

A Slice of CScADS: Performance Tools for Petascale Platforms

John Mellor-Crummey

Laksono Adhianto, Mike Fagan, Michael Franco, Mark Krentel, Reed Landrum, Xu Liu, Nathan Tallent

Department of Computer Science Rice University

SciDAC 2010

July 2010

CScADS Co-PIs and Senior Personnel

John Mellor-Crummey, Keith Cooper

Peter Beckman, Ewing Lusk

Jack Dongarra

Bart Miller

Katherine Yelick

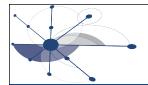
CScADS Mission

- Provide open source software systems, tools, and components that address a spectrum of needs
 - directly usable by application experts
 - support development of enabling technologies by the CS community
- Target architectures of critical interest to DOE
 - Cray XT
 - Blue Gene/P
 - multicore processors in general
- Engage DOE application teams and vendors
- Engage the research community in SciDAC challenges

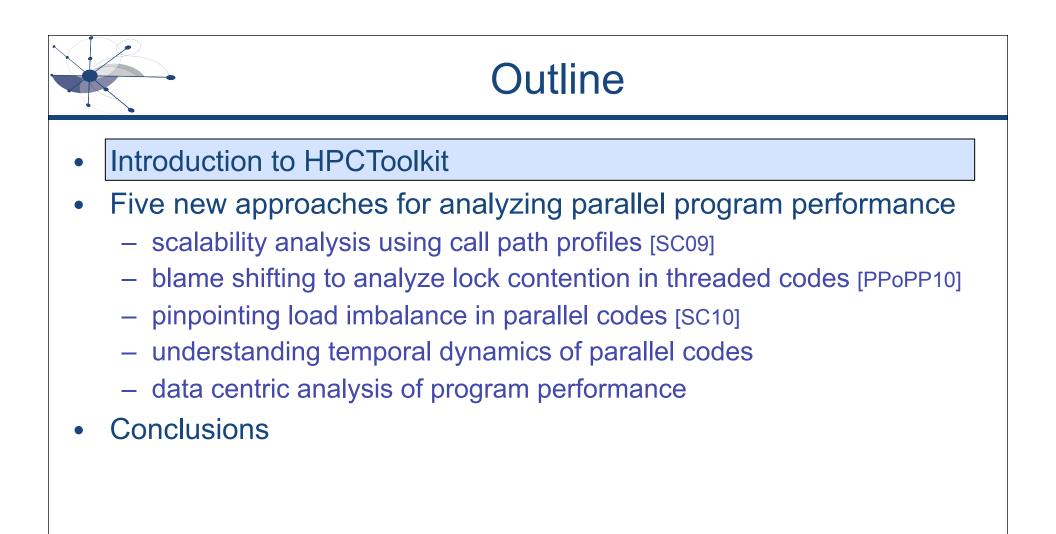

SciDAC-2 Mission

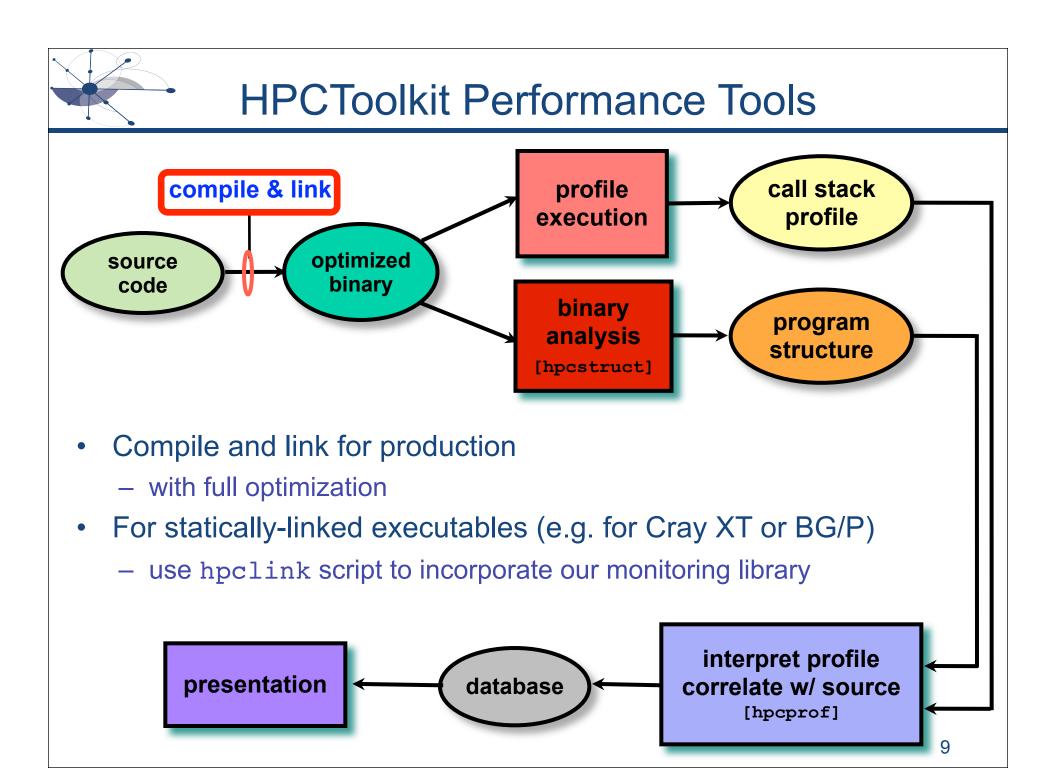
- Develop comprehensive scientific computing software infrastructure to enable petascale science
- Develop new generation of data management and knowledge discovery tools for large data sets

