
Binary Code Analysis and Editing© 2007 Barton P. Miller July 2007

A Framework for Binary Code
Analysis, and Static and

Dynamic Patching

Barton P. Miller
University of Wisconsin

bart@cs.wisc.edu

– 2 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Motivation

• Multi-platform
• Open architecture
• Extensible
• Open source

• Testable
• Suitable for batch processing
• Accurate
• Efficient

 Binary code analysis is a basic tool of security
analysts, application developers, system designers and
tool developers.

 We are designing and building a new foundation to
support such analysis.

 Existing binary analysis tools have significant
limitations.

– 3 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Why Binary Code?
 Access to the source code often is not possible:

• Proprietary software packages.
• Stripped executables.
• Proprietary libraries: communication (MPI, PVM), linear

algebra (NGA), database query (SQL libraries).
 Binary code is the only authoritative version of the

program.
• Changes occurring in the compile, optimize and link

steps can create non-trivial semantic differences from
the source and binary.

 Worms and viruses are rarely provided with source
code

– 4 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Our Starting Point: Dyninst
 A machine-independent library for machine level code

patching.
• Functions for binary code analysis
• Functions for binary code patching

 Clean abstractions to encapsulate the tool complexity.

 Originally designed as part of the Paradyn
performance profiling tool, but now widely used in
many areas, including cyber-security.

– 5 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Dynamic Instrumentation
 Does not require recompiling or relinking

• Saves time: compile and link times are
significant in real systems.

• Can instrument without the source code (e.g.,
proprietary libraries).

• Can instrument without linking (relinking is not
always possible.

 Instrument optimized code.

– 6 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Dynamic Instrumentation (con’d)
 Only instrument what you need, when you need

• No hidden cost of latent instrumentation.
• Enables “one pass” tools.

 Can instrument running programs (such as
Web or database servers)
• Production systems.
• Embedded systems.
• Systems with complex start-up procedures.

– 7 – Binary Code Analysis and Editing© 2007 Barton P. Miller

The Basic Mechanism
Application

Program

Function foo

Trampoline

Instrumentation

Relocated
Instruction(s)

– 8 – Binary Code Analysis and Editing© 2007 Barton P. Miller

The DynInst Interface
 Machine independent representation

 Write-once, analyze/instrument-many (portable)

 Object-based interface to insert new code: Abstract
Syntax Trees (AST’s)

 Hides most of the complexity in the API
• Easy to build tools: e.g., an MPI tracer: 250 lines of C++

code.

– 9 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Basic DynInst Operations
 Code query routines:

• Find control-flow elements: modules,
procedures, loops, basic blocks, instructions
– For functions, find entry, exit, call sites.
– For loops, find entry, exit, body.

• Find data elements: variables and parameters
• Call graph (parent/child) queries
• Intra-procedural control-flow graph

– 10 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Basic DynInst Operations
 Code modification routines:

• Remove Function Call
– Disable an existing function call in the application

• Replace Function Call
– Redirect a function call to a new function

• Replace Function
– Redirect all calls (current and future) to a function to a new

function.
• Replace Instruction

– Code snippet executes instead of specified instruction.
• Wrap Function

– Allow the new function to call the replaced one (potentially with
all its original parameters).

– 11 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Basic DynInst Operations
 Process control:

• Attach/create process
• Monitor process status changes
• Callbacks for fork/exec/exit

 Inferior (application processor) operations:
• Malloc/free

– Allocate heap space in application process
• Inferior RPC

– Asynchronously execute a function in the application.
• Load module

– Cause a new .so/.dll to be loaded into the application.

– 12 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Basic DynInst Operations
 Building AST code sequences:

• Control structures: if and goto
• Arithmetic and Boolean expressions
• Get effective address
• Generate instruction with calculated address.
• Get PID/TID operations
• Read/write registers and global variables
• Read/write parameters and return value
• Function call

– 13 – Binary Code Analysis and Editing© 2007 Barton P. Miller

incl ctr

sethi %hi(ctr)

ld [. . .],%o1

add %o1,%o1,1

st %o1,[. . .]

