
Programming in MPI for
Performance

William Gropp and Rusty Lusk

2
Argonne National

Laboratory Petascale Workshop

Outline
 Background: us, status of machines, near-term schedules
 Software environment on Leadership Class machines in which we

seek performance
– MPI and MPI-2
– Threads

 Some experimental data on LC machines and others
– Halo exchanges
– Topologies
– One-sided operations
– MPI and threads

 Selected tools enabled by MPI profiling interface
– SLOG/Jumpshot: visualizing parallel performance
– FPMPI: gathering summary statistics
– Collchk: runtime checking of correct use of collective operations

3
Argonne National

Laboratory Petascale Workshop

Our Status
 Full disclosure: we are getting started ourselves on investigating the

environments on the Leadership Class (LC) machines
– At Argonne we currently have a small (2048 cores) BG/L

• Many applications ported
• Occasional access to larger (20 rack) BG/L at IBM Watson

– We have remote access to a BG/P at IBM
• BG/P is a lot like BG/L, but better

– We have access to ORNL’s XT3 and XT4
– We have tried some things related to MPI performance (which we

will talk about here); we haven’t tried everything
– Experimentation is ongoing

 We are in the process of transferring considerable experience on
other environments to the LC machines.

4
Argonne National

Laboratory Petascale Workshop

The Application Programming
Environment on the Leadership Class
Machines
 Underlying common abstraction: multiple cores per node, many

nodes, fast network
 MPI-1

– Can run one MPI process per CPU (virtual node mode)
• Many MPI processes available
• Challenge: algorithm scaling

– Can run one MPI process per node
• More memory per MPI process
• More flops per process if can use threads to access multiple

cpus per process
• MPI implementations are “thread-

safe” (MPI_THREAD_MULTIPLE) except on BG/L

5
Argonne National

Laboratory Petascale Workshop

Programming Environment (cont.)
 MPI-2

– MPI one-sided operations (MPI_Put, MPI_Get, and friends) are
available on BG/P, XT4, not BG/L
• Performance is still a question

– MPI-IO available on all machines, implemented on different parallel
file systems
• Lustre on XT3 and XT4 at Oak Ridge, GPFS on XT4 at NERSC
• PVFS on BG/P

– MPI dynamic process management (MPI_Comm_spawn and
friends) not available on any of the LC machines

6
Argonne National

Laboratory Petascale Workshop

Programming Environment (cont.)
 Threads

– All machines have multicore nodes, allowing local shared
memory model

– On BG/L, MPI implementation is not thread-safe; nodes are not
cache-coherent

– On BG/P, exactly 4 threads per node in virtual node mode
– Similarly on XT4 (2 per node now, eventually 4)

 Programming with threads
– OpenMP compilers
– Pthreads library

 Languages
– C, C++, Fortran-90
– Co-Array Fortran and UPC
– OpenMP (both C and Fortran versions)

• Forthcoming book by Barbara Chapman et al.

7
Argonne National

Laboratory Petascale Workshop

Basic MPI: Looking Closely at a
Simple Communication Pattern

 Many programs rely on “halo exchange” (ghost cells, ghost points,
stencils) as the core communication pattern
– Many variations, depending on dimensions, stencil shape
– Here we look carefully at a simple 2-D case

 Unexpected performance behavior
– Even simple operations can give surprising performance

behavior.
– Examples arise even in common grid exchange patterns
– Message passing illustrates problems present even in shared

memory
• Blocking operations may cause unavoidable stalls

8
Argonne National

Laboratory Petascale Workshop

Processor Parallelism

• Decomposition of a mesh into 1 patch
per process

• Update formula typically a(I,j) =
f(a(i-1,j),a(i+1,j),a(I,j+1),a(I,j-1),…)

• Requires access to “neighbors” in
adjacent patches

9
Argonne National

Laboratory Petascale Workshop

Scalability of Mesh Exchange
 How does the computational effort and communication change as

the task size changes?
– Classic example is mesh exchange

 Data exchanged is the “surface” of the mesh patch; computation is
on the “volume”
– Important term is the surface to volume ratio
– Cost of surface exchanges (3-d domain, faces only):

• 1-d = 2 (s + r n2)
• 2-d = 4 (s + r n2/√p)
• 3-d = 6 (s + r n/p1/3)

– Best approach is to make these relative to floating-point work
(this is the dimensionless quantity):
• 1-d = 2(s + r n2) / n3f

 These assume that communications are non-interfering. Simple
mistakes can violate that assumption…

10
Argonne National

Laboratory Petascale Workshop

Mesh Exchange
 Exchange data on a mesh

11
Argonne National

Laboratory Petascale Workshop

Sample Code

 Do i=1,n_neighbors
 Call MPI_Send(edge(1,i), len, MPI_REAL,&
 nbr(i), tag,comm, ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Recv(edge(1,i), len, MPI_REAL,&
 nbr(i), tag, comm, status, ierr)
Enddo

12
Argonne National

Laboratory Petascale Workshop

Deadlocks!
 All of the sends may block, waiting for a matching receive (will for

large enough messages)
 The variation of

if (has down nbr) then
 Call MPI_Send(… down …)
endif
if (has up nbr) then
 Call MPI_Recv(… up …)
endif
…
sequentializes (all except the bottom process blocks)

13
Argonne National

Laboratory Petascale Workshop

Sequentialization

Start

Send

Start

Send

Start

Send

Start

Send

Start

Send

Start

Send

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

Send Recv

14
Argonne National

Laboratory Petascale Workshop

Fix 1: Use Irecv

 Do i=1,n_neighbors
 Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&
 comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
 comm, ierr)
Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

 Does not perform well in practice (at least on BG, SP). Why?