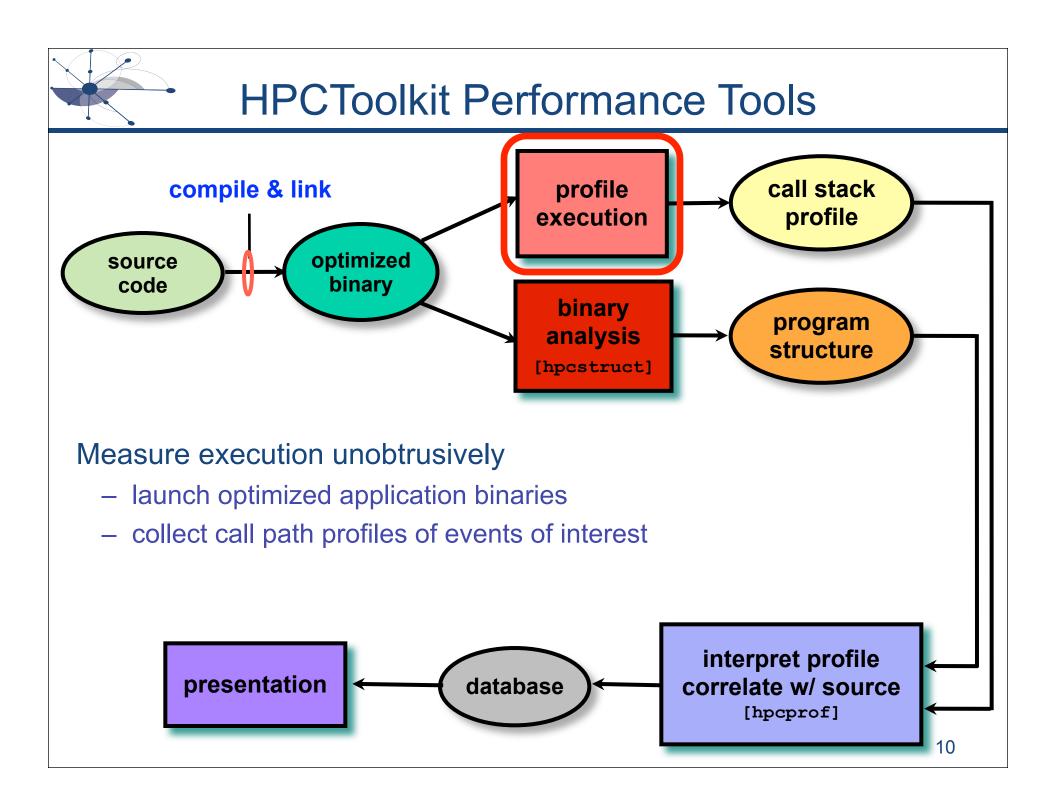
CScADS Research and Development


Vertical integration across the petascale software stack

- System software for leadership computing platforms
- Communication libraries
- Math libraries
- Open source compilers
- Performance tools and infrastructure
- Application engagement: analysis and tuning
 - e.g., Annual CScADS Workshop on Leadership Computing
 - experts worked with approximately 200 INCITE and SciDAC code developers to help them scale to DOE's largest systems

