HPCToolkit: Sampling-based Performance
Tools for Leadership Computing

John Mellor-Crummey
Department of Computer Science
Rice University
johnmc@rice.edu

CScADS Leadership Computing July 24, 2012 1

http://hpctoolkit.org

Acknowledgments

* Funding sources

— Center for Scalable Application Development Software
— Cooperative agreement number DE-FC02-07ER25800

— Performance Engineering Research Institute
— Cooperative agreement number DE-FC02-06ER25762

* Project Team
— Research Staff
— Laksono Adhianto, Mike Fagan, Mark Krentel

— Students
— Xu Liu, Milind Chabbi, Karthik Murthy
— Collaborator
— Nathan Tallent (PNNL)
— Alumni
— Gabriel Marin (ORNL), Robert Fowler (RENCI), Nathan Froyd (Mozilla)

— Summer Interns:
— Reed Landrum, Michael Franco, Sinchan Banerjee, Philip Taffet

Challenges for Computational Scientists

 Execution environments and applications are rapidly evolving

— architecture
— rapidly changing multicore microprocessor designs
— increasing scale of parallel systems
— growing use of accelerators
— applications
— MPI everywhere to threaded implementations
— adding additional scientific capabilities to existing applications
— maintaining multiple variants or configurations for particular problems

e Steep increase in application development effort to attain
performance, evolvability, and portability

 Application developers need to
— assess weaknesses in algorithms and their implementations
— improve scalability of executions within and across nodes
— adapt to changes in emerging architectures
— overhaul algorithms & data structures to add new capabilities

[Performance tools can play an important role as a guide j

Performance Analysis Challenges

e Complex architectures are hard to use efficiently
— multi-level parallelism: multi-core, ILP, SIMD instructions
— multi-level memory hierarchy
— result: gap between typical and peak performance is huge

e Complex applications present challenges
— for measurement and analysis
— for understanding and tuning

e Supercomputer platforms compound the complexity
— unique hardware
— unique microkernel-based operating systems

— multifaceted performance concerns
— computation
— communication

- 1/0

Performance Analysis Principles

 Without accurate measurement, analysis is irrelevant
— avoid systematic measurement error

— measure actual executions of interest, not an approximation
— fully optimized production code on the target platform

 Without effective analysis, measurement is irrelevant
— quantify and attribute problems to source code

— compute insightful metrics
— e.g., “scalability loss” or “waste” rather than just “cycles”

 Without scalability, a tool is irrelevant for supercomputing
— large codes
— large-scale threaded parallelism within and across nodes

Performance Analysis Goals

* Programming model independent tools

e Accurate measurement of complex parallel codes
— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped

— complex execution environments
— dynamic loading (Linux clusters) vs. static linking (Cray, Blue Gene)
— SPMD parallel codes with threaded node programs
— batch jobs

* Insightful analysis that pinpoints and explains problems
— correlate measurements with code for actionable results

— support analysis at the desired level
— intuitive enough for application scientists and engineers
— detailed enough for library developers and compiler writers

e Scalable to petascale and beyond

HPCToolkit Design Principles

e Employ binary-level measurement and analysis
— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

e Use sampling-based measurement (avoid instrumentation)
— controllable overhead
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

Collect and correlate multiple derived performance metrics
— diagnosis typically requires more than one species of metric

 Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

Support top-down performance analysis
— natural approach that minimizes burden on developers

Outline

e Overview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
e Using HPCToolkit

e Ongoing R&D

HPCToolkit Workflow

profile
execution
[hpcrun]

compile & link

optimized

call path

profile

binary

source I
code

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

* For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed
* For statically-linked executables (e.g. for BG/P, Cray XT)

— add monitoring by using hpclink as prefix to your link line
— uses “linker wrapping” to catch “control” operations
process and thread creation, finalization, signals, ...

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation
[hpcviewer/
hpctraceviewer]

interpret profile

correlate w/ source
[hpcprof/hpcprof-mpi]

10

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source
code

* Measure execution unobtrusively

— launch optimized application binaries

— dynamically-linked applications: launch with hpcrun to measure
— statically-linked applications: measurement library added at link time
control with environment variable settings

— collect statistical call path profiles of events of interest

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

bina
r¥ program
analysis
structure
[hpcstruct]

presentation

[hpcviewer/

hpctraceviewer]

11

HPCToolkit Workflow

profile
execution
[hpcrun]

call path
profile

compile & link
source i
code

e Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

interpret profile
database correlate w/ source
[hpcprof/hpcprof-mpi]

optimized
binary

binary
analysis
[hpcstruct]

program
structure

presentation

[hpcviewer/

hpctraceviewer]