15
Argonne National

Laboratory Petascale Workshop

Understanding the Behavior: Timing
Model

Sends interleave
Sends block (data larger than buffering will allow)
Sends control timing
Receives do not interfere with Sends
Exchange can be done in 4 steps (down, right, up, left)

16
Argonne National

Laboratory Petascale Workshop

Mesh Exchange - Step 1
 Exchange data on a mesh

17
Argonne National

Laboratory Petascale Workshop

Mesh Exchange - Step 2
 Exchange data on a mesh

18
Argonne National

Laboratory Petascale Workshop

Mesh Exchange - Step 3
 Exchange data on a mesh

19
Argonne National

Laboratory Petascale Workshop

Mesh Exchange - Step 4
 Exchange data on a mesh

20
Argonne National

Laboratory Petascale Workshop

Mesh Exchange - Step 5
 Exchange data on a mesh

21
Argonne National

Laboratory Petascale Workshop

Mesh Exchange - Step 6
 Exchange data on a mesh

22
Argonne National

Laboratory Petascale Workshop

Timeline from IBM SP

• Note that process 1 finishes last, as predicted

23
Argonne National

Laboratory Petascale Workshop

Distribution of Sends

24
Argonne National

Laboratory Petascale Workshop

Why Six Steps?
 Ordering of Sends introduces delays when there is contention at the

receiver
 Takes roughly twice as long as it should
 Bandwidth is being wasted
 Same thing would happen if using memcpy and shared memory
 The interference of communication is why adding an MPI_Barrier

(normally an unnecessary operation that reduces performance) can
occasionally increase performance. But don’t add MPI_Barrier to
your code, please :)

25
Argonne National

Laboratory Petascale Workshop

Fix 2: Use Isend and Irecv

 Do i=1,n_neighbors
 Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&
 comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors
 Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
 comm, requests(n_neighbors+i), ierr)
Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

26
Argonne National

Laboratory Petascale Workshop

Mesh Exchange - Steps 1-4
 Four interleaved steps (at least, in principle)

27
Argonne National

Laboratory Petascale Workshop

Timeline from IBM SP

Note processes 5 and 6 are the only interior processors;
these perform more communication than the other
processors

28
Argonne National

Laboratory Petascale Workshop

Lesson: Defer Synchronization
 Send-receive accomplishes two things:

– Data transfer
– Synchronization

 In many cases, there is more synchronization than required
 Use nonblocking operations and MPI_Waitall to defer

synchronization
 However, this relies on the MPI implementation taking advantage of

the opportunities provided by MPI_Waitall (more on this later)

29
Argonne National

Laboratory Petascale Workshop

Using MPI For Process Placement
 MPI provides “process topology” routines to create a new

communicator with a “better” layout
 When using a regular grid, consider using these routines:

int dims[2], periodic[2];
for (i=0; i<2; i++) { dims[i] = 0; periodic[i] = 0; }
MPI_Dims_create(size, 2, dims);
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periodic, 1,
&newComm);

 The “1” tells MPI_Cart_create to reorder the mapping of processes
to create a “better” communicator for neighbor communication.

 Use newComm instead of MPI_COMM_WORLD in neighbor
communication

 There’s also an MPI_Graph_create, but it isn’t very useful (too
general). You can use MPI_Comm_split to create your very own
reordering.

30
Argonne National

Laboratory Petascale Workshop

Experiments with Topology and Halo
Communication on LC Machines
 The following slides show some results for a simple halo exchange program

(halocompare) that tries several MPI-1 approaches and several different
communicators:
– MPI_COMM_WORLD
– Dup of MPI_COMM_WORLD

• Is MPI_COMM_WORLD special in terms of performance?
– Reordered communicator - all even ranks in MPI_COMM_WORLD first,

then the odd ranks
• Is ordering of processes important?

– Communicator from MPI_Dims_create/MPI_Cart_create
• Does MPI Implementation support these, and do they help

 Communication choices are
– Send/Irecv
– Isend/Irecv
– “Phased”

31
Argonne National

Laboratory Petascale Workshop

Phased Communication
 It may be easier for the MPI implementation to either send or receive
 Color the nodes so that all senders are of one color and all receivers

of the other. Then use two phases
– Just a “Red-Black” partitioning of nodes
– For more complex patterns, more colors may be necessary

This is an example of manual
scheduling a communication
step. Only consider this if
there is evidence of inefficient
communication.