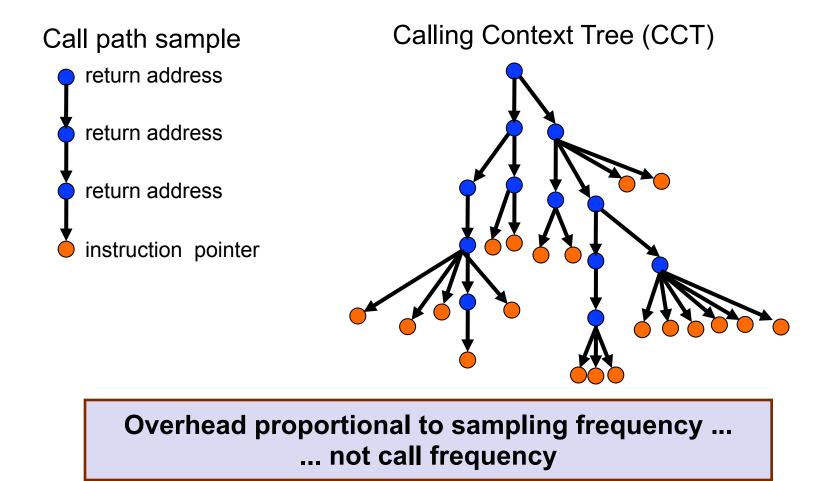

Key Performance Questions

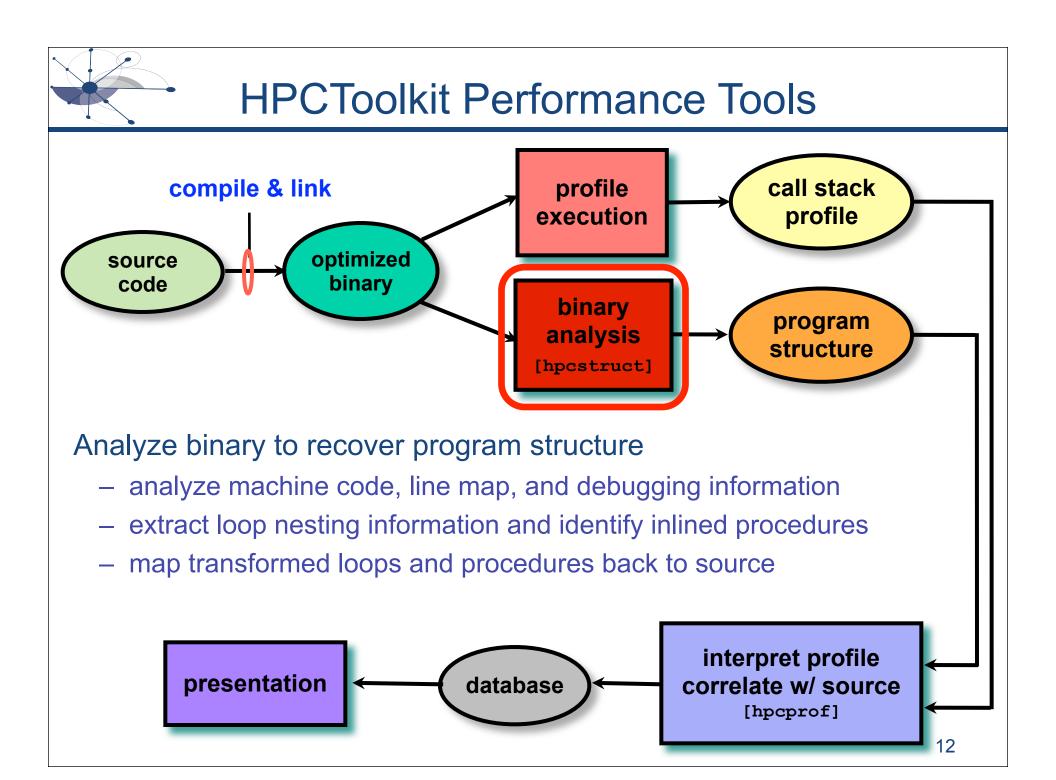

- Why doesn't my application scale as well as I hoped?
- How can I identify bottlenecks in multithreaded node programs?
- How is my code performing relative to peak performance?
 - if my code is not performing well, what is the nature of its problems?