12

HPCToolkit Workflow

A call path

compile & link

execution
[hpcrun]

profile

optimized
binary

source I
code

binary
analysis
[hpcstruct]

program
structure

e Combine multiple profiles
— multiple threads; multiple processes; multiple executions

e Correlate metrics to static & dynamic program structure

presentation interpret profile e
[hpcviewer/ database —1 correlate w/ source
hpctraceviewer] [hpcprof/hpcprof-mpi]

13

HPCToolkit Workflow

source
code

A call path

compile & link

execution
[hpcrun]

profile

bina
r¥ program
analysis
structure
[hpcstruct]

Presentation
— explore performance data from multiple perspectives
— rank order by metrics to focus on what’s important
— compute derived metrics to help gain insight
e.g. scalability losses, waste, CPIl, bandwidth
— graph thread-level metrics for contexts

— explore evolution of behavior over time

presentation
[hpcviewer/

interpret profile
: database correlate w/ source
[hpcprof/hpcprof-mpi]

hpctraceviewer]

14

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
e Using HPCToolkit

e Ongoing R&D

15

Measurement

_ _ profile I h
compile & link R ca p_at
profile

| [hpcrun]

[optimized
code binary i

a?:anlagi,s program
y structure

[hpcstruct]

presentation interpret profile <«
[hpcviewer/ database correlate w/ source
hpctraceviewer] [hpcprof/hpcprof-mpi] [«

16

Call Path Profiling

Measure and attribute costs in context
sample timer or hardware counter overflows
gather calling context using stack unwinding

Call path sample Calling context tree
return address

return address
return address

instruction pointer ‘

@<

5 p

...not call frequency

Overhead proportional to sampling frequency...

17

Novel Aspects of Our Approach
 Unwind fully-optimized and even stripped code
—use on-the-fly binary analysis to support unwinding

e Cope with dynamically-loaded shared libraries on Linux
— note as new code becomes available in address space

* Integrate static & dynamic context information in presentation

— dynamic call chains including procedures, inlined functions,
loops, and statements

18

Measurement Effectiveness

Accurate

— PFLOTRAN on Cray XT @ 8192 cores
— 148 unwind failures out of 289M unwinds
— 5e-5% errors
— Flash on Blue Gene/P @ 8192 cores
— 212K unwind failures out of 1.1B unwinds
— 2e-2% errors
— SPEC2006 benchmark test suite (sequential codes)
— fully-optimized executables: Intel, PGI, and Pathscale compilers
— 292 unwind failures out of 18M unwinds (Intel Harpertown)
— 1e-3% error

Low overhead

— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores
— measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead

— suitable for use on production runs

19

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
e Using HPCToolkit

e Ongoing R&D

20

Effective Analysis

profile
execution
[hpcrun]

call path
profile

compile & link

source
code

binary
analysis
[hpcstruct]

program
structure

presentation
[hpcviewer/
hpctraceviewer]

interpret profile
<€ database -1 correlate w/ source
[hpcprof/hpcprof-mpi]

Recovering Program Structure

 Analyze an application binary

— identify object code procedures and loops
— decode machine instructions
— construct control flow graph from branches
— identify natural loop nests using interval analysis

— map object code procedures/loops to source code
— leverage line map + debugging information
— discover inlined code
— account for many loop and procedure transformations

Unique benefit of our binary analysis

 Bridges the gap between
— lightweight measurement of fully optimized binaries
— desire to correlate low-level metrics to source level abstractions

22

Analyzing Results with hpcviewer

" mbperf_iMesh.cpp &2 | "% TypeSequenceManager.hpp &3

public: bool

J iﬁ %} ‘Cs

22 * Define less-than comparison for EntitySequence
23 * of the entity handles in the pointed-to Entity$
24 */
25 class SequenceCompare {
26

@. stl_tree.h

ntitySequence*
start_handle();

costs for
¢ inlined procedures

loops

o function calls in full context

w\\ Callers View 'l-;, Flat View

Scope
¥ main

v

¥ [P testB(void*, int, double const*, int const*)

inlined from mbperf_iMesh.c
¥| loop at mbperf=iMesh.cpp: 280-313
¥ [BP imesh_getvtxarrcoords_

| PAPI_L1_DCM (I) ¥ PAPI_TOT_CYC () F

.8le+08
.43e+08
.20e+08

W W o o

¥ [MBCore:get_coords(unsigned long const*, int, double*) cc 3.20e+08

V| loop at MBCore.cpp: 681-693|

¥| inlined from stl_tree.h: 472
¥|loop at stl_tree.h: 1388

¥|inlined from TypeSequenceManager.hpp: 27 |1 78e+08

3.20e+08
2.04e+08
2.04e+08

TypeSequenceManager.hpp: 27 1.78e+08

S —————

37.
37.
23.
23.
20.
20.