32
Argonne National

Laboratory Petascale Workshop

Halo Exchange on BG/L
 64 processes, co-processor mode, 2048 doubles to each neighbor
 Rate is MB/Sec (for all tables)

194104218107Cart_create

937111481Even/Odd

13394199112World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

33
Argonne National

Laboratory Petascale Workshop

Halo Exchange on BG/L
 128 processes, virtual-node mode, 2048 doubles to each neighbor
 Same number of nodes as previous table

132103201103Cart_create

47416448Even/Odd

726312064World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

34
Argonne National

Laboratory Petascale Workshop

BG/P Comments
 Like BG/L, except a little faster/core; 2x cores per node
 Halo exchange results show similar properties to BG/L results

– Default layout of MPI_COMM_WORLD is better for nearest
neighbor exchanges compared to BG/L, at least when these
tests were run

– Topology still matters (poor layout results in significantly reduced
effective bandwidth)

– Still running pre-ship software, so no results yet

35
Argonne National

Laboratory Petascale Workshop

Halo Exchange on Cray XT3
 1024 processes, 2000 doubles to each neighbor

129

125

148

Phased

9999117114Cart_create

97102114118Even/Odd

113116128134World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

139

108

121

Phased

109111123125Cart_create

9091104100Even/Odd

9697110109World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors(Periodic)

36
Argonne National

Laboratory Petascale Workshop

Halo Exchange on Cray XT4
 1024 processes, 2000 doubles to each neighbor

143

137

165

Phased

117117137133Cart_create

111114126128Even/Odd

136133153153World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

164

119

139

Phased

128129151151Cart_create

104104116113Even/Odd

114115131131World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors(Periodic)

37
Argonne National

Laboratory Petascale Workshop

Halo Exchange on Cray XT4
 1024 processes, SN mode, 2000 doubles to each neighbor

266

279

331

Phased

232236275265Cart_create

206212247257Even/Odd

269262306311World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

319

220

262

Phased

254256306300Cart_create

197192217217Even/Odd

233230268264World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors(Periodic)

38
Argonne National

Laboratory Petascale Workshop

Observations on Halo Exchange
 Topology is important (again)
 For these tests, MPI_Cart_create always a good idea for BG/L; often

a good idea for periodic meshes on Cray XT3/4
 Cray performance is significantly under what the “ping-pong”

performance test would predict
– The success of the “phased” approach on the Cray suggests that

some communication contention may be contributing to the slow-
down

– To see this, consider the performance of a single process
sending to four neighbors

39
Argonne National

Laboratory Petascale Workshop

Discovering Performance Opportunities

 Lets look at a single process sending to its neighbors. We expect
the rate to be roughly twice that for the halo (since this test is only
sending, not sending and receiving)

1808181117011701XT4 SN

1770177316201634XT4

1045105310071005XT3

239239294294BG/L, VN

389389490488BG/L

PeriodicPeriodic

8 Neighbors4 neighborsSystem

 BG gives roughly double the halo rate. XTn is much higher

 It should be possible to improve the halo exchange on the XT by
scheduling the communication

 Or improving the MPI implementation

40
Argonne National

Laboratory Petascale Workshop

Tuning MPI with Environment variables

 The plot shows the effect of
BGLMPI_EAGER and
BGLMPI_MAPPING on the
performance of PETSc-FUN3D
(http://www.mcs.anl.gov/~kaushik/perf.
htm) on 2048 processors of BGL.

 BGLMPI_ALLREDUCE=TORUS,
BGLMPI_ALLREDUCE=TREE select
which network is used for
MPI_Allreduce

 Cray XT also uses environment
variables

– MPICH_RANK_REORDER_METHOD
– MPI_COLL_OPT_ON

 Mapping controls can help applications
that use MPI_COMM_WORLD (most
apps should use a comm to allow the
setup code to form a “good”
communicator

41
Argonne National

Laboratory Petascale Workshop

Why Environment Variables are Bad
 On BG/P, the environment variable to control process mapping is

BGML_MAPPING
 If you use BGLMPI_MAPPING as needed on BG/L, you will not get

the expected mapping, and no warning message
 It is better to do this (portably) in your program than to count on the

vendors to remember the names of their own environment variables.

42
Argonne National

Laboratory Petascale Workshop

MPI-2: Revisiting Mesh Communication
 Do not need full generality of send/receive

– Each process can completely define what data needs to be
moved to itself, relative to each processes local mesh
• Each process can “get” data from its neighbors

– Alternately, each can define what data is needed by the neighbor
processes
• Each process can “put” data to its neighbors

 MPI-2 provides these “one-sided” or “remote memory access”
routines
– BG/L does not support these
– BG/P and Cray XTn do, but performance is still an open question
– It is possible to implement these well and get an advantage over

point-to-point communications
 First, we’ll cover some of the RMA basics. Then we’ll see some

examples of a good implementation

43
Argonne National

Laboratory Petascale Workshop

Remote Memory Access
 A key feature is that it separates data transfer from indication of

completion (synchronization)
 In message-passing, they are combined:

store
send receive

load

Proc 0 Proc 1 Proc 0 Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or

44
Argonne National

Laboratory Petascale Workshop

Remote Memory Access in MPI-2
(also called One-Sided Operations)
 Goals of MPI-2 RMA Design

– Balancing efficiency and portability across a wide class of
architectures
• shared-memory multiprocessors
• NUMA architectures
• distributed-memory MPP’s, clusters
• Workstation networks

