
Recent
Performance
Analysis with
Memphis

Collin McCurdy

Future Technologies Group

Motivation

• Current projections call for each chip in an
Exascale system to contain 100s to 1000s of
processing cores
– Already (~10 cores/chip) memory limitations and

performance considerations are forcing scientific
application teams to consider alternatives to “MPI-
everywhere”

– At the same time, trends in micro-processor
design are pushing memory performance
problems associated with Non-Uniform Memory
Access (NUMA) to ever-smaller scales

• Memphis uses sampling-based hardware
performance monitoring extensions to
pinpoint the sources of memory system

Why NUMA on ‘SMP’?

Chip0 Chip1

MC Mem

Bus

Chip0 Chip1

MC MC

NI NI

MemMem

Multi-chip SMP systems used
to be bus-based, limiting
scalability.

On-chip memory controllers
improve performance for local
data, but non-local data requires
communication.

Why NUMA on ‘SMP’?

MC

MC MC

N
I

N
I

MemMem

Core0

Core1

Core0

Core1

More and more pressure on
shared resources until
eventually...

MC

MC

NI

Mem

Core6

Core7

Core9

C10

Core8 C11

MC

NI

Mem

Core0

Core1

Core3

Core4

Core2 Core5

Chip0

NUMA within
socket.

MC

MC MC

N
I

N
I

MemMem

C0
C1

C3
C4

C2 C5

C0
C1

C3
C4

C2 C5

NUMA Performance Problems

• Typical performance problems associated w/
NUMA:
– Hot-spotting
• Due to poor initialization, memory not distributed across

nodes
– Computation/Data-partition mismatch
• Memory distributed, but not appropriately

• NUMA can also amplify small performance
bugs, turning them into significant problems
– Example: contention for locks and other shared

variables
• NUMA can significantly increase latency (and thus waiting

time), increasing possibility of further contention.

So, more for programmers to
worry about, but there is Good
News…
1. Mature infrastructure already exists for

handling NUMA from software level
– NUMA-aware operating systems, compilers and

runtime
– Based on years of experience with distributed

shared memory platforms like SGI Origin/Altix
2. New access to performance counters that

help identify problems and their sources
– NUMA performance problems caused by

references to remote data
– Counters naturally located in Network Interface

Instruction-Based Sampling
• Hardware-based performance monitoring extensions
– AMD -> IBS
– Intel -> PEBS-LoadLatency extensions

• Similar to ProfileMe hardware introduced in DEC Alpha
21264

• Like event-based sampling, interrupt driven; but not due
to cntr overflow
– HW periodically interrupts, follows the next instruction through

pipeline
– Keeps track of what happens to and because of the instruction
– Calls handler upon instruction retirement

• Provides the following data useful for finding NUMA
problems:
– Precise program counter of instruction
– Virtual address of data referenced by instruction
– Where the data came from: i.e., DRAM, another core’s cache
– Whether the agent was local or remote

Memphis

• Uses IBS hardware to pinpoint NUMA problems at
source

• Data-centric approach
– Sampling-based tools typically associate info w/

instructions
– Memphis associates info with variables
Key insight: The source of NUMA problem is not

necessarily where it’s evidenced
– Example: Hot spot cause is variable init, problems evident

at use
– Programmers want to know

• 1st what variable is causing problems
• 2nd where (likely multiple sites)

• Consists of three components
– Kernel module interface with IBS hardware

Key Insight: The source of a NUMA problem is not necessarily where it’s
evidenced

CPU

Memphis Runtime Components

Kernel

do
 call memphis_mark
 …
 call memphis_print
enddo

libmemphis

MEMPHISMOD

IBS
HW

samples

Memphis Post-processing
Executable

Node0 Node1

Map instructions & data addresses to src-lines and variables

Combine data for threads on a node

Per core raw data

Per core cooked data

Node0: total 3
(1) colidx 3

./cg.c: 556 3

Node1: total 232
(1) colidx 139

./cg.c: 556 135

./cg.c: 709 4
(2) a 93

./cg.c: 556 90

./cg.c: 709 3

Challenges:
1) Instructions -> src-line mapping

• Depends on quality of debug info; more likely to find loop-
nest than line

2) Address -> variable mapping
• Dynamic data (local vars in Fortran, global heap vars)

IBS Kernel Module (AMD)

• Most code stolen from Oprofile kernel
module
• Differences in interrupt handler
– Filter
• Only interested in samples that went to Northbridge

– User-level signaling
• Currently used to implement watch-point addresses

– Per-core sample buckets
• Oprofile puts samples from all threads in a single bucket

– Fixed-sized buffers
• No handler for overflow

Recent Extensions

• Mapping addresses to dynamically allocated
variables
• Port to Cray CNL
• Eclipse-based GUI

Allocation Instrumentation Tool

• Adds capability to map addresses to dynamically
allocated variables
• Based on a Tau tool, built on top of Program

Database Toolkit from University of Oregon
• Easily integrated into build process
– Extra step in the rule to compile F90 files in Makefile

• At runtime, each dynamic allocation dumps
variable-to-address-range mapping for use by
post-processing tool
• Potential drawbacks
– Adds overhead to each dynamic allocation
– Requires access to source (i.e., cannot instrument

libraries)

Memphis on Cray Platforms

• Compute Node Linux (CNL) is Linux-based
– many components of Memphis work on Cray platforms

without modification
• One exception: the kernel module
– Several predefined kernel constants and functions not

contained in the CNL distribution
– Required finding and hard-coding values into calls

that set configuration registers
• Kernel module port complicated by the black-

box nature of CNL (not open-source)
– Required the help of a patient Cray engineer (John