.63e+08 100 %
.35e+08 96.7%

1%
1%
7%
6%
6%
6%

l1.13e+11 100 % &

1.10e+11 97.6%m|

0w o O Y NN

e+

.l16e+10
.16e+10
.38e+09
.37e+09
.56e+09
.56e+09

19.
19.
8.
8.

7

7.

RS

.5%
.9%
.3%
1%
1%
3%
3%
.6%‘:

6%

Principal Views

e Calling context tree view - “top-down” (down the call chain)
— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs

e Caller’s view - “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places

 Flat view - ignores the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure

24

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

* Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Assessing process variability

* Understanding temporal behavior
 Using HPCToolkit

e Ongoing R&D

25

The Problem of Scaling

Efficiency

1.000

0.875

0.750

0.625

0.500

— lIdeal efficiency
— Actual efficiency

© D
N

X o X o b
\b‘?@q’u,\@%

CPUs

Note: higher is better

26

Goal: Automatic Scaling Analysis

* Pinpoint scalability bottlenecks
e Guide user to problems
* Quantify the magnitude of each problem

 Diagnose the nature of the problem

27

Challenges for Pinpointing Scalability Bottlenecks

e Parallel applications
— modern software uses layers of libraries
— performance is often context dependent

* Monitoring
— bottleneck nature: computation, data movement, synchronization?

— 2 pragmatic constraints
— acceptable data volume
— low perturbation for use in production runs

Example climate code skeleton

28

Performance Analysis with Expectations

* You have performance expectations for your parallel code
— strong scaling: linear speedup
— weak scaling: constant execution time

 Putting your expectations to work

— measure performance under different conditions
— e.g. different levels of parallelism or different inputs

— express your expectations as an equation

— compute the deviation from expectations for each calling context

— for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

29

Pinpointing and Quantifying Scalability Bottlenecks

o= 5

4 N 4 N

v

R A e™ "

X 600K |~ V%) g ™ o0k | =
> pf
)
_ _/Q _ _/p
\
l (@
! coefficients for analysis of * I\ &
: strong scaling : }

30

Scalability Analysis Demo

Code:
Simulation:
Platform:
Experiment:
Scaling type:

xxxxx

Nova outbursts on white dwarfs

| PP YT T
Magnetic

1 .ellular nation
Rayleigh-Taylor Cellular detonatio

University of Chicago FLASH
white dwarf detonation
Blue Gene/P

8192 vs. 256 processors
weak

A

Laser-driven shock instabilities

E Orzag/Tang MHD . . -
vortex Rayleigh-Taylor instability

Helium burning on neutron stars

Figures courtesy of FLASH Team, University of Chicago 31

Scaling on Multicore Processors

e Compare performance
— single vs. multiple processes on a multicore system

e Strategy

— differential performance analysis
— subtract the calling context trees as before, unit coefficient for each

32

S3D: Multicore Losses at the Loop Level

hpcviewer: [Profile Name]
*¢ getrates.f I"‘.’

. rhsf.fo0 "2 diffflux_gen_uj.f 23 | ExeCUtion time
O) e lbperd® = (3 - 1+1) /35321 - 4 increases 2.8x in the

dom=1,1__ujUpper3d, 3

do n =1, nspec - 1 loop that scales worst

do 1¢__2 - 1, nz

do 1¢__1 « 1, ny |

;:1 do 1t__0Q = 1, nx I .

200 diffflux(lt__0, 1t__1, 1t__2, n, m) = -ds_mixav

D e e e a5 el loop contributes a
0 *s(lt_.0, 1t__1, 1t__2, n) * grad mixmw(1lt__0, 1t__1, 1t__2, m))

diffFlux(lt__@, 1t__1, 1t_ 2, n_spec, m) = diff 69% Scaling IOSS to

*lux(le__0, 1+__1, 1t__2, n_spec, m) diffflux(le__0, 1t__1, 1le__

ey " st o s e e 1 - ass] WHOIE €Xecution

*xavg(lt__0, 1t__1, 1t__2, n) * (grad_ys(1t__0, 1t__1, 1t__2, n, m
P 1) wwellE A 1F 1 0% 2 A Y arad mivewIlE A TF 1 1k 2