– Retaining “look and feel” of MPI-1
– Dealing with subtle memory behavior issues: cache coherence,

sequential consistency

45
Argonne National

Laboratory Petascale Workshop

Remote Memory Access Windows
and Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

46
Argonne National

Laboratory Petascale Workshop

Basic RMA Functions for Communication

 MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator
– Collective operation
– Creates window object

 MPI_Win_free deallocates window object

 MPI_Put moves data from local memory to remote memory
 MPI_Get retrieves data from remote memory into local memory
 MPI_Accumulate updates remote memory using local values
 Data movement operations are non-blocking
 Subsequent synchronization on window object needed to

ensure operation is complete

47
Argonne National

Laboratory Petascale Workshop

Performance of RMA (early results)

Caveats: On SGI, MPI_Put uses specially allocated memory

48
Argonne National

Laboratory Petascale Workshop

Advantages of RMA Operations
 Can do multiple data transfers with a single synchronization

operation
– like BSP model

 Bypass tag matching
– effectively precomputed as part of remote offset

 Some irregular communication patterns can be more economically
expressed

 Can be significantly faster than send/receive on systems with
hardware support for remote memory access, such as shared
memory systems

49
Argonne National

Laboratory Petascale Workshop

Irregular Communication Patterns with
RMA
 If communication pattern is not known a priori, the send-

recv model requires an extra step to determine how
many sends-recvs to issue

RMA, however, can handle it easily because only the
origin or target process needs to issue the put or get call

This makes dynamic communication easier to code in
RMA

50
Argonne National

Laboratory Petascale Workshop

RMA Window Objects

MPI_Win_create(base, size, disp_unit, info, comm, win)

 Exposes memory given by (base, size) to RMA operations by other
processes in comm

 win is window object used in RMA operations
 disp_unit scales displacements:

– 1 (no scaling) or sizeof(type), where window is an array of
elements of type type

– Allows use of array indices
– Allows heterogeneity

51
Argonne National

Laboratory Petascale Workshop

Put, Get, and Accumulate

 MPI_Put(origin_addr, origin_count,
 origin_datatype,
 target_rank, target_offset,
 target_count, target_datatype,
 window)

 MPI_Get(...)

 MPI_Accumulate(..., op, ...)

 op is as in MPI_Reduce, but no user-defined operations are allowed

52
Argonne National

Laboratory Petascale Workshop

The Synchronization Issue

 Issue: Which value is retrieved?
– Some form of synchronization is required between local

load/stores and remote get/put/accumulates
 MPI provides multiple forms

local
stores

MPI_Get

53
Argonne National

Laboratory Petascale Workshop

Synchronization with Fence

Simplest methods for synchronizing on window objects:
 MPI_Win_fence - like barrier, supports BSP model

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)

54
Argonne National

Laboratory Petascale Workshop

Scalable Synchronization with
Post/Start/Complete/Wait
 Fence synchronization is not scalable because it is collective over

the group in the window object
 MPI provides a second synchronization mode: Scalable

Synchronization
– Uses four routines instead of the single MPI_Win_fence:

• 2 routines to mark the begin and end of calls to RMA
routines
– MPI_Win_start, MPI_Win_complete

• 2 routines to mark the begin and end of access to the
memory window
– MPI_Win_post, MPI_Win_wait

 P/S/C/W allows synchronization to be performed only among
communicating processes

55
Argonne National

Laboratory Petascale Workshop

Synchronization with P/S/C/W

 Origin process calls MPI_Win_start and MPI_Win_complete
 Target process calls MPI_Win_post and MPI_Win_wait

Process 0

MPI_Win_start(target_grp)

MPI_Put
MPI_Put

MPI_Win_complete(target_grp)

Process 1

MPI_Win_post(origin_grp)

MPI_Win_wait(origin_grp)

56
Argonne National

Laboratory Petascale Workshop

Process 0
MPI_Win_create

MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)

MPI_Win_free

Process 1
MPI_Win_create

MPI_Win_free

Process 2
MPI_Win_create

MPI_Win_lock(shared,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)

MPI_Win_free

Lock-Unlock Synchronization
 “Passive” target: The target process does not make any

synchronization call
 When MPI_Win_unlock returns, the preceding RMA operations are

complete at both source and target

57
Argonne National

Laboratory Petascale Workshop

Fence vs Lock/Unlock Synchronization
 Fence synchronization method requires all processes in the

communicator (that created the window) to call the fence function. It
is almost like a barrier.

 Lock/unlock synchronization is called only by the process that needs
to do the Put or Get. The target process does not call anything.
– But this is more challenging for the MPI implementation to make

fast, especially if the underlying hardware doesn’t support direct
RMA operations

58
Argonne National

Laboratory Petascale Workshop

Halo Exchange Benchmark
 Part of the mpptest benchmark; works with any MPI implementation

– Even handles implementations that only provide a subset of MPI-
2 RMA functionality

– Similar code to that in halocompare, but doesn’t use process
topologies (yet)

 Available from
 http://www.mcs.anl.gov/mpi/mpptest
 Mimics a halo, or ghost-cell, exchange that is a common component

of parallel codes that solve partial differential equations

59
Argonne National

Laboratory Petascale Workshop

Persistent Send/recv
 Persistent Send/recv:

– This version uses nonblocking operations for both sending and
receiving; primarily, this is to handle the buffering issues. In order
to increase the efficiency, MPI persistent operations are used

 This is very similar to the simple nonblocking example.
– The halo experiments with the LC systems did not show an

advantage to using persistent operations in the halocompare
tests.