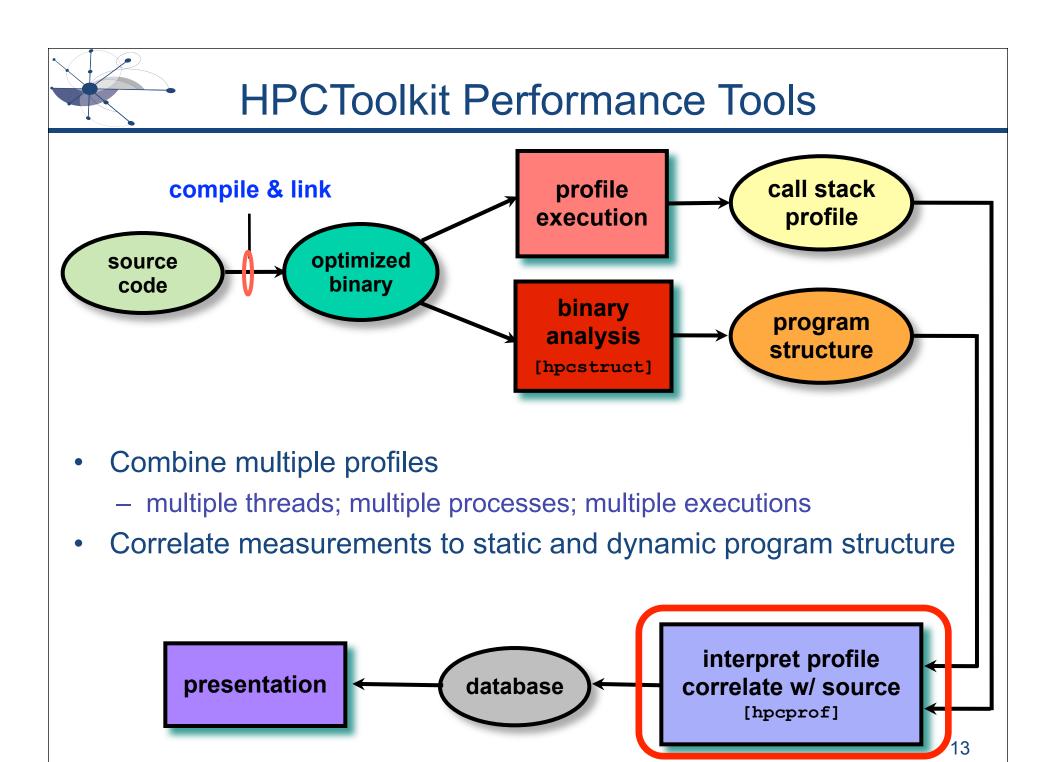


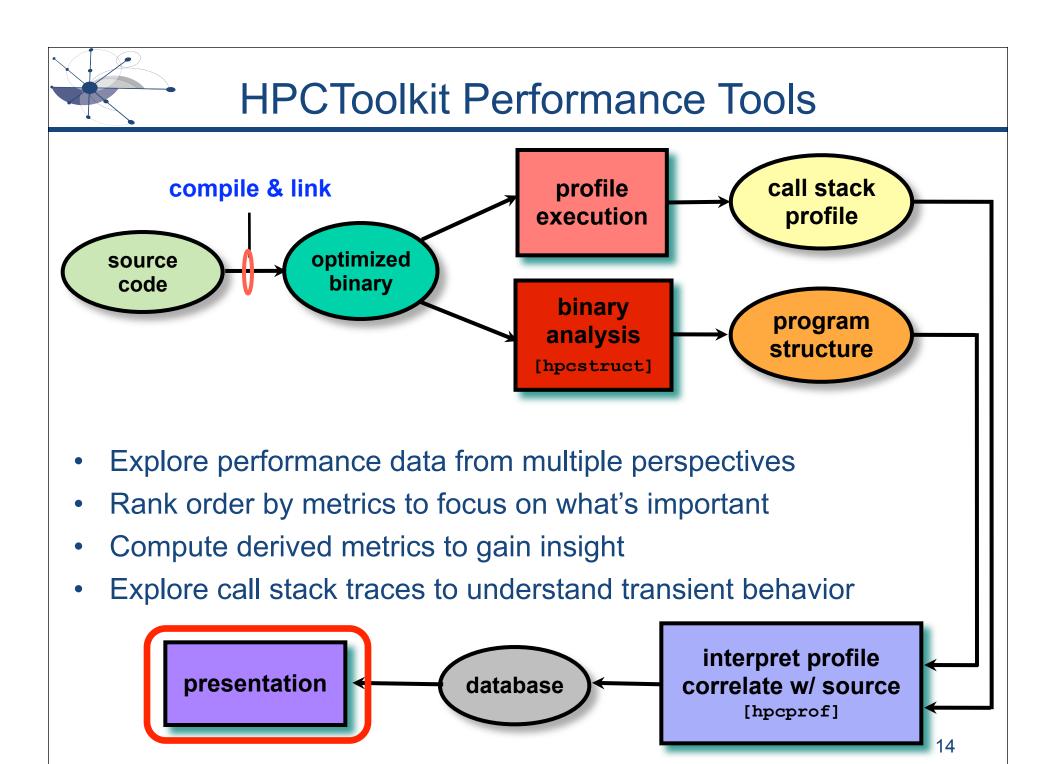
Performance Tool Requirements

- Cope with complex application characteristics
 - large, multi-lingual programs
 - fully optimized code: loop optimization, templates, inlining
 - binary-only libraries, sometimes partially stripped
 - hybrid programs: MPI + OpenMP
- Cope with complex execution environments
 - static or dynamic binaries
 - batch jobs
- Provide effective performance analysis
 - pinpoint and quantify problems
 - yield actionable results
- Scale to leadership computing platforms

