
1

A Slice of CScADS:
Performance Tools for Petascale Platforms

John Mellor-Crummey

Laksono Adhianto, Mike Fagan, Michael Franco,
Mark Krentel, Reed Landrum, Xu Liu, Nathan Tallent

Department of Computer Science
Rice University

Center for Scalable Application Development Software

SciDAC 2010 July 2010

 CScADS Co-PIs and Senior Personnel

2

John Mellor-Crummey, Keith Cooper

Peter Beckman, Ewing Lusk

Jack Dongarra

Bart Miller

Katherine Yelick

3

CScADS Mission
• Provide open source software systems, tools, and components

that address a spectrum of needs
– directly usable by application experts
– support development of enabling technologies by the CS community

• Target architectures of critical interest to DOE
– Cray XT
– Blue Gene/P
– multicore processors in general

• Engage DOE application teams and vendors
• Engage the research community in SciDAC challenges

SciDAC-2 Mission
• Develop comprehensive scientific computing software

infrastructure to enable petascale science
• Develop new generation of data management and

knowledge discovery tools for large data sets

 CScADS Research and Development
Vertical integration across the petascale software stack

• System software for leadership computing platforms
• Communication libraries
• Math libraries
• Open source compilers
• Performance tools and infrastructure
• Application engagement: analysis and tuning

– e.g., Annual CScADS Workshop on Leadership Computing
• experts worked with approximately 200 INCITE and SciDAC code

developers to help them scale to DOE’s largest systems

4

• Why doesn’t my application scale as well as I hoped?
• How can I identify bottlenecks in multithreaded node programs?
• How is my code performing relative to peak performance?

– if my code is not performing well, what is the nature of its problems?

5

Key Performance Questions

• Cope with complex application characteristics
– large, multi-lingual programs
– fully optimized code: loop optimization, templates, inlining
– binary-only libraries, sometimes partially stripped
– hybrid programs: MPI + OpenMP

• Cope with complex execution environments
– static or dynamic binaries
– batch jobs

• Provide effective performance analysis
– pinpoint and quantify problems
– yield actionable results

• Scale to leadership computing platforms

6

 Performance Tool Requirements

• Introduction to HPCToolkit
• Five new approaches for analyzing parallel program performance

– scalability analysis using call path profiles [SC09]

– blame shifting to analyze lock contention in threaded codes [PPoPP10]

– pinpointing load imbalance in parallel codes [SC10]

– understanding temporal dynamics of parallel codes
– data centric analysis of program performance

• Conclusions

7

 Outline

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

• Compile and link for production
– with full optimization

• For statically-linked executables (e.g. for Cray XT or BG/P)
– use hpclink script to incorporate our monitoring library

database

HPCToolkit Performance Tools

9

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

Measure execution unobtrusively
– launch optimized application binaries
– collect call path profiles of events of interest

database

HPCToolkit Performance Tools

10

11

Call Path Profiling

Call path sample

instruction pointer

return address

return address

return address

 Calling Context Tree (CCT)

Overhead proportional to sampling frequency ...
... not call frequency

Measure and attribute costs in context
• Sample timer or hardware counter overflows
• Gather calling context using stack unwinding

12

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

Analyze binary to recover program structure
– analyze machine code, line map, and debugging information
– extract loop nesting information and identify inlined procedures
– map transformed loops and procedures back to source

database

HPCToolkit Performance Tools

13

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

• Combine multiple profiles
– multiple threads; multiple processes; multiple executions

• Correlate measurements to static and dynamic program structure

database

HPCToolkit Performance Tools

14

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

• Explore performance data from multiple perspectives
• Rank order by metrics to focus on what’s important
• Compute derived metrics to gain insight
• Explore call stack traces to understand transient behavior

database

HPCToolkit Performance Tools

MOAB Mesh Library from ITAPS

costs for
• inlined procedures
• loops
• function calls in full context

calling context
view

• Introduction to HPCToolkit
• Five new approaches for analyzing parallel program performance

– scalability analysis using call path profiles [SC09]

– blame shifting to analyze lock contention in threaded codes [PPoPP10]

– pinpointing load imbalance in parallel codes [SC10]

– understanding temporal dynamics of parallel codes
– data centric analysis of program performance

• Conclusions

15

 Outline

17

 Pinpointing Scalability Bottlenecks

.00

.25

.50

.75

1.00

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

?

Note: higher is better

18

 Scalability Analysis Challenges
• Parallel applications

– modern software uses layers of libraries
– performance is often context dependent

• Monitoring
– bottleneck nature: computation, data movement, synchronization?
– pragmatics: need low data volume and low perturbation

Example climate code skeleton

19

 Analyzing Weak Scaling: 1K to 10K processors

200K

400K600K =

10K 1K

Weak scaling

−

• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be

combined to create many different applications

19Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

 Scalability Analysis Demo: FLASH

Code: University of Chicago FLASH
Simulation: white dwarf collapse
Platform: Blue Gene/P
Experiment: 8192 vs. 256 processors
Scaling type: weak

 Pinpointing a Scalability Loss in Flash

21% of the program’s scaling
loss is due to a loop over all
processors in the adaptive
mesh refinement setup called
during program initialization

 Improved Flash Scaling of AMR Setup

21Graph courtesy of Anshu Dubey, U Chicago

22

Text and figures courtesy of Jacqueline H. Chen, SNL

S3D - DNS Solver

• Solves compressible reacting Navier-Stokes equations
• High fidelity numerical methods

– 8th order finite-difference
– 4th order explicit RK integrator

• Hierarchy of molecular transport models
• Detailed chemistry
• Multi-physics (sprays, radiation and soot)

– from SciDAC-TSTC (Terascale Simulation of Turbulent Combustion)

23

 S3D: Multicore Losses at the Loop Level

Execution time
increases 2.8x in the
loop that scales worst

loop contributes a
6.9% scaling loss to
whole execution

• Introduction to HPCToolkit
• Five new approaches for analyzing parallel program performance

– scalability analysis using call path profiles [SC09]

– blame shifting to analyze lock contention in threaded codes [PPoPP10]

– pinpointing load imbalance in parallel codes [SC10]

– understanding temporal dynamics of parallel codes
– data centric analysis of program performance

• Conclusions

24

 Outline

• Lock contention => idleness
– explicitly threaded programs (Pthreads, etc)
– implicitly threaded programs (critical sections in OpenMP, ...)