"< Calling Context View I "% Callers View‘ "< Flat Vnewl =0

284 1|6 ol
Scope 1-c (ms) (1) 1-core (ms) (E) re(1) (ms) (D) 8-core(l) (ms) (E)... Multicore loss ¥

loop at diffflux_gen_uj.f: 197-22:2.86e06 2.6% 2.86e06 2.6% 8.12e06 4.3% 8.12e06 4.3%| 5.27e06 m
loop at integrate_erk_jstage_It_gel .09e08 98.1% 1.25e06 1.1% 1.84e08 97.9% 5.94e06 3.2%| 4.70e06 6.1% W/
loop at variables_m.f90. 88-99 1.49%9e06 1.3% 1.49e06 1.3% 6.08e06 3.2% 6.08e06 3.2% 4.60e06 6.0%
loop at rhsf.f90: 516-536 2.70e06 2.4% 1.31e06 1.2% 6.49e06 3.5% 3.72e06 2.0%| 2.4le06 3.1%
loop at rhsf.f90: 538-544 3.35e06 3.0% 1.45e06 1.3% 7.06006 3.8% 3.82¢06 2.0% 2.36006 3.1%
loop at rhsf.f90: 546-552 2.56e06 2.3% |1.47e06 1.3% 5.86e06 3.1% 3.42e06 1.8% 1.96e06 2.6%
loop at thermchem_m.f90: 127-18.00e05 0.7% £.00e05 0.7% 2.28e06 1.2% 2.28e06 1.2% 1.48e06 1.9%
loop at heatflux_Ilt_gen.f: 5-132 1.46e06 1.3% 1.46e06 1.3% 2.88e06 1.5% 2.88e06 1.5% 1.41e06 1.8%
loop at rhsf.f90: 576 6.65e05 0.6% 6.65e05 0.6% 1.87e06 1.0% 1.87e06 1.0% 1.20e06 1.6%
loop at getrates.f: 504-505 8.00e06 7.2% 8.00e06 7.2% 8.74e06 4.7% 8.74e06 4.7% 7.35e05 1.0% 3
loop at derivative_x.f90: 213-6901.78e06 1.6% 1.78e06 1.6% 2.47e06 1.3% 2.47e06 1.3%| 6.95e05 0.9% 3

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability

 Understanding temporal behavior
e Using HPCToolkit
e Ongoing R&D

34

Parallel Radix Sort on 960 Cores

“‘Right click” on a
node in the CCT view
to graph values
across all threads

Values for all threads
graphed for the
selected context

NOTE: Must analyze
measurement data with
hpcprof-mpi to include
thread-centric metrics in
the performance database

00606 hpcviewer: mpbs-mpi2, 960 cores, radix (hopper)
" usort_x.c &3 =0
1 if (y® == NULL 8% y !« NULL)
131¢ free(y);
1 actimer_stop(a_overhead, 1, n);
1 return ans;
1319}
1320
1321 /7 The simple entry point for usort
1322 inté4
1105 usort(uintbd® x, intb4 n, intéd4 1b, intéd ub) {
1 uintbd m = ((UIBA(1) << ub) << 1) - (UIB4(1) << 1b);
1 iFQb <@ 11 ub>63 11 ub < 1b)
[[Plot graph) usort: PAPLTOT_CYC () 23
[Plot graph] usort: PAPI_TOT_CYC (I)
Q
$4.0E10
s
g R R T T R e R TR R N e S T eSS EES
2.0E10
9
z
0.0E0 $ -2 2 2 o 2 2 2 2 2 9 0 2.0 2 2 9 9 9 9. 2 5 9 9 9 2. 2.2 9 9. .9 9 9. 2.2 9 92 .9 9. 9
00.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00
Process.Thread
RO * Cuters iew | . Pt view .
T 6| A A
Scope |PAPI_TOT_CYC:Sum () = PAPI_TOT_CYC:Mean (I) PAPI_TO
S ——— et et A Sl AL
v B> MPI_Barrier 3.1le+14 £0.0% 3.lle+1l
» B) MPIR_Barrier_impl J.1le+l4 60.0% J.11le+ll
¥ B psortui6d_mpi2 1.21e+14 23.3% 1.21e+11
P loop at psort_mpi2.c: 801 5.040+13 9.7% 5.040+10
-) | 2.56e413 s.08) 2.56es10] |
> B MP goom in 2.40c413 4.6% 2.40e+10
Ploopa <OOM-out 1.0le+413 1.9% 1.01e+10
"B Copy poenr o
! Show usort_x.c: 1323
Callsite psort_r‘np|2.c: 862 MotoTM [
Show database’s raw XML
Graph PAPI_TOT_CYC () > Plot graph
Graph PAPI_TOT_CYC (E) i3 Sorted plot graph
Graph PAPI_L2_TCM (1) > Histogram graph
Craph PAPI_L2_TCM (E) > !

