

HPCToolkit: Sampling-based Performance Tools for Leadership Computing

John Mellor-Crummey
Department of Computer Science
Rice University
johnmc@cs.rice.edu

http://hpctoolkit.org

Acknowledgments

Staff

- Laksono Adhianto
- Mike Fagan
- Mark Krentel

Student

— Nathan Tallent

Alumni

- Gabriel Marin (ORNL)
- Robert Fowler (RENCI)
- Nathan Froyd (CodeSourcery)

Challenges

- Gap between typical and peak performance is huge
- Complex architectures are harder to program effectively
 - processors that are pipelined, out of order, superscalar
 - multi-level memory hierarchy
 - multi-level parallelism: multi-core, SIMD instructions
- Complex applications pose challenges
 - for measurement and analysis
 - for understanding and tuning
- Leadership computing platforms: additional complexity
 - more than just computation: communication, I/O
 - immense scale
 - unique microkernel-based operating systems

Performance Analysis Principles

- Without accurate measurement, analysis is irrelevant
 - avoid systematic measurement error
 - instrumentation is often problematic
 - measure actual system, not a mock up
 - fully optimized production code on the platform of interest
- Without effective analysis, measurement is irrelevant
 - pinpoint and explain problems in terms of source code
 - binary-level measurements, source-level insight
 - compute insightful metrics
 - "unused bandwidth" or "unused flops" rather than "cycles"
- Without scalability, a tool is irrelevant
 - large codes
 - large-scale node parallelism + multithreading

Performance Analysis Goals

- Accurate measurement of complex parallel codes
 - large, multi-lingual programs
 - fully optimized code: loop optimization, templates, inlining
 - binary-only libraries, sometimes partially stripped
 - complex execution environments
 - dynamic loading vs. static linking
 - SPMD parallel codes with threaded node programs
 - batch jobs
- Effective performance analysis
 - insightful analysis that pinpoints and explains problems
 - correlate measurements with code (yield actionable results)
 - intuitive enough for scientists and engineers
 - detailed enough for compiler writers
- Scalable to petascale systems

HPCToolkit Design Principles

- Binary-level measurement and analysis
 - observe fully optimized, dynamically linked executions
 - support multi-lingual codes with external binary-only libraries
- Sampling-based measurement (avoid instrumentation)
 - minimize systematic error and avoid blind spots
 - enable data collection for large-scale parallelism
- Collect and correlate multiple derived performance metrics
 - diagnosis requires more than one species of metric
 - derived metrics: "unused bandwidth" rather than "cycles"
- Associate metrics with both static and dynamic context
 - loop nests, procedures, inlined code, calling context
- Support top-down performance analysis
 - intuitive enough for scientists and engineers to use
 - detailed enough to meet the needs of compiler writers

Outline

- Overview of Rice's HPCToolkit
- Accurate measurement
- Effective performance analysis
- Pinpointing scalability bottlenecks
 - scalability bottlenecks on large-scale parallel systems
 - scaling on multicore processors
- Using HPCToolkit
- Coming attractions

visualization
[hpcviewer]

database

interpret profile correlate w/ source
[hpcprof]

process and thread creation, finalization, signals, ...

uses "linker wrapping" to catch "control" operations

- Measure execution unobtrusively
 - launch optimized application binaries
 - dynamically-linked applications: launch with hpcrun to measure
 - statically-linked applications: measurement library added at link time control with environment variable settings
 - collect statistical call path profiles of events of interest

- Analyze binary with inpestruct. recover program structure
- analyze machine code, line map, debugging information
- extract loop nesting & identify inlined procedures
- map transformed loops and procedures to source

- Combine multiple profiles
 - multiple threads; multiple processes; multiple executions
- Correlate metrics to static & dynamic program structure

Outline

- Overview of Rice's HPCToolkit
- Accurate measurement
- Effective performance analysis
- Pinpointing scalability bottlenecks
 - scalability bottlenecks on large-scale parallel systems
 - scaling on multicore processors
- Using HPCToolkit
- Coming attractions

Measurement

Call Path Profiling

- Measure and attribute costs in context
 - sample timer or hardware counter overflows
 - gather calling context using stack unwinding

Overhead proportional to sampling frequency...
...not call frequency

Unwinding Optimized Code

- Optimized code presents challenges for unwinding
 - —optimized code often lacks frame pointers
 - —no compiler information about epilogues
 - —routines may have multiple epilogues, multiple frame sizes
 - —code may be partially stripped: no info about function bounds
- What we need
 - —where is the return address of the current frame?
 - a register, relative to SP, relative to BP
 - —where is the FP for the caller's frame?
 - a register, relative to SP, relative to BP
- Approach: use binary analysis to support unwinding

Dynamically Loaded Code (Linux)

