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Facts
Goal
Methodology

Cardiovascular Disease is the number one cause of death and
disability in the US and Europe. (37.3% of all death in the US)

In the United States, one person dies every 35 seconds from
heart disease. Aneurysm, stenos are the main cardiovascular
problems

Need to make early and fast diagnostic
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From an angiogram get the image segmentation and the flow
simulation .

⇒ Need to design a close to real time simulation
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Fact : The most consuming part of a code is the resolution of
some linear system.

Focus : Fast elliptic solver for incompressible Navier-Stokes(NS)
flow code.

Context :
Finite Volume,
Mesh topologically equivalent to Cartesian mesh,
Distributed computing with high latency network,

Goal : Build a portable hemodynamic simulator that can be
tuned for better performance.
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Incompressible NS flow in main Vessels
Navier Stokes Resolution

⇒ We need a Fast Prototyping of NS flow.

∂tU + (U.∇)U + ∇p − ν∇.(∇U) = −
1
η
ΛΩw {U − Uw(t)},

div(U) = 0,

Ωw solid wall, and Ωf flow domain.

Uw(t) speed of the wall.

L2 Penalty method: η << 1. - reference Caltagirone 84,
Angot-Bruneau-Fabrie 99., Schneider et al 2005-

Λ is a mask function provided by a level set method used in the image
segmentation of the blood vessel.

First Order algorithm , fast and robust.
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Incompressible NS flow in main Vessels
Navier Stokes Resolution

Time Step: Projection Scheme (Chorin)
Momentum Equation

−dt ν ∆U + c U = RHS1, ν << 1, dt << 1.

Pressure Equation
∆P = RHS2

⇒ Focus: : design of the optimum solver with the appropriate bo undary

conditions
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Domain Decomposition: Aitken Schwarz
Interface solver

M. Garbey and D. Tromeur Dervout: "On some Aitken like acceleration of the Schwarz Method," International Journal for Numerical

Methods in Fluids. Vol. 40(12),pp 1493-1513, 2002.

Aitken Schwarz is a domain decomposition method using the framework of
Additive Schwarz and based on an approximate reconstruction of the
dominant eigenvectors of the trace transfer operator.

Algorithm :

Step1: apply additive Schwarz with a subdomain solver

Step 2:

compute the sine (or cosine) expansion of the traces on the
artificial interface for the initial boundary condition u0

Γ and the
solution given by the first Schwarz iterative u1

Γ

apply generalized Aitken acceleration to get u∞

Γ

recompose the trace in physical space.

Step 3 : Compute in parallel the solution in each subdomain, with the
new inner BCs u∞

Γ .
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Domain Decomposition: Aitken Schwarz
Interface solver

⇒ Goal: solve quickly a linear system of a given problem

⇒ How do we choose the fastest method depending on the
sub-domain size, the architecture ?
⇒ We are looking for a performance portability and tuning.

11 Performances and Tuning for Designing a Fast Parallel Hemodynamic Simulator



Introduction and Motivations
Navier Stokes Formulation

Design of the Elliptic Solver
Performance Analysis

Navier-Stokes Applications
Conclusions

Domain Decomposition: Aitken Schwarz
Interface solver

Many approaches to solve a linear system: Ax = b

Direct solver

Krylov methods

Multigrid

⇒ Need of an interface to help the user.
12 Performances and Tuning for Designing a Fast Parallel Hemodynamic Simulator



Introduction and Motivations
Navier Stokes Formulation

Design of the Elliptic Solver
Performance Analysis

Navier-Stokes Applications
Conclusions

Domain Decomposition: Aitken Schwarz
Interface solver

⇒ Interface that calls different libraries.

⇒ Performance evaluation thanks to Surface Response.
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Build a model prediction from least square quadratic polynomial
approximation based on few runs.

Predict the behavior for various subdomains sizes.

Provide an indicator on the reliability of the model .

⇒ Model for the elapsed time T, depending on the size

T(nx, ny) = β0 + β1.nx + β2.ny + β3.n
2
x + β4.n

2
y + β5.nxny
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Performance of subdomain solvers with an
incompressible flow in a curved pipe
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Heterogeneous mesh in a U−shape pipe

BL1 and BL2 fit the wall and have orthogonal meshes to approximate the
boundary layer.

The domain denoted RD for the central part of the pipe is polygonal and it is
overlapping the boundary subdomains by few mesh cells.

This is basically a Chimera approach that is convenient to compute fluid structure
interaction.
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Comparison of the elapsed time for each subdomain with preconditioning(left graphic), precomputed(right) preconditioner.

The optimum choice of the solver for each subdomain depends on

the type of subdomain,
the fact that one reuse or not the same preconditioner or decomposition
the architecture of the processor,
the size of the problem.