IJ

Radix Sort on 960 Cores: Barrier Time

sorted by rank

sorted by value

value histogram

000 hpcviewer: mpbs-mpi2, 960 cores, radix (hopper)

E [Plot graph] MPI_Barrier: P... K [Sorted plot graph] MP1_Ba... ["_’ [Plot graph] MPI_Barrier: P...

[Plot graph] MPI_Barrier: PAPI_TOT_CYC (I)

E [Plot graph) MPI_Barrier: ... &3 | = O

Rank in Sorted Order

L storam raph] WP 8arir PAPLTOT.CYC O 53

=3 . o o. °
© e =3 ° o e o . s o
£=3 O o o L] . e oo o® 9000 o0 @ o =1
° 6o coo oo o ewme o0 - oo o o® o0 o D @O 0 VOO We ®eowmw
3 o0 wom o= e=» oo 99 ¢ 000 omD ® oo % ® o » S D ©! DD ° O O 909 2N CoCWID 0™
G GEDO CENOED 0 WHMING WD 00N E 00 00 00 D ED © O NENS ERENG GEN O SODE @ W © 0N ¢ @
; ® D00 CHEED WOOD IO OO CE D IVNOEEED 0® © O CED G N0 O 000 GH WD ¢ COD CWOWO ¢ © o e °
2.0E8 -| esvee ome oo W @O O 00 CID DO O O CHEDN WHIE® O O8O weoe @ B oo o e
am © =" e G @ G ISED G @ 0 BEER e @ o * » = ° p=>4
ﬁ ® o @ o eso e e®ee o - ® OB ® 0 W ° " = ° o
] © =3 ° ° ° ° e o ° ®e 00 = o ° ° °
s © =) ° ° © © o
° °
° °
0_0[0-0'0.oo'ococ'oooo'o.ooloo.o'..ooolaooolcoao'ooco'ao
00.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00
Process.Thread
b~ (Saried olot araph] MP[Bacrier PAPLTOT_CYCTI) 53
[Sorted plot graph] MPI_Barrier: PAPI_TOT_CYC (I)
2
gZ.OES
= ‘
0.0£0 ‘_ T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000

[Histogram graph] MPI_Barrier: PAPI_TOT_CYC (I)

1E8 1,268 14E8 16E8 1.8E8 268 2268 2.4E8
Metric Value

OE0 2€7 4E7 BE7 BE7

2.6E8 2.8E8 3E8 3.2E8 3.4E8

'Q Calling Context View &2 "\\ Callers View h. Flat View

=0

36

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

 Assessing process variability

 Understanding temporal behavior
e Using HPCToolkit
e Ongoing R&D

37

Understanding Temporal Behavior

Profiling compresses out the temporal dimension

—te

mporal patterns, e.g. serialization, are invisible in profiles

What can we do? Trace call path samples
—sketch:

N times per second, take a call path sample of each thread
organize the samples for each thread along a time line
view how the execution evolves left to right

what do we view?

assign each procedure a color; view a depth slice of an execution

Processes

Time

38

Process-Time Views of PFLOTRAN

aNn hpctraceviewer

C Trace iew, = 8[15 can purn =58
3 8
Hmain
Wohoran

Mtimestepoer_module step

o0
W snessolve_

= B SNESSOdve
d - SNESSohve_LS
= S S e e = s e e e e e . S S e —— | . SNLS_‘S’SdV!
W xsPsolve

W xsPsolve_BCCS

B VecDotNorm2

B PVP_Allred ace

V101 _CRAY_SMPClus _Allr
B veiz_mcast
WVPIR_Beast_binomial
WAL Recy

W VPI01_CRAY Progress_wa
W VPIDI_CRAY progress

B VPIDI_CRAY _pridey_prog
W PicQPoll

W fast_nal_goll

B checi_eqs_for_event
WHirace

Time Range: 0.0s |1982.195 Process Range: 0.0/8184.0 Cross Mair: (129.422s, 486)

] Depth View

h N
LR RN R
| { R

8184-core execution on Cray XT5. Trace view rendered using hpctraceviewer on a Mac Book Pro Laptop.
Insets show zoomed view of marked region at different call stack depths. 39

Presenting Large Traces on Small Displays

e How to render an arbitrary portion of an arbitrarily large trace?
— we have a display window of dimensions i x w
— typically many more processes (or threads) than 4
— typically many more samples (trace records) than w

e Solution: sample the samples!
samples (of samples)

190000 0T 000 00>
00000000000

 ®©00 000000000 N

) : sample

g Trace with n processes definel

5000000000000 a pixel
C B A B A BN A B M B N B A

D 000000000000)

n --

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
 Using HPCToolkit

e Ongoing R&D

41

Where to Find HPCToolkit

ALCF Systems

— intrepid: /home/projects/hpctoolkit/ppc64/pkgs/hpctoolkit
— vesta: /home/projects/hpctoolkit/pkgs/hpctoolkit