New code may be loaded/unloaded at any time

- When a new module is loaded
 - —note new code segment mappings
 - —build table of new procedure bounds
- When a module is unloaded
 - —mark end of profiler epoch: code addresses no longer apply
 - —flush stale cached information

Measurement Effectiveness

Accurate

- PFLOTRAN on Cray XT @ 8192 cores
 - 148 unwind failures out of 289M unwinds
 - 5e-5% errors
- Flash on Blue Gene/P @ 8192 cores
 - 212K unwind failures out of 1.1B unwinds
 - 2e-2% errors
- SPEC2006 benchmark test suite (sequential codes)
 - fully-optimized executables: Intel, PGI, and Pathscale compilers
 - 292 unwind failures out of 18M unwinds (Intel Harpertown)
 - 1e-3% error

Low overhead

- e.g. PFLOTRAN scaling study on Cray XT @ 512 cores
 - measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead
- suitable for use on production runs

Outline

- Overview of Rice's HPCToolkit
- Accurate measurement
- Effective performance analysis
- Pinpointing scalability bottlenecks
 - scalability bottlenecks on large-scale parallel systems
 - scaling on multicore processors
- Using HPCToolkit
- Coming attractions

Effective Analysis

Recovering Program Structure

- Analyze an application binary
 - identify object code procedures and loops
 - decode machine instructions
 - construct control flow graph from branches
 - identify natural loop nests using interval analysis
 - map object code procedures/loops to source code
 - leverage line map + debugging information
 - discover inlined code
 - account for many loop and procedure transformations

Unique benefit of our binary analysis

- Bridges the gap between
 - lightweight measurement of fully optimized binaries
 - desire to correlate low-level metrics to source level abstractions

Analyzing Results with hpcviewer

Principal Views

Calling context tree view

- "top-down" (down the call chain)
- associate metrics with each dynamic calling context
- high-level, hierarchical view of distribution of costs

Caller's view

- "bottom-up" (up the call chain)
- apportion a procedure's metrics to its dynamic calling contexts
- understand costs of a procedure called in many places

Flat view

- "flatten" the calling context of each sample point
- aggregate all metrics for a procedure, from any context
- attribute costs to loop nests and lines within a procedure

Outline

- Overview of Rice's HPCToolkit
- Accurate measurement
- Effective performance analysis
- Pinpointing scalability bottlenecks
 - scalability bottlenecks on large-scale parallel systems
 - scaling on multicore processors
- Using HPCToolkit
- Coming attractions

The Problem of Scaling

Note: higher is better

Goal: Automatic Scaling Analysis

- Pinpoint scalability bottlenecks
- Guide user to problems
- Quantify the magnitude of each problem
- Diagnose the nature of the problem

Challenges for Pinpointing Scalability Bottlenecks

Parallel applications

- modern software uses layers of libraries
- performance is often context dependent

Monitoring

- bottleneck nature: computation, data movement, synchronization?
- 2 pragmatic constraints
 - acceptable data volume
 - low perturbation for use in production runs

Performance Analysis with Expectations

- Users have performance expectations for parallel codes
 - strong scaling: linear speedup
 - weak scaling: constant execution time
- Putting expectations to work
 - measure performance under different conditions
 - e.g. different levels of parallelism or different inputs
 - express your expectations as an equation
 - compute the deviation from expectations for each calling context
 - for both inclusive and exclusive costs
 - correlate the metrics with the source code
 - explore the annotated call tree interactively

Weak Scaling Analysis for SPMD Codes

Performance expectation for weak scaling

- work increases linearly with # processors
- execution time is same as that on a single processor
- Execute code on p and q processors; without loss of generality, p < q
- Let T_i = total execution time on i processors
- For corresponding nodes n_q and n_p
 - let $C(n_q)$ and $C(n_p)$ be the costs of nodes n_q and n_p
- Expectation: $C(n_q) = C(n_p)$

• Fraction of excess work:
$$X_w(n_q) = \frac{C(n_q) - C(n_p)}{T_q}$$

parallel overhead total time

Strong Scaling Analysis for SPMD Codes

Performance expectation for strong scaling

- work is constant
- execution time decreases linearly with # processors
- Execute code on p and q processors; without loss of generality, p < q
- Let T_i = total execution time on i processors
- For corresponding nodes n_q and n_p
 - let $C(n_q)$ and $C(n_p)$ be the costs of nodes n_q and n_p
- Expectation: $qC_q(n_q) = pC_p(n_p)$
- Fraction of excess work: $X_s(C,n_q) = \underbrace{qC_q(n_q) pC_p(n_p)}_{qT_q}$ parallel overhead total time

Pinpointing and Quantifying Scalability Bottlenecks

Scaling on Multicore Processors

- Compare performance
 - single vs. multiple processes on a multicore system
- Strategy
 - differential performance analysis
 - subtract the calling context trees as before, unit coefficient for each