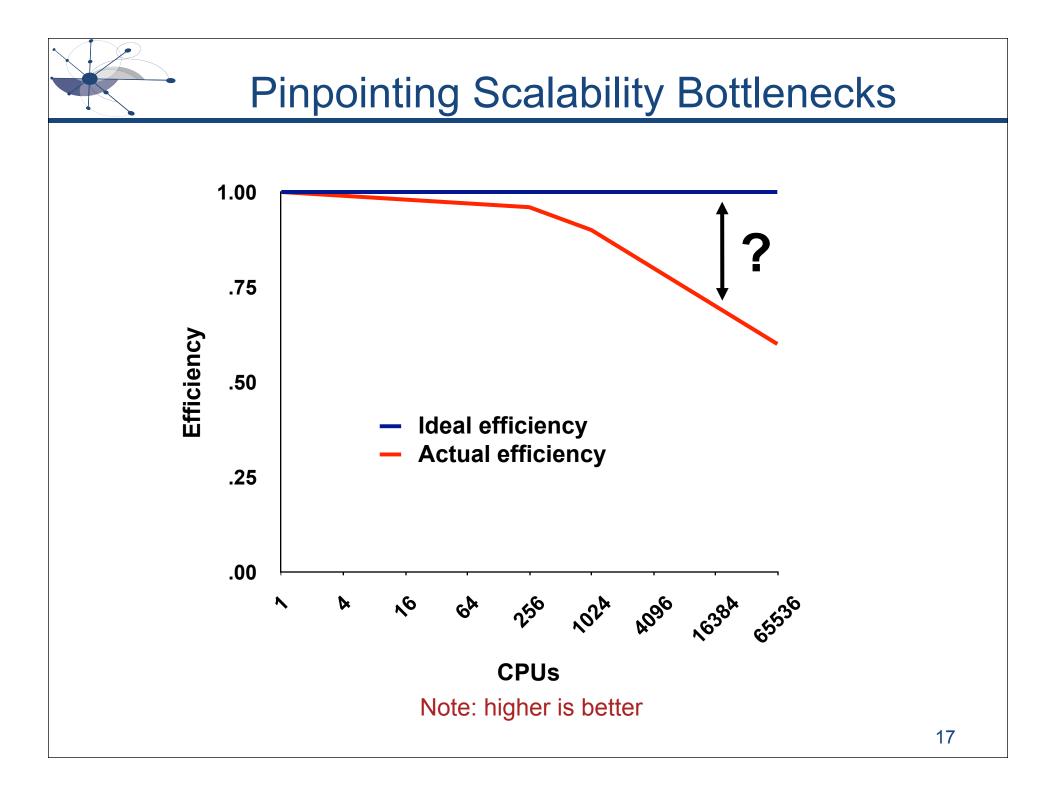


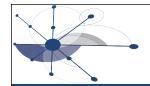



Call Path Profiling

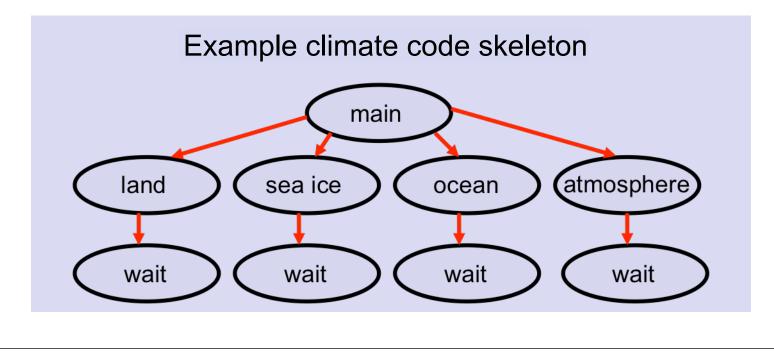