— eureka: /home/projects/hpctoolkit/x86_64/pkgs/hpctoolkit

OLCF (Interlagos)
— Iccs/proj/hpctoolkit/pkgs/hpctoolkit-interlagos
— Iccs/proj/hpctoolkit/pkgs/hpcviewer

NERSC (Hopper)
— [Iproject/projectdirs/hpctk/hpctoolkit-hopper
— [Iproject/projectdirs/hpctk/hpcviewer

For your local Linux systems, you can download and install it

— documentation, build instructions, and software
— see http://hpctoolkit.org for instructions
— we recommend downloading and building from svn

— important notes:
— using hardware counters requires downloading and installing PAPI
— kernel support for hardware counters
on Linux 2.6.32 or better: built-in kernel support for counters

earlier Linux needs a kernel patch (perfmon2 or perfctr)

42

HPCToolkit Documentation

http://hpctoolkit.org/documentation.html

e Comprehensive user manual:

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide
— essential overview that almost fits on one page

— Using HPCToolkit with statically linked programs
— a guide for using hpctoolkit on BG/P and Cray XT

— The hpcviewer and hpctraceviewer user interfaces

— Effective strategies for analyzing program performance with
HPCToolkit

— analyzing scalability, waste, multicore performance ...
— HPCToolkit and MPI

— HPCToolkit Troubleshooting
— why don’t | have any source code in the viewer?
— hpcviewer isn’t working well over the network ... what can | do?

e |nstallation guide

43

Using HPCToolkit

 Add hpctoolkit’s bin directory to your path
— see earlier slide for HPCToolkit’'s HOME directory on your system

e Adjust your compiler flags (if you want full attribution to src)
— add -g flag after any optimization flags

e Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink mpixlf -o myapp foo.o ... lib.a -1m ...

e Decide what hardware counters to monitor

— statically-linked executables (e.g., Cray XT, BG/P)
— use hpclink to link your executable
— launch executable with environment var HPCRUN_EVENT _LIST=LIST
(BG/P hardware counters supported)
— dynamically-linked executables (e.g., Linux)
— use hpcrun -L to learn about counters available for profiling
— use papi_avail
you can sample any event listed as “profilable”
44

Collecting Performance Data

* Collecting traces

— dynamically-linked: hpcrun -t ...
— statically-linked: set environment variable HPCRUN_TRACE=1

* Launching your job using hpctoolkit

— Blue Gene

— qsub -q prod-devel -t 10 -n 2048 -c 8192\
--env OMP_NUM_THREADS=2:\
HPCRUN_EVENT _LIST=WALLCLOCK@5000:\
HPCRUN_TRACE=1 your_app

— Cray (with WALLCLOCK)
setenv HPCRUN_EVENT_LIST “WALLCLOCK@5000”
setenv HPCRUN_TRACE 1
aprun your_app

— Cray (with hardware performance counters)

— setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000 \
PAPI_L2 MISS@400000 PAPI_TLB_MISS@400000 PAPI_FP_OPS@400000”
setenv HPCRUN_TRACE 1

aprun your_app

45

Digesting your Performance Data

e Use hpcstruct to reconstruct program structure
— e.g. hpcstruct your_ app
— creates your_app.hpcstruct

 Correlate measurements to source code with hpcprof and hpcprof-mpi

— run hpcprof on the front-end node to analyze a few processes
— no per-thread profiles

— run hpcprof-mpi on the compute nodes to analyze data in parallel
— includes per-thread profiles to support thread-centric graphical view

 Digesting performance data in parallel with hpcprof-mpi

— run_cmd \
Ipath/to/hpcprof-mpi \
-S your_app.hpcstruct \
-l /path/to/lyour_app/src/’*’ \
hpctoolkit-your_app-measurements.jobid

— runcmd
— Cray: aprun
— Blue Gene: qsub -q prod-devel -t 20 -n 32 -m co

46

Analysis and Visualization

 Use hpcviewer to open resulting database

— warning: first time you graph any data, it will pause to combine
info from all threads into one file

 Use hpctraceviewer to explore traces

— warning: first time you open a trace database, the viewer will
pause to combine info from all threads into one file

 Try our our user interfaces before collecting your own data
— example performance data for Chombo on hpctoolkit.org

47

A Special Note About hpcstruct and x1f£

 IBM'’s xIf compiler emits machine code for Fortran that have
an unusual mapping back to source

e To compensate, hpcstruct needs a special option
— --loop-fwd-subst=no

— without this option, many nested loops will be missing in
hpcstruct’s output and (as a result) hpcviewer

48

Manual Control of Sampling

e Why?
— get meaningful results when measuring a shorter execution than
would really be representative.