⇒The choice of the wrong solver for a specific domain can slow down
the computation.
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Systematic performance computation with Lapack, Sparskit and Hypre.

The surface is very smooth for Lapack and Sparkit while for Hypre, there are a lot of variation due to

the high sensitivity of algebraic multigrid to grid sizes.
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Comparison between different solvers

Surface Response on a AMD Athlom 1800 with 2GB of RAM depending on different libraries..

⇒ For small size problem, it is better to solve the linear syste m with the LU

decomposition because it is faster than BICGTAB and AMG-GMR ES for the

Laplacian problem.
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Comparison between different architectures

Surface Response on a AMD Athlom 1800 with 2GB of RAM (left) and on a Itanium2 with 3GB of RAM.

⇒ For the same problem, the elapsed time is not the same on two di fferent

architecture. The region where BICGSTAB is faster , is not th e same. It depends

on the architecture of the computer.
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From the performance evaluation , the elapsed time depends on :

the size

the boundary condition

the architecture of the machine

How can we choose the best solver ?
Regression along 9 points to get a model use that a least square quadratic polynomial
approximation :

T(nx, ny) = β0 + β1nx + β2ny + β3n2
x + β4n2

y + β5nxny
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Speedup of Aitken Schwarz with LU and BICGSTAB
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Aitken Schwarz performs very well on small problems. Further, the Krylov method
seems to be more sensitive to the cache effect, since we have a superlinear speedup.

⇒ Does the prediction model apply for the parallel runs ?
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Prediction of the best subdomain solver.

This prediction is correct for the 2 processors computation. However as the number of
processors grows, this prediction is slightly incorrect, and one should favor the Krylov
solver.

⇒ Surface response modeling requires a 3rd dimension ( = numbe r of

processors)
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Surface response depending on the numbers of processors

For the same number of unknowns, Krylov solver seems to be fas ter for small

size when the number of processors is increased.
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⇒ Goal: solve quickly a linear system of a given problem

⇒ Are we competitive ?
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Comparison AS with PETSc
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PETSc is faster than AS with 2 and 3 processors. As the number of processors increases:
the PETSc multigrid solver does not speed up well, while AS is performing better.
AS gives a better elapsed time than the multigrid solver .
For simple problems, and with high latency network, the AS algorithm is very efficient.

⇒ Best compromise with PETSc to solve each subdomain
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Performance on the Itanium2
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0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Number of processors

E
ffi

ci
en

cy

Scalabity with 100x400 unknows on each processors on the NS 2D code on Atlantis

Figure: Scalability Performance
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Elapsed time for one step time depending on the number of subd omains and the grid size.
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Size grows by factor 8 / elapsed time by 10 Speedup!
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Tests performed on a SUN cluster. The systems gathers 24 X2100
nodes, 2.2 GHz dual core AMD Opteron processor, 2 GB main
memory each, with an Infiniband Interconnect.

Table: Elapsed time for the resolution of one step time

Number of Processors
Grid Size 2 3 4 6 8 16 20
100-50-50 0.52 0.1 0.24 0.17 0.13 0.2
200-50-50 2.08 0.98 0.58 0.34 0.26 0.23 0.29
400-50-50 12.80 3.72 2.13 1.03 0.62 0.36 0.36
300-75-75 10.39 4.96 2.89 1.53 0.93 0.67 0.69

200-100-100 8.91 4.21 2.46 1.4 1.02 0.89 1.15
400-100-100 34.8 15.5 9.08 4.34 2.68 1.48 1.41
400-200-200 188 67.7 40.2 20.16 12.65 6.65 6.32
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Speedup: the number of subdomains equal the number of processors
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Amdahl"s law− 95%

"True" Speedup: the number of subdomains equal the number of processors, Amdahl’s

law since 95% of the code is parallelized.
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Figure: Geometry of the artery
Figure: Velocity and Pressure
inside the artery
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Figure: Carotid bifurcation Figure: Velocity
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Optimum tuning of the solver provides us the fastest subdomain solver.

Aikten Schwarz a domain decomposition framework for elliptic solver, is
efficient and robust for distributed computing.

This attractive approach provides scalability and improves performances
for small problems with large number of processors.

Brings blood flow simulation close to the level of efficiency of image
processing .

Parallel processing is one way to deal with the complexity of
computational medicine.
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How can we achieve a better performance ?

Enhance the parallelism: 2D topology (Parallelize the subdomain)

Choose adapted linear algebra both for distributed and shared memory
systems (PLASMA ,)

Optimize the matrix-matrix multiplication or the FFT decomposition

Tune collective communications( ADCL Adaptive Data and
Communication Library from E. Gabriel, UH)

Interdisciplinary research collaboration is indeed neede d to
achieve the best performance for HPC applications!
Scientific computing groups + Algorithm groups + Compiler
groups.
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Thank you !
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