Measure and attribute costs in context

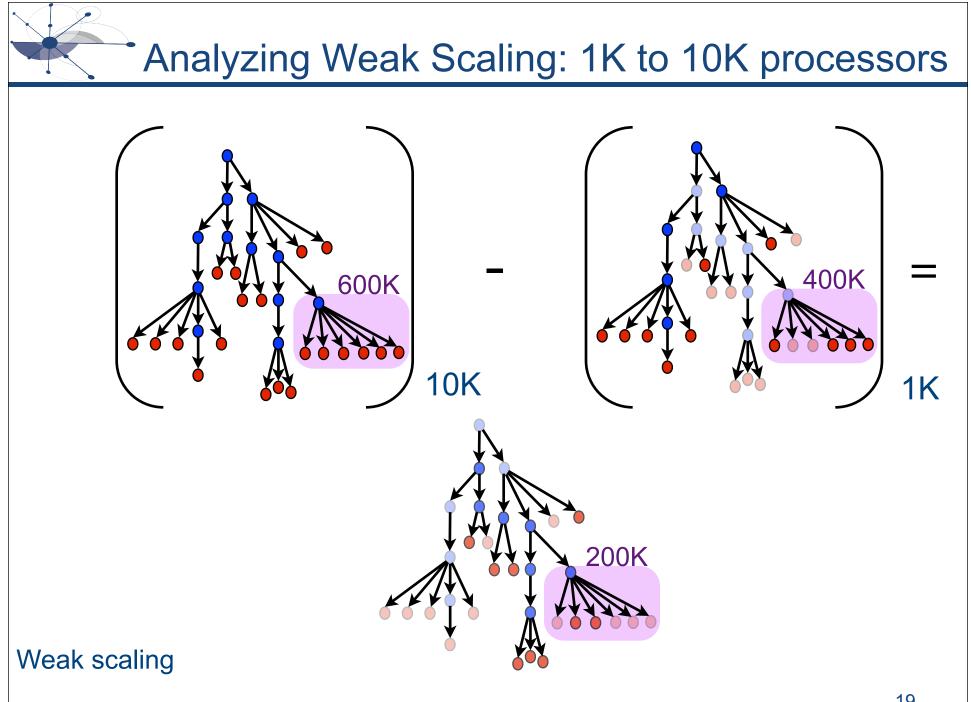
- Sample timer or hardware counter overflows
- Gather calling context using stack unwinding