— only want to measure solver without measuring initialization.

e How

— Environment variable
— HPCTOOLKIT_DELAY_SAMPLING=1

— API
— hpctoolkit_sampling_start()
— hpctoolkit_sampling_stop()

— Include file
— -l /Tnome/projects/hpctoolkit/ppc64/pkgs/hpctoolkit/include
— #include <hpctoolkit.h>

— Always against API library

— -L /home/projects/hpctoolkit/ppc64/pkgs/hpctoolkit/lib/hpctoolkit \
-lhpctoolkit

— APl is a no-op unless used with hpclink or hpcrun
49

HPCToolkit Capabilities at a Glance

000 hpcviewer: MOAB: mbperf_iMesh 200 B (Barcelona 2360 SE) calling context

[mbgert_iveshcpp 33 [, Typesequenceltanagerhpp 53|, st treeh view

22 ¥ Define less-than comparison for EntitySequence pointers os a comparison 0

* of the entity handles in the pointed-to EntitySequences.
Y

class SequenceCompare {
26 public: bool operator()(const EntitySequence* o,

{ return a->end_handle() < b->start_handle(); } C?S.ts for
k ¢inlined procedures

*loops

£ imedi
.

4 Calling ContextView, , Callers View| 1, Flat View,

I) o

Scope
¥ main

calls in full context

LLLLLDGM()¥: PAPLTOT_CYC ()
63e+08 100 ¢ 1.13e+11 100 §
8le+08 78.9% 0.98e+1l 86.5%
436408 39.6% 3.37e+410 29.9%)
1180410 19.38
J16e+10 19.1%)

8.
¥ B testBivoid®,int, double constr,int const) 8.
|ineg from mbperf, esh.cop: 261] (2
[loop at mbper, esh.cop. 280-313] >
¥ B imesh_getvixarrcoords_ 3.20408 37.1%
¥ B> MBCore:get_coords(unsigned long const*, int, double*) cc 3.20e+08 37.1%
¥[loop at MéCore cop: 681-693] A
2

W[linlined from sti_treeh: 472

046408 23,78 0.38e409 8.3%

V|

04e408 23,68 9.37¢409

780408 20,63

v [inlined from TypeSequenceManager hpp:27

1
0
3
2
2
20408 37.18 | 2.16e410 19.1%
9
9
8
TypeSequenceManager.hpp: 27 1.78e408 20.63 8

]
1560409 7.64
\56e409 7

Attribute Costs to Code

ann

7 Trace view =olg =0

hpcviewer: [Profile Name]

Execution time

R gevrates ! | M rhsff90 | aiffflux_gen_uif 83 |
D e < 31D /33011 increases 2.8x in the
dom « 1,1__ujUpperdt 3

loop that scales worst

ds_mixav
*(1e_0, 11, 1 nm e
*s(1e_0, 11,

loop contributes a
52| 8.9% scaling loss to

lux(lt_.0, 1t
)

o ...| whole execution
*xavg(lt..0, 1t e By -
{-\ Calling Context View | =%, Callers View | =%, Flat View, “o
284 56/
oop at iffux_gen_ujF: 197-22: 2.86006 2.60 . @

100p at derivative_x.f90: 213-6901 . 78006

Pinpoint & Quantify
Scaling Bottlenecks

calsuck

S
Wl collectves barie
Wsiret AVl

Wgusnerc Aol
Wsasnercoonas poll

add(MEMFUN_OBJT (memfunT)& obj,
memfunT memfun,
const arglTh argl, const arg2T& arg2, const argdT& argd, const TaskAttributesk
Future<REMFUTURECMEMFUN_RETURNT (memfunT))> result;
add(new TaskMemfuncmemfunT>(result,obj,memfun,argl,arg2,arg3,attr));

return resul

} | quantum chemistry; MPI + pthreads |

Bgasnerc gecevent

X Calling Context View | &, Callers View, Tz, rmv.ew{
| 4“6 fw ¥ & A~ |16 cores; 1 thread/core (4 x Barcelona) |