60
Argonne National

Laboratory Petascale Workshop

Halo Performance (8 nbrs) Columbia 21

61
Argonne National

Laboratory Petascale Workshop

Columbia 20

62
Argonne National

Laboratory Petascale Workshop

Columbia 20

63
Argonne National

Laboratory Petascale Workshop

MPI RMA on SGI Altix
 Performance of Columbia 21 > Columbia 20 > Columbia 8
 Performance of “GET” > “PUT”
 Performance of “PUT” and “GET” is much better than “SEND” and

“RECV”
 Performance MPI RMA is much better than the POINT-TO-POINT

communication on Columbia
 RMA performance on Columbia is excellent
 On Columbia “lock-put-unlock” is 10 times better than “send-receive”
 On Columbia “fence” method is 2 times better than “send-receive”

64
Argonne National

Laboratory Petascale Workshop

Acknowledgement
 A special thanks to Subhash Saini of NASA Advanced

Supercomputing for providing the Altix runs
 Thanks to Dale Talcott of NASA Ames Research Center for running

earlier version of the benchmarks on Columbia 21.
 Thanks to Dinesh Kaushik for the XT experiments and to ORNL for

access to their machines.

65
Argonne National

Laboratory Petascale Workshop

MPI and Threads

 MPI describes parallelism between processes
 Thread parallelism provides a shared-memory model within a

process
 OpenMP and Pthreads are common models

– OpenMP provides convenient features for loop-level
parallelism

66
Argonne National

Laboratory Petascale Workshop

MPI and Threads (contd.)

 MPI-2 defines four levels of thread safety

– MPI_THREAD_SINGLE: only one thread

– MPI_THREAD_FUNNELED: only one thread that makes MPI calls

– MPI_THREAD_SERIALIZED: only one thread at a time makes MPI
calls

– MPI_THREAD_MULTIPLE: any thread can make MPI calls at any
time

 User calls MPI_Init_thread to indicate the level of thread support
required; implementation returns the level supported

67
Argonne National

Laboratory Petascale Workshop

Threads and MPI in MPI-2

 An implementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required to
be thread safe

 A fully thread-compliant implementation will support
MPI_THREAD_MULTIPLE

 A portable program that does not call MPI_Init_thread should assume
that only MPI_THREAD_SINGLE is supported

68
Argonne National

Laboratory Petascale Workshop

For MPI_THREAD_MULTIPLE

 When multiple threads make MPI calls concurrently, the outcome
will be as if the calls executed sequentially in some (any) order

 Blocking MPI calls will block only the calling thread and will not
prevent other threads from running or executing MPI functions

 It is the user's responsibility to prevent races when threads in the
same application post conflicting MPI calls

 User must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among
threads

69
Argonne National

Laboratory Petascale Workshop

Threads on LC Machines
 MPI and Threads

– MPI_Init_thread(&argc, &argv, requested, &provided)
– The four levels of thread safety

• MPI_THREAD_SINGLE
• MPI_THREAD_FUNNELED
• MPI_THREAD_SERIAL
• MPI_THREAD_MULTIPLE

 Using threads
– OpenMP

• Compiler handles most operations
– Pthreads

• Like MPI, you get to do everything yourself :)
– Limitations imposed by OS

• With current compute-node kernels, threads bound to cores
• Linux will enable real thread programming

70
Argonne National

Laboratory Petascale Workshop

Thread Performance
 Thread safety is not free

– Managing atomic access to shared data structures adds
overhead (you never know when a thread might update the same
item)

– Scheduling access to shared resources (e.g., interconnect) can
introduce additional contention

71
Argonne National

Laboratory Petascale Workshop

Overhead of Providing Thread Safety
 This test uses a single-threaded

MPI process, but uses the
“requested” argument to
MPI_Init_thread to select either
MPI_THREAD_SINGLE or
MPI_THREAD_MULTIPLE

 The IBM SP implementation has
very low overhead

 The Sun implementation has about
a 3.5 usec overhead
– Shows cost of providing thread

safety
– This cost can be lowered, but

requires great care

72
Argonne National

Laboratory Petascale Workshop

Thread Overhead
 These tests compare the

performance of short message
sends when using single-threaded
MPI processes and multiple
threaded processes, with the same
total number of threads

 For these systems, thread
overhead is high
– Achieving low-overhead

thread-safe code is difficult

73
Argonne National

Laboratory Petascale Workshop

Threads vs. Processes
 This test compares using

processes or threads to
communicate between nodes on
an SMP; the machines are a Sun
and an IBM SP

 Processes achieve a much higher
bandwidth
– Likely that processes share

interconnect more effectively
than threads on these systems

74
Argonne National

Laboratory Petascale Workshop

Some Recommendations on the Use of
Threads

Best used when threads can help balance compute load
or distribute communication

Always estimate performance and measure.
Provide realistic (but simple) test cases to help

implementations identify and solve real performance
issues

The impact of the multithreaded programming model on
scalable scientific applications is a new issue for
vendors, middleware developers, and applications alike.

