
1

Are there Components in
Auto-tuning?

Jeffrey K. Hollingsworth
University of Maryland

hollings@cs.umd.edu

2

Automated Performance Tuning 101

� Goal: Maximize achieved performance

� Problems:

� Large number of parameters to tune

� Shape of objective function unknown

� Multiple libraries and coupled applications

� Analytical model may not be available

� Requirements:

� Runtime tuning for long running programs

� Don’t try too many configurations

� Avoid gradients

3

Active Harmony

� Runtime performance optimization

� Can also support training runs

� Automatic library selection (code)

� Monitor library performance

� Switch library if necessary

� Automatic performance tuning (parameter)

� Monitor system performance

� Adjust runtime parameters

� Hooks for Compiler Frameworks

� Working to integrate Utah & USC/ISI Chill

4

Possible Components

� Making Auto-tuners plug into other tools

� Invoking External Search Point Instantiation

� Calls to generate a candidate configuration

� Pluggable Search Algorithms

� Testing

� Programs to auto-tuning

� Training objective functions

5

A Bit More About Harmony Search

� Pre-execution

� Sensitivity Discovery Phase

� Used to Order not Eliminate search dimensions

� Online Algorithm

� Use Parallel Rank Order Search

� Variation of Rank Oder Algorithm

� Part of the class of Generating Set Algorithms

� Different configurations on different nodes

6

Parallel Rank Ordering

Compute Reflection
Points

Compute Shrink
points

Not Success

Compute one
Expansion point

Reflect

Success

Success

Compute rest of
Expansion points

Expand

Not Success

� 2 or 3 time steps.

� N parallel
computation for
N+1 point simplex.

Shrink

7

But There Are Other Ways to Search

� Different Algorithms

� Random

� Hill Climbing

� Simulated Annealing

� Machine Learning Algorithms

� …..

8

Component #1: Search API

� Needed functionality

� Evaluate point

� Run code at a point in search space

� Likely to be a-sync to allow parallel search

� Store/Read values for point in search space

� Will include point in space, value, context (data set/machine
info)

� Query Spec

� Learn about parameters, constraints

� May use existing Math Prog API

� Query Search Strategy Info

9

Search API

� Related Questions

� Migrate ordering and grouping info to search API?

� How can we use historical data?

� Incorporating information from perf-db

� Representation of the states

� Types of iterators

� “On Demand” evaluation needed to prevent space
representation explosion

10

Component #2: Constraints

� Define the search space:

� Represent the search space symbolically

� Specify parameter types (integer vs. float)

� Represent parameter domain (range, step etc.)

� Represent constraints from:

� tools

� applications (via automated analysis)

� programmers

� Provide support for arbitrary expression and
function evaluation

11

Requirements …

� Express search hints:

� Ordering/ranking parameters (unroll before tiling)

� Group parameters, code regions and/or constraints into

sets

� Represent data from static modeling, historical runs

� Support for mapping language constructs

� Identify where in the source code (e.g. what loop) the

optimization is taking place

� Specify when and how to gather objective function
value (compile-time vs. application launch-time)

12

Specification Language

� Six main components:

� Code Region Declaration

� Region Set Declaration

� Parameter Declaration

� Constraint Declaration

� Constraint Specification

� Ordering Info

� Provides a rich expression syntax

13

Example Specification

parameter space simple_example

{

parameter x int {

range [1:1:3];
default 3;

}

parameter y int {
range [1:1:3];
default 2;

}

parameter z int {
range [1:1:3];
default 1;

}

And then the constraints.

constraint c1 {
x≥z;

}

constraint c2 {
y>z;

}

Constraint specification.

specification {
c1 AND c2;

}

Ordering information is
optional.

}

14

A Compiler Transformation Spec

parameter space tiling {
code_region loopI;
code_region loopJ;
region_set loop [loopI, loopJ];
declare tile_size parameter
parameter tile_size int {

range [2:2:256]
default 32;
region loop;

}

Arbitrary constraint
constraint c1 {

(loopI.tile_size *
loopJ.tile_size * 3 * 4) ≤
2048;

}

rectangular tiles better.
constraint c2 {

loopI.tile_size > loopJ.tile_size;
}

constraint c3 {
loopJ.tile_size > loopI.tile_size;

}

specification {
(c1 AND c2) OR (c1 AND c3);

}
}

15

Component #3: Search Point Instantiation

� Chill Compiler Transformations

� Described as a series of Recipes

� Recipes consist of a sequence of operations

� permute([stmt],order): change the loop order

� tile(stmt,loop,size,[outer-loop]): tile loop at level loop

� unroll(stmt,loop,size): unroll stmt's loop at level loop

� datacopy(stmt,loop,array,[index]):

� Make a local copy of the data

� split(stmt,loop,condition): split stmt's loop level loop into

multiple loops

� nonsingular(matrix)

16

Tool Integration: CHiLL + Active
Harmony

Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, Jeffrey K. Hollingsworth, “A Scalable Auto-tuning
Framework for Compiler Optimization,” IPDPS 2009, Rome, May 2009.

