ log R)

register spills.
◮ Cache oblivious works.

◮ 1D stencils, 1D convolutions, Gauss-Seidel, probably LCS-style
“1D” dynamic programming:

◮ O(n2) time, O(n2/R) register spills.
◮ Cache oblivious works.

◮ 2D stencils, GEMM/BLAS3, simple “2D” dynamic
programming:

◮ O(n3) time, O(n3/
√

R) register spills.
◮ Cache oblivious alone not sufficient. Other effects become

significant.



Matrix multiplication kernels

Machine % peak performance % peak performance
cache oblivious iterative

Power5 58 98
UltraSPARC IIIi 53 98
Itanium II 93 94

[Yotov et al., 2007]



What are these “other effects”?

◮ Asymptotic theory applied to small n and R.

◮ Asymmetry of loads and stores.

◮ Belady does not account for the latency of spills.

◮ Cache oblivious does not account for the pipeline latency.



Asymmetry of loads and stores

Power5:

◮ 2 fma/cycle.

◮ 2 L1 loads/cycle, in parallel with FPU.

◮ 1 L1 store/cycle, consumes one FPU cycle.

Impact on n × k by k × n matrix multiplication kernel:

◮ 2nk + n2 loads, n2 stores.

◮ If cost of load is 1, cost of store is γ, then optimal aspect
ratio of the kernel is nonsquare:

k/n = 1 + γ .

◮ Must modify the cache oblivious algorithm to account for γ.

◮ Still cache oblivious, but not γ-oblivious.



Belady and loads/stores

Theorem (Belady 1966)

Given a schedule of the dag, find register assignment that
minimizes the number of loads: ≈ linear time.

Theorem (Farach and Liberatore 1997)

Given a schedule of the dag, find register assignment that
minimizes the number of stores: NP-hard.

Theorem (Farach and Liberatore 1997)

Heuristic for the number of stores that is within a small constant
factor of optimal: ≈ linear time. Works in practice.



Latency of reloads

Power5:

◮ FP load latency: 5 cycles.

◮ Must schedule 10 flops before using the loaded value.

Problem:

◮ Belady knows nothing about load latencies.

Belady with lookahead:

◮ At time t, schedule spills/reloads for instruction at
time t + load latency.

◮ Current compilers don’t seem to do it.

◮ Optimal?



FPU latency

Power5:

◮ FPU latency: 6 cycles.

◮ 12 independent flops in flight to keep FPU busy.

Problem:

◮ Cache oblivious schedule ignores latencies.

Possible solutions:

◮ Do nothing, hope that out-of-order execution will save you.

◮ Attack the problem using [Blelloch and Gibbons, 2005].



Register allocation with latencies

Theorem (Blelloch and Gibbons, SPAA 2005)

Given:

◮ A machine with R registers;

◮ A dag of critical path T∞ ;

◮ A schedule of the dag that incurs Q1 spills with Belady.

Then

◮ A schedule of the dag exists that incurs Q1 spills with at
most LT∞ stalls on a machine with R + LT∞ registers and
maximum latency L.

◮ The schedule is easy to compute.

◮ Exact result, not asymptotic.

◮ Optimal?



Cache oblivious DGEMM with all tricks

Power5 (peak 6.6 Gflop/s).
(N, N) × (N, N) → (N, N) ∀N ∈ {1, . . . , 5000}.

N

G
fl
op

/s

500040003000200010000

6

5

4

3

2

1

0



Conclusions
This page may contain forward-looking statements that are based on management’s
expectations, estimates, projections and assumptions.

◮ When they work, as in FFTW, universal cache oblivious
kernels are attractive.

◮ If the “other effects” become significant, then the
cache-oblivious approach is much less attractive.

◮ Belady/lookahead and [Blelloch and Gibbons] are
kernel-independent techniques.

◮ Perhaps an autotuner can be structured as
◮ Universal kernel-specific schedule, followed by
◮ Sophisticated kernel-independent register allocator

parametrized by the latencies.

◮ Such an autotuner would reduce the search space
w.r.t. current systems.