SPARC Code

Machine Independent Code
Abstract Syntax Trees:

cau r3,r0,hi%ctr
l r4,lo%ctr(r3)
addi r4,1(r4)
st r4,lo%ctr(r3)

Power Code

IA32 Code

– 14 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Binary
Code

Symbol Table
Parser

PE

ELF

COFF

IA32

AMD64

Power Disassembly

Symbol Table Dump

Code
Parser

Instruction
Decoder

Code Queries
and

Instrumentation
Requests

AST

Instr
Control

Code
Gen

Process
Control

Call
Graph

Intra
Proc
CFG

Idiom
Signatures

Stack
Walker

Idiom
Detector

* *

* *

* *

– 15 – Binary Code Analysis and Editing© 2007 Barton P. Miller

SymtabAPI
 Version 1.0 available as of June 5, 2007.

• Supports ELF, XCoff, PE (Linux, Solaris, AIX,
Windows).

 Debug information available in next release:
line numbers, local variables, types.

 Unstrip - SymtabAPI demo tool that
regenerates a stripped binary’s symbol table
• Uses code parser to find function entry points
• Uses SymtabAPI to write new symbol table into

binary.

– 16 – Binary Code Analysis and Editing© 2007 Barton P. Miller

DynStackwalker
 Available soon on all Dyninst platforms.
 Cross-platform API for collecting first and

third party stackwalks.
 Callback interface allows users to plug in their

own stack walking mechanisms, e.g:
• Walking through non-standard stack frames

created by optimized functions.
• Use stackwalking debug information provided by

another library

– 17 – Binary Code Analysis and Editing© 2007 Barton P. Miller

InstructionAPI
 Decodes machine code into abstract

instruction representation
 Interface allows straightforward data flow

and control flow analysis
• Query interface is designed for analysis, e.g.:

– Control flow targets
– Registers read/written
– Memory addresses accessed

• Instructions can be annotated with analysis
results

 Provides disassembly interface
• Pluggable formatters

– 18 – Binary Code Analysis and Editing© 2007 Barton P. Miller

BinInst Design Goals
 Tool-kit component architecture for binary

analysis and editing
 Open source
 Open data structure definitions
 Machine-independent abstract interfaces
 Batch-enabled analyses
 Static and dynamic code patching
 All major analysis products are exportable
 Enhanced testability and accompanying test

suites

– 19 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Disassembly

Symbol Table Dump

Call
Graph

Intra-Proc
CFG

Binary
Decode

and
Parsing

Code Queries
and

Instrumentation
Requests

Binary
Code

AST

Static Editing Scenario (Binary Rewriting)

Instr
Control

Code
Gen

Idiom
Signatures

– 20 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Disassembly

Symbol Table Dump

Binary
Decode

and
Parsing

Binary
Code

Interactive Editing Scenario (Static or Dynamic)

Instr
Control

Code
Gen

Call
Graph

Intra-Proc
CFG

Idiom
Signatures

– 21 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Disassembly

Symbol Table Dump

Binary
Decode

and
Parsing

Code Queries
and

Instrumentation
Requests

Binary
Code

AST

Dynamic Editing Scenario (Dynamic Instrumentation)

Instr
Control

Code
Gen

Process
Control

User
Process

Call
Graph

Intra-Proc
CFG

Idiom
Signatures

Stack
Walker

– 22 – Binary Code Analysis and Editing© 2007 Barton P. Miller

Disassembly

Symbol Table Dump

Binary
Decode

and
Parsing

Binary
Code

Analysis Scenario

Connector 2

Code
Surfer

VSA Buffer
Overrun

Other
Tool

Call
Graph

Intra-Proc
CFG

Idiom
Signatures

