
Gyrokinetic Toroidal Code
Computational Overview

18 July 2011 – CScADS

Daniel Fulton, Joseph McClenaghan
University of California, Irvine

Gyrokinetic Toroidal Code (GTC):
Basics!

•  Goals:!
–  Simulate turbulence, ! !

transport, instabilities, ! ! ! !
in fusion plasmas.!

–  Support burning plasma ! !
experiments (e.g. ITER)!

• !Group: group leader Zhihong Lin + 2
researchers, 1 post doc, 5 graduate students!

•  Originally developed at PPPL, now
maintained at UC Irvine.!

•  “Gyrokinetic” !
–  Charged particles travel along ! ! !

magnetic field lines in helix shape. !
–  Assume “gyro” motion is much ! ! !

faster and can be averaged out. !
–  Still accounts for finite radius.!

•  PIC code!
•  MHD + kinetic corrections…!

•  “Toroidal”!
–  Donut shaped spatial domain (most

fusion experiments)!
–  Has been modified for cylindrical

geometry, as well.!

GTC: Some Details

B e-

GTC: Programming Model (i)
•  Hybrid OpenMP + MPI code.!

–  MPI breaks up spatial domains and groups of
particles within these domains.!

–  OMP for parallelizing loops/individual particles
w/i MPI task.!

GTC: Programming Model (ii)

•  Fortran90/95 free format!
•  Runtime libraries:!

–  PETSC for poisson solver (one implementation)!
–  NetCDF for output, but not required (see next).!

•  Typically compile with pgf90.!
•  Runs on jaguarpf, hopper, tianhe-1A… !
•  In the next year add GPU. !

–  Fortran CUDA/OpenCL?!

GTC: I/O
•  I!

–  Small plain text file with input parameters.!
–  Requires magnetic equilbrium!

•  Analytical – specified by the code!
•  Numerical – Experimental or generated by

another eq solver. Plain text typically ~ 50MB.!
•  O!

–  3D requires NetCDF. File size???!
–  Produces separate plain text files for various 1D/2D

data. Order 10-100+MB total. Depends on grid.!
•  Snapshot/restarts at user specified interval.!
•  Currently, no major plans to change I/O.!

GTC: Analysis!
•  IDL GUI for common plots. !
•  Individuals use other tools for specifics (IDL,

Matlab, gnuplot).!

GTC: Performance
•  Current performance analysis:!

–  By hand scaling studies.!
–  Just tried CrayPAT to make this presentation!!

•  Downside: hard to identify performance issues
that are not related to scaling.!

•  Plan: Fluid algorithm is implemented in simple
way. Would like to implement something more
robust and more efficient. Whatʼs the best way
to pinpoint problem areas?!

GTC: Scalability (i)
•  MPI scaling limited by grid size/# of particles.

•  Difficulty: GTC
runs require
minimum of 32
MPI tasks, so
OMP imbalance
can be ‘lost’ in
MPI imbalance.

GTC: Scalability (ii)

•  Overall, electrostatic ! ! ! !
scaling is good.!

•  Difficulty: ! ! ! ! !
For electromagnetic, ! ! !
PETSC not yet ! ! !
compatible with ! ! ! !
OMP.!

•  Current scalability achieved by going from
MPI  hybrid MPI + OMP.!

•  Plan to improve scaling with addition of GPU.!

GTC: Debugging Tools

•  Debugging methods:!
–  Version ctrl: compare to old (working) code!
–  Cleverness + write statements !
–  Brute force + write statements !

•  Have tinkered with DDT, but has some bugs
with PGI fortran.!

•  No plans to change current methods, but
would be nice.!

GTC: Roadmap

•  Explore kinetic/nonlinear instabilities, where
linear analytical techniques do not apply.
New physics, not old physics.!

•  Refine GTC fluid algorithm.!
–  Numerical stability/accuracy!
–  Performance!

•  Add GPU code for higher order kinetics/
electron subcycles, and to be able to use new
machines to full potential!!