75
Argonne National

Laboratory Petascale Workshop

MPI Collectives
 Can provide access to tuned algorithms for the particular physical

hardware
– Depends on the MPI implementation
– BG/L and BG/P have special networks that are used for some

collective operations when applied to all processes in
MPI_COMM_WORLD

 However, the optimized collectives may not always be the best
choice in an application

76
Argonne National

Laboratory Petascale Workshop

Broadcast Algorithms
 MPI_Bcast(buf, 100000, MPI_DOUBLE, …);
 Use a tree-based distribution:

 Use a pipeline: send the message in b byte pieces. This allows each
subtree to begin communication after b bytes sent

 Improves total performance:
– Root process takes same time (asymptotically)
– Other processes wait less

• Time to reach leaf is b log p + (n-b), rather than n log p

77
Argonne National

Laboratory Petascale Workshop

Bcast with Scatter/Gather
 Implement MPI_Bcast(buf,n,…) as

 MPI_Scatter(buf, n/p,…, buf+rank*n/p,…)
 MPI_Allgather(buf+rank*n/p, n/p,…,buf,…)

P0 P1 P3P2 P4 P5 P6 P7
Time is
O(n) +
O(log p)
instead of
O(nlogp)

78
Argonne National

Laboratory Petascale Workshop

When not to use Collective Operations
 Sequences of collective communication can be pipelined for better

efficiency
 Example: Processor 0 reads data from a file and broadcasts it to all

other processes.
– Do i=1,m

 if (rank .eq. 0) read *, a
 call mpi_bcast(a, n, MPI_INTEGER, 0, comm, ierr)
EndDo

– Takes m n log p time.
 It can be done in (m+p) n time!

79
Argonne National

Laboratory Petascale Workshop

Pipeline the Messages
 Processor 0 reads data from a file and sends it to the next process. Other

forward the data.
– Do i=1,m

 if (rank .eq. 0) then
 read *, a
 call mpi_send(a, n, type, 1, 0, comm,ierr)
 else
 call mpi_recv(a,n,type,rank-1, 0,comm,status, ierr)
 call mpi_send(a,n,type,next, 0, comm,ierr)
 endif
EndDo

80
Argonne National

Laboratory Petascale Workshop

Concurrency between Steps
 Broadcast:  Pipeline

Tim
e

Another example of deferring synchronization.
Always evaluate your strategy in the context of the big picture
Be careful of “peephole optimization”

Each broadcast takes less time then
“optimized” version, but total time is longer

Total time ≠ Σtime each

81
Argonne National

Laboratory Petascale Workshop

Solving Performance Problems
 Solving your performance problem requires that

– You understand how fast your code should go
– How fast it actually goes
– Possible interactions that may help explain the behavoir

 MPI provided a powerful hook on which tools can and are built - the
profiling interface
– In addition to general-purpose tools, this interface is available to

all
• You can build custom tools to explore application-specific

hypotheses

82
Argonne National

Laboratory Petascale Workshop

Tools Enabled by the MPI Profiling
Interface
The MPI profiling interface: how it works
Some freely available tools

– Those to be presented in other talks
– A few that come with MPICH2
•SLOG/Jumpshot: visualization of detailed timelines
• FPMPI: summary statistics
•Collcheck: runtime checking of consistency in use of
collective operations

83
Argonne National

Laboratory Petascale Workshop

MPI LibraryUser Program

Call MPI_Send

Call MPI_Bcast

MPI_Send

MPI_Bcast

The MPI Profiling Interface

Profiling
Library

PMPI_Send

MPI_Send

84
Argonne National

Laboratory Petascale Workshop

Performance Visualization with
Jumpshot

 For detailed analysis of parallel program behavior, timestamped
events are collected into a log file during the run.

 A separate display program (Jumpshot) aids the user in
conducting a post mortem analysis of program behavior.

 We use an indexed file format (SLOG-2) that uses a preview to
select a time of interest and quickly display an interval, without
ever needing to read much of the whole file.

Logfile

Jumpshot

Processes

Display

85
Argonne National

Laboratory Petascale Workshop

Viewing Multiple Scales

Each line represents
1000’s of messages

Detailed view shows opportunities
for optimization

1000x zoom

86
Argonne National

Laboratory Petascale Workshop

Pros and Cons of this Approach
 Cons:

– Scalability limits
• Screen resolution
• Big log files, although
– Jumpshot can read SLOG files fast
– SLOG can be instructed to log few types of events

– Use for debugging only indirect
 Pros:

– Portable, since based on MPI profiling interface
– Works with threads
– Aids understanding of program behavior

• Almost always see something unexpected

87
Argonne National

Laboratory Petascale Workshop

Some Examples of Jumpshot in Use
 Original FLASH Sedov, after first round of tuning
 Observing MPI interacting with threads
 GFMC
 ADLB

88
Argonne National

Laboratory Petascale Workshop

Looking at MILC in SPEC2007
 Curious amount of All_reduce in initialization - why?