Scope <. % idleness (al/E)y.
Experiment Aggregate Metrics 2.35e401 100

[=]

idleness (all/E)
1.57e409 100 &

be limbalance) ¥ TOT_CYC:Sum ()
pflotran 5.28e+15 1.85e+16 100 &
¥ B timestepper_module_stepperrun_ 5.17e+15 | 1.82e+16 9s.3&|
¥ loop at timestepper.F90: 384 5.17e+15 | 1.82e+16 98.23
v B _module_stepp . 2.22e+15 | 1.33e+16 72.0%
¥ loop at timestepper.F90: 1230 2.22e+15 | 1.33e+16 72.0%
¥ loop at timestepper.F90: 1254 2.22e+15 1.32e+16 71.3%
¥ B snessolve 2.22e+15 1.30e+16 70.4%
¥ B SNESSolve 2.22e+15 1.30e+16 70.4%
¥ B SNESSolve_LS 2.22e+15 1.30e+16 70.4%
[ioopatisc 181] 1
> B3[SNES_KsPSolve . 5
> _SN(SComnutekcob 6.21e414 4

————————
ierr = |SNESComputelacobian nes,X,&snes—>jncubinn,&snes—>jn<cbian‘pre,ﬂ
S !

err - KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre, flg:
ierr = |SNES_KSPSolve{snes,snes->ksp,F,Y);CHKERRQ(ierr); v
i

000,000
000,000

SNESComputelacobian: TOT_CYC (I)

470,000,000,000

000,000

O e S N ——

1,000 2000 3,000 4000 | 5000 6000 7000 8000
Process. [hreads
SNES_KSPSolve: TOT_CYC (I)

i&u’\.iﬁ#‘\ﬂ‘r"’f""’;“

Assess Imbalance
and Variability

T there 13 o extra 1800 (n the numerator for the sclecular welght comversion

ratecony - L_ref * 1,066 / (rho.ref * a.ref)

1 g6t reaction rote from getrates ond convert units

latency for this

gt = yspeciests, 3, k. DI
TN setratestorestureCi .k piony.tempCi 3. O"ecom,
Vipec, ke chmrk 113

rrrGisk = rr.

3 * rotecony * molat(:)

enddo

loop is 14.5% of total
latency in program

“nd subroutine reaction_rate_bounds

¥ pthread_spin_unlock | EFEErSIR (LI

S ateior 100.0 | lOCK contention .
786401 75.68 accoun!s.for2'3.5ﬂa
of execution time.

v 48 madness Spinlock-unlock() const
v & inlined from worldmutex.h: 142 1.

41.2% of memory hierarchy

5 Caing Context iew 2, Callrs View_ i, Pl Vew,

T+ h 6N EA N

scone

v 4@]madness ThreadPool -add(madness:PoolTaskinterface*) 1.78e401 75.6%
v 43 inlined from worldtask.h: 581

|7-35e+00 31.2%
» €@ madness:Future<> madness:WorldObject<> task<>{7.35e+00 31.2%
v 48 inlined from worldtask.h: 569 4.560400 19.4%

92e+08 31.2%

Adding futures

ALLOCATI_VARIARLES ARSAYS i VARARLES M

 Bintegrae_erk stage 1t
1009 st Integrate_eek stage 1 gen . 47

N0 D #0401 @ CACHEMSS. 001 @

latency related to ys
array

120

7 oepthview

Analyze Behavior
over Time

» €8 madness: Future<> madness: WorldObject<>
» 48 inlined from worlddep.h: 68
v 48 inlined from worldtask.h: 570

» ¢8 madness:Future<> madness:WorldObject<>
» 48 inlined from worldtask.h: 558

» 48 madness:Future<> madness:WorldTaskQueue:add <>(mal 6.72e-01

task<>(4.56e400 19.4%

: to shared global
o4 work queue.

1.490400 6.3% (9.976407 €.3%
task<>{1.49e400 6.3%(9.97e+07 6.3%
1.38e400 5.9% |9.26e407 5.9%

2.9%

4.
4
3
3
1.53e400 6.5% |1.
9
9
9
4

.49e407 2.9%

Shift Blame from
Symptoms to Causes

ey
¥ B RACTION BATLn 0NN M

chermin,m.150. 369

resos 23

Losased 10,

T

Associate Costs with Data

hpctoolkit.org

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

» Assessing process variability
 Understanding temporal behavior
e Using HPCToolkit

e Ongoing R&D

51

Ongoing R&D

e Available in prototype form
— memory leak detection

— performance analysis of multithreaded code
— pinpoint & quantify insufficient parallelism and parallel overhead
— pinpoint & quantify idleness due to serialization at locks

* Emerging capabilities
— data-centric profiling
— GPU support
— enhanced analysis of OpenMP and multithreading

 Future work
— improving measurement scalability by using parallel file 1/O

52

Ask Me About

* Filtering traces

 Derived metrics

* Profiling OpenMP

* Profiling hybrid CPU+GPU code
 Data centric performance analysis
* Profiling programs with recursion

e Scalable trace server

53