Multicore Losses at the Procedure Level

Multicore Losses at the Loop Level

Outline

- Overview of Rice's HPCToolkit
- Accurate measurement
- Effective performance analysis
- Pinpointing scalability bottlenecks
 - scalability bottlenecks on large-scale parallel systems
 - scaling on multicore processors
- Using HPCToolkit
- Coming attractions

Where to Find HPCToolkit

DOE Systems

- jaguar: /ccs/proj/hpctoolkit/pkgs/hpctoolkit
- intrepid: /home/projects/hpctoolkit/pkgs/hpctoolkit
- franklin: /project/projectdirs/hpctk/pkgs/hpctoolkit

NSF Systems

- ranger: /scratch/projects/hpctoolkit/pkgs/hpctoolkit
- For your local systems, you can download and install it
 - documentation, build instructions, link to our svn repository
 - svn repository: https://outreach.scidac.gov/hpctoolkit
 - we recommend downloading and building from svn
 - important notes:
 - obtaining information from hardware counters requires downloading and installing PAPI
 - PAPI needs a kernel patch (perfmon2 or perfctr) to access hardware performance counters
 - hwc support not yet standard in Linux; this will soon change

Available Guides

http://hpctoolkit.org/documentation.html

- Using HPCToolkit with statically linked programs [pdf]
 - a guide for using hpctoolkit on BG/P and Cray XT
- Quick start guide [pdf]
 - essential overview that almost fits on one page
- The hpcviewer user interface [pdf]
- Effective strategies for analyzing program performance with HPCToolkit [pdf]
 - analyzing scalability, waste, multicore performance ...
- HPCToolkit and MPI [pdf]
- HPCToolkit Troubleshooting [pdf]
 - why don't I have any source code in the viewer?
 - hpcviewer isn't working well over the network ... what can I do?

Setup

- Add hpctoolkit's bin directory to your path
 - see earlier slide for HPCToolkit's HOME directory on your system
- Adjust your compiler flags (if you want attribution to source)
 - add -g flag after any optimization flags
- Add hpclink as a prefix to your Makefile's link line
 - e.g. hpclink CC -o myapp foo.o ... lib.a -lm ...
- Decide what hardware counters to monitor
 - Cray XT and Linux only; no counter support on BG/P yet
 - papi_avail
 - find out what hardware counter events are available
 - you can sample any event listed as "profilable"

Launching your Job

- Modify your run script to enable monitoring
 - Cray XT: set environment variable in your PBS script
 - e.g. setenv HPCRUN_EVENT_LIST "PAPI_TOT_CYC@3000000 PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000 PAPI_FP_OPS@400000"
 - Blue Gene/P: pass environment settings to qsub
 - qsub -A YourAllocation -q prod -t 30 -n 2048 --proccount 8192 -mode vn --envBG_STACKGUARDENABLE=0;\text{N} HPCRUN_EVENT_LIST=WALLCLOCK@1000:\text{V} HPCRUN_MEMSIZE=16000000 flash3.hpc

until efix 38 is installed, need this to compensate for a kernel bug

Analysis and Visualization

- Use hpcstruct to reconstruct program structure
 - e.g. hpcstruct myapp
 - creates myapp.hpcstruct
- Use hpcsummary script to summarize measurement data
 - e.g. hpcsummary hpctoolkit-myapp-measurements-5912
- Use hpcprof to correlate measurements to source code
 - select one or a few files from your measurements to analyze
 - e.g. hpcprof -S myapp.hpcstruct -I "path_to_src/*" hpctoolkitmyapp-measurements-5912/myapp-0000-000-983409-764.hpcrun
 - produces hpctoolkit-myapp-database-5912
- Use hpcviewer to open resulting database
 - if using hpcviewer on a the leadership computing platform, add recent Java implementation to your path (for hpcviewer)
 - Cray XT: module load java
 - Blue Gene/P: add /opt/soft/.../java/bin to your path

Outline

- Overview of Rice's HPCToolkit
- Accurate measurement
- Effective performance analysis
- Pinpointing scalability bottlenecks
 - scalability bottlenecks on large-scale parallel systems
 - scaling on multicore processors
- Using HPCToolkit
- Coming attractions

Coming Attractions

- Performance analysis of multithreaded code
 - pinpoint & quantify insufficient parallelism and parallel overhead
 - pinpoint & quantify idleness due to serialization at locks
- Kernel upgrade on Blue Gene/P (eFix 38)
 - will remove the need for BG_STACKGUARDENABLE=0
- Limited hardware counter measurement on Blue Gene/P
- Statistical analysis of all profiles from a parallel run
 - enable one to pinpoint load imbalance issues
- Understand how executions unfold over time
 - space-time diagrams based on call stack sampling