89
Argonne National

Laboratory Petascale Workshop

MILC
 The answer, and how

90
Argonne National

Laboratory Petascale Workshop

MILC
 The answer - why

– Deep in innermost of quadruply nested loop, an innocent-looking
line of code:

If (i > myrank()) …

And myrank is a function that calls MPI_Comm_rank

– It actually doesn’t cost that much here, but

– It illustrates that you might not know what your code is doing what
you think it is
– Not a scalability issue (found on small # of processes)

91
Argonne National

Laboratory Petascale Workshop

FPMPI2
 Creates a text summary of the use of each MPI call
 Special Capability

– Distinguishes between messages of different sizes within 32 message bins
(essentially powers of two)

 Optionally identifies synchronization time - the time that an MPI call is forced to
wait
– On collective calls

• Separates the time that a collective call waits for the other processes to
enter the call from the time to perform the collective operation

– On blocking sends
• Determine the time until the matching receive is posted

– On blocking receives
• Determine the time that the receive waits until the message arrives

– All implemented with MPI calls
• Pro: Completely portably
• Con: Adds overhead (e.g., MPI_Send -> MPI_Issend/Test)

 Available from www.mcs.anl.gov/fpmpi .

92
Argonne National

Laboratory Petascale Workshop

Example FPMPI Output (1)

Date: Fri Sep 8 15:20:03 2006	

Processes: 4	

Execute time: 0.07528	

Timing Stats: [seconds] [min/max] [min rank/max rank]
	

 wall-clock: 0.07528 sec 0.074663 / 0.076100 1 / 2
	

 user: 0.05685 sec 0.055616 / 0.059816 1 / 0
	

 sys: 0.03737 sec 0.036252 / 0.038266 0 / 2
	

	

Memory Usage Stats (RSS) [min/max KB]: 6068/6116
	

	

 Average of sums over all processes	

Routine Calls Time Msg Length %Time by message length
	

 0.........1........1........
	

 K M	

MPI_Bcast : 2 1.81e-05 8.5 0040600000000000000000000000	

MPI_Reduce : 1 0.000124 8 00*0000000000000000000000000	

MPI_Isend : 40 0.00054 3.96e+03 0000080200000000000000000000	

MPI_Irecv : 40 0.000221 3.96e+03 0000070300000000000000000000	

MPI_Waitall : 20 0.000382

93
Argonne National

Laboratory Petascale Workshop

Example FPMPI Output (2)
Details for each MPI routine
	

 Average of sums over all processes
 % by message length
	

 (max over 0.........1........1........	

 processes [rank]) K M	

MPI_Bcast:	

Calls : 2 2 [0] 0050500000000000000000000000	

Time : 1.81e-05 2.1e-05 [2] 0040600000000000000000000000	

Data Sent : 8.5 34 [0]	

MPI_Reduce:	

Calls : 1 1 [0] 00*0000000000000000000000000	

Time : 0.000124 0.000163 [0] 00*0000000000000000000000000	

Data Sent : 8 8 [0]	

MPI_Isend:	

Calls : 40 40 [0] 0000050500000000000000000000	

Time : 0.00054 0.000637 [1] 0000080200000000000000000000	

Data Sent : 3.96e+03 4000 [2]	

Partners : 2 max 2(at 0) min 2(at 0)	

MPI_Irecv:	

Calls : 40 40 [0] 0000050500000000000000000000	

Time : 0.000221 0.000269 [2] 0000070300000000000000000000	

Data Sent : 3.96e+03 4000 [2]	

The newest version also estimates synchronization time, allowing
identification of load imbalance or misplaced sends/receives

94
Argonne National

Laboratory Petascale Workshop

Detecting Consistency Errors in MPI
Collective Operations

 The Problem: the specification of MPI_Bcast:
 MPI_Bcast(buf, count, datatype, root, comm)

 requires that
– root is an integer between 0 and the maximum rank.
– root is the same on all processes.
– The message specified by buf, count, datatype has the same

signature on all processes.
 The first of these is easy to check on each process at the entry to the

MPI_Bcast routine.
 The second two are impossible to check locally; they are consistency

requirements requiring communication to check.
 There are many varieties of consistency requirements in the MPI collective

operations.

95
Argonne National

Laboratory Petascale Workshop

Datatype Signatures

 Consistency requirements for messages in MPI (buf, count, datatype) are on not
on the MPI datatypes themselves, but on the signature of the message:
– {type1, type2, …} where typei is a basic MPI datatype

 So a message described by (buf1, 4, MPI_INT) matches a message
described by (buf2, 1, vectype), where vectype was created to be a
strided vector of 4 integers.

 For point-to-point operations, datatype signatures don’t have to match exactly (it is
OK to receive a short message into a long buffer), but for collective operations,
matches must be exact.

96
Argonne National

Laboratory Petascale Workshop

Approach
 Use the MPI profiling interface to intercept the collective calls,

“borrow” the communicator passed in, and use it to check argument
consistency among its processes.

 For example, process 0 can broadcast its value of root, and each
other process can compare with the value it was passed for root.

 For datatype consistency checks, we will communicate hash values
of datatype signatures.