Lewis) to perform first half of each iteration of the
compile-install-test-modify loop

• Also required: mechanism for making Memphis
available to jobs that want to use it

Runtime Policy and Configuration

• Goal:
– Maximize the availability of Memphis for selected

users, while minimizing impact of a bleeding-edge
kernel module on others

• Policy:
– Kernel module is always available on a single,

dedicated node of the system
• On system reboots the kernel module is installed on the

dedicated node and a device entry created in /dev
– Users that want to access Memphis have a

‘reservation’ on that node
• Realized as a Moab standing reservation

• Only one node provides sample data
– We have found that this is sufficient for our needs
– Intra-node performance is typically uniform across

Eclipse GUI
NODE: 0 total: 14
000) ~/apps/cesm1_0/cam-homme-ne2np4/cam:<sem2> [0x1d00ea8 - 0x1d00eb0] 10
 ~/apps/cesm1_0/cam-homme-ne2np4/cam:<omp_set_lock>:0xaa022b [0x1d00ea8 - 0x1d00eb0] 10
001) [map-anon-0]:<x_rbx> [0x1fb0dd8 - 0x1fb0de0] 2
 ~/apps/cesm1_0/cam-homme-ne2np4/cam:<_mp_penter64>:0xaa0388 [0x1fb0dd8 - 0x1fb0de0] 2
002) ~/apps/cesm1_0/cam-homme-ne2np4/cam:<bar> [0x1cc0540 - 0x1ccc708] 1
 ~/apps/cesm1_0/cam-homme-ne2np4/cam:<_mp_barrier>:0xa9ecb2 [0x1cc0540 - 0x1ccc708] 1
003) [heap]:<elem> [0x51728b8 - 0x554dcb8] 1
 ~/apps/cesm1_0/cam-homme-ne2np4/./stepon.F90:262:0x97376a [0x5492e40 - 0x5492e48] 1

NODE: 1 total: 914
000) [heap]:<edge%buf> [0x5561ba0 - 0x56e4b48] 265
 ~/apps/cesm1_0/cam-homme-ne2np4/./edge_mod.F90:212:0x56081a [0x55657c0 - 0x5694e88] 20
 ~/apps/cesm1_0/cam-homme-ne2np4/./edge_mod.F90:212:0x560825 [0x5566b40 - 0x56e39c8] 19
 ~/apps/cesm1_0/cam-homme-ne2np4/./edge_mod.F90:212:0x56084a [0x55666c0 - 0x56c06a8] 19
 ~/apps/cesm1_0/cam-homme-ne2np4/./edge_mod.F90:212:0x56080a [0x5563380 - 0x56db348] 17
 ~/apps/cesm1_0/cam-homme-ne2np4/./edge_mod.F90:212:0x560821 [0x5563b00 - 0x56c4888] 16
 ...
001) [heap]:<elem> [0x51728b8 - 0x554dcb8] 242
 ~/apps/cesm1_0/cam-homme-ne2np4/./prim_advance_mod.F90:1648:0x7a3c3d [0x5173eb8 - 0x5502450] 16
 ~/apps/cesm1_0/cam-homme-ne2np4/./prim_advance_mod.F90:2150:0x7a88f0 [0x5172a40 - 0x552a730] 12
 ~/apps/cesm1_0/cam-homme-ne2np4/./prim_advance_mod.F90:2150:0x7a88e5 [0x519ded8 - 0x5500b18] 11
 ~/apps/cesm1_0/cam-homme-ne2np4/./prim_advance_mod.F90:1798:0x7a585b [0x5218100 - 0x54b0888] 10
 ~/apps/cesm1_0/cam-homme-ne2np4/./prim_advection_mod.F90:1911:0x7b848d [0x5193538 - 0x5548ea8] 7
 ~/apps/cesm1_0/cam-homme-ne2np4/./derivative_mod.F90:1983:0x5226dc [0x5242b40 - 0x54d87c8] 6
 ~/apps/cesm1_0/cam-homme-ne2np4/./prim_advection_mod.F90:1301:0x7b0ef0 [0x51e5fe8 - 0x551fdd0] 6
 ~/apps/cesm1_0/cam-homme-ne2np4/./prim_advance_mod.F90:1648:0x7a3c44 [0x5173278 - 0x5502710] 5
 ...

Eclipse GUI

Memphis Evaluation

• Quick demonstration of two aspects of
‘performance’
– Runtime overhead
– Usefulness
• Application performance improvements

Runtime Overhead

 IBS Off,
No Instrumentation

IBS On,
InstrumentedBase

Mod1
Mod2

40.69 41.18
36.29 36.63
35.90 36.31

• Even with allocation statements instrumented,
overhead is ~1%.

Performance Improvements: CESM

• Memphis-directed changes to one file (of
many).
• Performance of 12 threads (two NUMA nodes)

Current Work

• Problem with IBS: refs to outstanding misses
– Secondary references to blocks serviced from the

Northbridge are marked as L1 hits, albeit with
extremely long latency

• Can lead to false negatives
– Apparent ‘fix’, indicated by lower remote reference

counts, doesn’t improve performance as expected.
• Exploring modifications to filtering mechanism in

kernel module
– Let through long-latency L1 hits
– Unfortunately, latency can have other causes
• Resource contention

Conclusion

• NUMA is already a problem, and it will only
get worse...but there is hope.
– Memphis is a toolset that uses sampling-based

hardware performance monitoring extensions to
pinpoint the sources of memory performance
problems

– Memphis is now available on Cray platforms
– We have used Memphis to find and fix significant

problems in several large-scale production
applications

• Want us to look at an application? Let us
know!