• Strategy: “blame-shifting” of contention from victim to perpetrator
– use shared state (locks) to communicate blame

• How it works
– consider spin-waiting
– sample a working thread:

• charge to ‘work’ metric
– sample an idle thread

• accumulate in idleness counter associated with a lock (atomic add)
– working thread releases a lock

• atomically swap 0 with lock’s idleness counter
• exactly represents contention while that thread held the lock
• unwind the call stack to attribute lock contention to a calling context

25

 Understanding Lock Contention in Threaded Code

26

 Lock Contention in MADNESS

lock contention
accounts for 23.5%
of execution time.

Adding futures
to shared global
work queue.

µs16 cores; 1 thread/core (4 x Barcelona)

Quantum chemistry; MPI + pthreads
• 65M distinct locks
• max. of 340K live locks
• 30K lock acquisitions/sec/thread

1-5% overhead

• Introduction to HPCToolkit
• Five new approaches for analyzing parallel program performance

– scalability analysis using call path profiles [SC09]

– blame shifting to analyze lock contention in threaded codes [PPoPP10]

– pinpointing load imbalance in parallel codes [SC10]

– understanding temporal dynamics of parallel codes
– data centric analysis of program performance

• Conclusions

27

 Outline

 Identifying Load Imbalance Post Mortem

1. Identify exposed waiting: all imbalance is manifested in waiting

2. Identify balance points (procedures or
loops that cannot contribute to imbalance)

3. Blame imbalance on the computation
subtree in which it originates

4. Associate each (summary) node with thread-level metric values
28

 Load Imbalance Analysis Example

29

PFLOTRAN: modeling multi-scale, multiphase, multi-component
subsurface reactive flows

Example use: modeling sequestration of CO2
in deep geologic formations, where resolving
density-driven fingering patterns is necessary
to accurately describe the rate of dissipation

of the CO2 plume

Text and figures courtesy of PFLOTRAN Team

Strong scaling
study on Cray XT

30

30

PFLOTRAN

2. Notice top two
call sites...

3. Plot the per-process
values:

Early finishers...

... become early
arrivers at Allreduce

1. Drill down ‘hot path’
to loop (a balance point)

8K cores, Cray XT5

• Introduction to HPCToolkit
• Five new approaches for analyzing parallel program performance

– scalability analysis using call path profiles [SC09]

– blame shifting to analyze lock contention in threaded codes [PPoPP10]

– pinpointing load imbalance in parallel codes [SC10]

– understanding temporal dynamics of parallel codes
– data centric analysis of program performance

• Conclusions

31

 Outline

32

Time

• Profiling compresses out the temporal dimension
– that’s why serialization is invisible in profiles

• What can we do? Trace call path samples
– sketch:

• N times per second, take a call path sample of each thread
• organize the samples for each thread along a time line
• view how the execution evolves left to right
• what do we view?

– assign each procedure a color; view execution with a depth slice

Understanding Temporal BehaviorUnderstanding Temporal Behavior

33

 Flash White Dwarf Collapse on 256 Cores

Full execution at call stack depth 2

34

 Flash White Dwarf Collapse on 256 Cores

Full execution at call stack depth 5

35

 Flash White Dwarf Collapse on 256 Cores

Execution detail at call stack depth 5

• Introduction to HPCToolkit
• Five new approaches for analyzing parallel program performance

– scalability analysis using call path profiles [SC09]

– blame shifting to analyze lock contention in threaded codes [PPoPP10]

– pinpointing load imbalance in parallel codes [SC10]

– understanding temporal dynamics of parallel codes
– data centric analysis of program performance

• Conclusions

36

 Outline

• Goal: associate memory hierarchy locality problems with particular
data structures

• Approach
– intercept memory allocations to associate data range with allocation
– associate latency with data structures using “instruction based

sampling” capability of AMD Opteron CPUs
• identify instances of loads and store instructions
• identify the data structure an access touches based on L/S address
• measure the total latency associated with each L/S

– present results in hpcviewer

37

Data Centric Analysis

Data Centric Analysis of S3D

38

41.2% of exposed
latency related to
yspecies array

yspecies latency
associated with this
loop is 14.5% of
total latency in
program

Conclusions

• Obtain insight, accuracy & precision by combining call path
profiling, binary analysis, and blame shifting

• Show surprisingly effective measurement and source-level
attribution for fully optimized code (1-3% overhead)
– statements in their full static and dynamic context
– project low-level measurements to much higher levels

• Sampling-based measurements can deliver insight into a range of
phenomena
– scalability bottlenecks
– sources of lock contention
– load imbalance
– temporal dynamics
– problematic data structures

39

Some Challenges Ahead

• Data management for scalable measurement and analysis
• Moving from descriptive to prescriptive feedback
• Increasing importance of threading as core counts increase
• Heterogeneous architectures, e.g. GPU accelerators

40