 Reference: Falzone, Chan, Lusk, Gropp, “Collective Error Detection
for MPI Collective Operations”, Proceedings of EuroPVM/MPI 2005.

97
Argonne National

Laboratory Petascale Workshop

Datatype Signature Hashing

 Gropp – EuroPVM/MPI 2000
 Matching is done on pairs (a, n), where a is a hash value and n is the number of

basic datatypes in the message.
 Elementary datatypes assigned (a, 1) for chosen values of a.
 Concatenate types with

– (a,n) # (b,n) = (a xor (b << n), n+m), where << is circular left shift
– Note non-commutative to prevent (int, float) from colliding with (float, int)

 The pairs (a,n) are easy to communicate to other processes, unlike the signatures
themselves
– (No MPI datatype for MPI_Datatype)
– We will use PMPI_Bcast, PMPI_Scatter, PMPI_Allgather, PMPI_Alltoall as

needed to communicate the (vector of) hash pairs to the other processes.

98
Argonne National

Laboratory Petascale Workshop

Types of Consistency Checks

 Call – checks that all processes have made the same collective call (not
MPI_Allreduce on some processes and MPI_Reduce on others).
– Used in all collective functions

 Root – checks that the same value of root was passed on all processes
– Used in Bcast, Reduce, Gather(v), Scatter(v), Spawn, Spawn_multiple,

Connect
 Datatype – checks consistency of data arguments

– Used in all collective routines with data buffer arguments
 Op – checks consistency of operations

– Used in Reduce, Allreduce, Reduce_scatter, Scan, Exscan

99
Argonne National

Laboratory Petascale Workshop

More Types of Consistency Checks
 MPI_IN_PLACE – checks whether all process or none of the processes

specified MPI_IN_PLACE instead of a buffer.
– Used in Allgather(v), Allreduce, and Reduce_scatter

 Local leader and tag – checks consistency of these arguments
– Used only in MPI_Intercomm_create

 High/low – checks consistency of these arguments
– Used only in MPI_Intercomm_merge

 Dims – checks consistency of these arguments
– Used in Cart_create and Cart_map

100
Argonne National

Laboratory Petascale Workshop

Still More Types of Consistency Checks

 Graph – checks graph consistency
– Used in Graph_create and Graph_map

 Amode – checks file mode argument consistency
– Used in File_open

 Size, datarep, flag – checks consistency of these I/O arguments
– Used in File_set_size, File_set_automicity, File_preallocate

 Etype – checks consistency of this argument
– Used in File_set_view

 Order – checks that split-collective calls are properly ordered
– Used in Read_all_begin, Read_all_end, other split collective I/O

101
Argonne National

Laboratory Petascale Workshop

Example Output
 We try to make error output instance specific:

 Validate Bcast error (Rank 4) – root parameter (4)
is inconsistent with rank 0’s (0)

 Validate Bcast error (Rank 4) – datatype signature
is inconsistent with Rank 0’s

 Validate Barrier (rank 4) – collective call
(Barrier) is inconsistent with Rank 0’s (Bcast)

102
Argonne National

Laboratory Petascale Workshop

Experiences

 Finding errors
– Found error in MPICH2 test suite, in which a message with one MPI_INT was

allowed to match sizeof(int) MPI_BYTEs.
– MPICH2 allowed the match, but shouldn’t have.  ()
– Ran large astrophysics application (FLASH) containing many collective operations

• Collective calls all in third-party AMR library (Paramesh), but could still be
examined through MPI profiling library approach.

• Found no errors  ()
 Portability, Performance

– Linux cluster (MPICH2)
– Blue Gene (IBM’s BG/L MPI)
– Relative overhead decreases as size of message increases

• The extra checking messages are much shorter than the real messages
– Overhead can be relatively large for small messages

• Opportunities for optimization remain
– Profiling library can be removed after finding errors

103
Argonne National

Laboratory Petascale Workshop

Some Thoughts on “Hierarchical
Parallelism,” Master-Slave Algorithms,
and Load Balancing
 Old way:

– Master code manages work pool, hands out work to slaves,
collects results, “automatic” load balancing

– Intrinsically not scalable
 A possible new way: “Symmetric task farming”

– All processes repeat:
Get work from pool
Do work
Send results to whoever wants them
Put newly created work in pool

 The pool of work is managed by an opaque library
– Might use threads
– Might use some processes

104
Argonne National

Laboratory Petascale Workshop

Conclusions
 MPI provides effective ways to access communication performance

– You may need to help the implementation out
– See vendor’s documentation; e.g., for BG/L and BG/P, see the

IBM RedBooks
– However, avoid the non-standard extensions unless you can get

a significant benefit from them (e.g., use MPI_Cart_create
instead of non-standard routines)

– MPI RMA merits consideration
• But perform timing tests before committing to it
• Best to form a communication abstraction with RMA one

available implementation
– MPI Profiling interface gives you access to ways to diagnose

performance problems

105
Argonne National

Laboratory Petascale Workshop

Discussion
 Connecting these ideas to applications at this workshop

– Use of tools
– Improving performance

 Preparation of application kernels
 Is this workshop on the right track?

– Do you want to meet again next year?