Generate and evaluate different optimizations that would have been prohibitively

time consuming for a programmer to explore manually.

17

Outlined Code
for (si = 0; si < stencil_size; si++)

for (kk = 0; kk < hypre__mz; kk++)
for (jj = 0; jj < hypre__my; jj++)

for (ii = 0; ii < hypre__mx; ii++)
rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=

((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+
(((A->data_indices)[i])[si])])*
(xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+((*dxp_s)[si])]));

CHiLL Transformation Recipe
permute([2,3,1,4])
tile(0,4,TI)
tile(0,3,TJ)
tile(0,3,TK)
unroll(0,6,US)
unroll(0,7,UI)

Constraints on Search
0 ≤ TI , TJ, TK ≤ 122
0 ≤ UI ≤ 16
0 ≤ US ≤ 10
compilers ∈ {gcc, icc}

SMG2000 Optimization

Search space:
1223x16x10x2 = 581M points

18

Componentization Can Cause Changes

� First level componentization

� Expose current functionality

� Improve Testing

� Second level

� Sometimes the next step requires internal changes

� Adding new features to enable new uses

19

Compiling New Code Variants at Runtime

Outlined

code-section

Code Generation Tools

Code Server

v1s v2s vNs

compile
r

compile
r

compile
r

v1s.so

Active Harmony

v2s.so vNs.so

Performance

Measurements (PM)

stall_phase

READY Signal

Code Transformation Parameters

PM1

PM2 PMN

Application

Execution timeline

SS1 SS2 SSN

PM1, PM2, … PMN Search Steps (SS)

Application

Harmony Timeline

20

Online Code Generation Results

� Three platforms

� umd-cluster (64 nodes, Intel Xeon dual-core nodes) –

myrinet interconnect

� Carver (1120 compute nodes, Intel Nehalem. two quad

core processors) – infiniband interconnect

� Hopper – (5,312 cores – two quad core processors,

Cray XT5) – seaStar interconnect

� Code servers

� UMD-cluster – local idle machines

� Carver & Hopper – outsourced to a machine at umd

� Codes

� PES - Poisson Solver (from Kelp distribution)

� PMLB - Parallel Multi-block Lattice Boltzman 20

21

How Many Nodes to Generate Code?

� Fixed parameters:

� Code: PES (poission solver)

� problem-size (10243)

� number of cores (128)

� Up to 128 new variants are generated at each search step

Code Servers Search
Steps+

Stalled steps+ Variations
evaluated+

Speedup+

1 6* 46 502 0.75

2 17* 13 710 0.97

4 27 7.2 928 1.04

8 23 4.5 818 1.23

12 22 4.1 833 1.21

16 26 3.6 931 1.24

* Search did not complete before application terminated

+ Mean of 5 runs

22

� All cases used 8 code servers

� Net is spedup factors in overhead of code generation cores

� Post-harmony is a second run using best config found in first

� X-axis is problem size

Runtime Code Generation Results

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

960 1024 1088 1152 1216 1280

Post-harmony

harmonized

net

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

640 786 896 1024 1152 1280

Post-harmony
harmonized
net

PMLB – 512 cores, CarverPES - 128 cores, UMD cluster

23

Run On UMD Run On Carver Run On Hopper

Size UMD Carver hopper carver UMD hopper Hopper Carver UMD

4483 1.42 1.13 1.00 1.51 1.38 1.34 1.28 1.30 1.27

5123 1.30 1.26 0.95 1.34 1.31 1.33 1.34 1.31 1.28

5763 1.38 1.16 1.02 1.42 1.39 1.27 1.31 1.35 1.30

Machine Specific Optimization

� Optimize for one machine, then run on others

� Results on speedups compared to base version

� Program is PES, all runs were 64 cores

24

Component #3: CBTF + Harmony

� Make Active Harmony a component in CBTF

� Consumer of performance Data

� Uses other components to guide search

� Supplier of performance Tuning

� Results of experiments can be improved programs in addition to
data

� User of scalable control and collection system

� Need to gather performance data from nodes

� Send out changes to application and runtime

� User of GUI and visualizations

� We are not GUI experts

� Uniform look and feel possible with CBTF

25

Component #4: Test Data

� Create a library of auto-tuning performance curves

� Include data points and objective values

� Include multiple samples per point

� Includes meta data

� Precedence

� It’s really just a benchmark of sorts

� Optimization community has challenge datasets

26

Evaluating Componentization

� Cleaner, more testable code

� Third part plugins appear

� Others start to use/add your components

� New ideas inspired by features

27

Conclusions

� Auto tuning Works!

� Real programs run faster

� Component opportunities abound

� Between “competing” auto-tuning systems

� As part of other component frameworks

� Bonus benefits of components

� Better testing

� Cleaned up code

