
MSI Petascale Performance Tools 7/18/2007

1

Stack Walking Issues

Marty Itzkowitz
SunMicrosystems

Petascale Performance Tools
Snowbird, UT
July 18, 2007



MSI Petascale Performance Tools 7/18/2007

2

Outline
• Machine-level unwind
• OpenMP unwind
• Interpreted languages
• Java
• Python



MSI Petascale Performance Tools 7/18/2007

3

Machine-level Unwind
• Recognition of frames
• Frame pointers or not

• Asynchronous-signal safety
• Profile Trigger: signal from either clock- or HWC-profiling

• Handling corner-cases
• From signal handlers
• From syscall stubs
• From hand-written assembly
• From tricky compiler constructs
• Non-ABI-compliant code



MSI Petascale Performance Tools 7/18/2007

4

OpenMPStack Walk: User-model
• Fork/Join Model
• Master thread is always there
• On entry to parallel computations, slave threads appear
• During parallel computation, all threads equivalent

• On exit from parallel region, slave threads disappear

• Actual Implementation
• Slave threads created at first parallel region
• Execution in so-called “mfunction”
• Called from OpenMP support library

– Master behavior is different from slave



MSI Petascale Performance Tools 7/18/2007

5

OpenMPUnwind
• Reconcile master and slave callstacks
• Callstacks seem natural, matching user model

• OpenMP Profiling API
• Track forks; capture master stack
• Exclude runtime frames (not interesting to users)
• Stitch together slave stack with master at fork

• Scalability issue
• Data volume grows with fork count, not time
• Especially problematic with nested parallelism
• We're working on a solution



MSI Petascale Performance Tools 7/18/2007

6

Interpreted Languages
• Java
• Two stacks: machine and user-Java
• JVM gives us user-Java stack

• Complexity of HotSpot compilation

• Python
• Same two stacks (I presume)
• How to get user-python stacks?