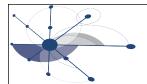




MOAB Mesh Library from	m ITAPS	6
🔴 🔿 🔿 hpcviewer: MOAB: mbperf_iMesh 200 B (Barcelo	ona 2360 SE)	calling context
👻 mbperf_iMesh.cpp 🖾 🞯 TypeSequenceManager.hpp 🖾 🞯 stl_tree.h		view
22 * Define less-than comparison for EntitySequence pointers a 23 * of the entity handles in the pointed-to EntitySequences. 24 */	s a comparison	0
<pre>25 class SequenceCompare { 26 public: bool operator()(const EntitySequence* a, 27 { return a->end_handle() < b->start_handle(); } </pre>	s for avence* b) ned procedu	
Calling Context View Callers View Callers View Flat View ↓ Flat View • loo • loo • fun		full context
Scope	PAPI_L1_DCM (I) V	PAPI TOT CYC (I) P
The main the	8.63e+08 100 %	1.13e+11 100 % 📉
▼ main ▼ B testB(void*, int, double const*, int const*)		1.13e+11 100 %
	8.35e+08 96.7%	
testB(void*, int, double const*, int const*)	8.35e+08 96.7%	1.10e+11 97.6%
 testB(void*, int, double const*, int const*) inlined from mbperf_iMesh.cpp: 261 	8.35e+08 96.7% 6.81e+08 78.9%	1.10e+11 97.6% 0.98e+11 86.5% 3.37e+10 29.9%
 testB(void*, int, double const*, int const*) inlined from mbperf_iMesh.cpp: 261 loop at mbperf_iMesh.cpp: 280-313 	8.35e+08 96.7% 6.81e+08 78.9% 3.43e+08 39.8% 3.20e+08 37.1%	1.10e+11 97.6% 0.98e+11 86.5% 3.37e+10 29.9% 2.18e+10 19.3%
 testB(void*, int, double const*, int const*) inlined from mbperf_iMesh.cpp: 261 loop at mbperf_iMesh.cpp: 280-313 Imesh_getvtxarrcoords_ 	8.35e+08 96.7% 6.81e+08 78.9% 3.43e+08 39.8% 3.20e+08 37.1%	1.10e+11 97.6% 0.98e+11 86.5% 3.37e+10 29.9% 2.18e+10 19.3% 2.16e+10 19.1%
 testB(void*, int, double const*, int const*) inlined from mbperf_iMesh.cpp: 261 loop at mbperf_iMesh.cpp: 280-313 Imesh_getvtxarrcoords_ MBCore::get_coords(unsigned long const*, int, double*) 	8.35e+08 96.7% 6.81e+08 78.9% 3.43e+08 39.8% 3.20e+08 37.1% cc 3.20e+08 37.1%	1.10e+11 97.6% 0.98e+11 86.5% 3.37e+10 29.9% 2.18e+10 19.3% 2.16e+10 19.1% 2.16e+10 19.1%
 testB(void*, int, double const*, int const*) inlined from mbperf_iMesh.cpp: 261 loop at mbperf_iMesh.cpp: 280-313 imesh_getvtxarrcoords_ MBCore::get_coords(unsigned long const*, int, double*) loop at MBCore.cpp: 681-693 	8.35e+08 96.7% 6.81e+08 78.9% 3.43e+08 39.8% 3.20e+08 37.1% 3.20e+08 37.1% 3.20e+08 37.1%	1.10e+11 97.6% 0.98e+11 86.5% 3.37e+10 29.9% 2.18e+10 19.3% 2.16e+10 19.1% 2.16e+10 19.1%
 testB(void*, int, double const*, int const*) inlined from mbperf_iMesh.cpp: 261 loop at mbperf_iMesh.cpp: 280-313 imesh_getvtxarrcoords_ MBCore::get_coords(unsigned long const*, int, double*) loop at MBCore.cpp: 681-693 inlined from stl_tree.h: 472 	8.35e+08 96.7% 6.81e+08 78.9% 3.43e+08 39.8% 3.20e+08 37.1% 3.20e+08 37.1% 3.20e+08 37.1% 2.04e+08 23.7% 2.04e+08 23.6%	1.10e+11 97.6% 0.98e+11 86.5% 3.37e+10 29.9% 2.18e+10 19.3% 2.16e+10 19.1% 2.16e+10 19.1% 9.38e+09 8.3%
 testB(void*, int, double const*, int const*) inlined from mbperf_iMesh.cpp: 261 loop at mbperf_iMesh.cpp: 280-313 imesh_getvtxarrcoords_ MBCore::get_coords(unsigned long const*, int, double*) loop at MBCore.cpp: 681-693 inlined from stl_tree.h: 472 loop at stl_tree.h: 1388 	8.35e+08 96.7% 6.81e+08 78.9% 3.43e+08 39.8% 3.20e+08 37.1% 3.20e+08 37.1% 3.20e+08 37.1% 2.04e+08 23.7% 2.04e+08 23.6%	1.10e+11 97.6% 0.98e+11 86.5% 3.37e+10 29.9% 2.18e+10 19.3% 2.16e+10 19.1% 9.38e+09 8.3% 9.37e+09 8.3%

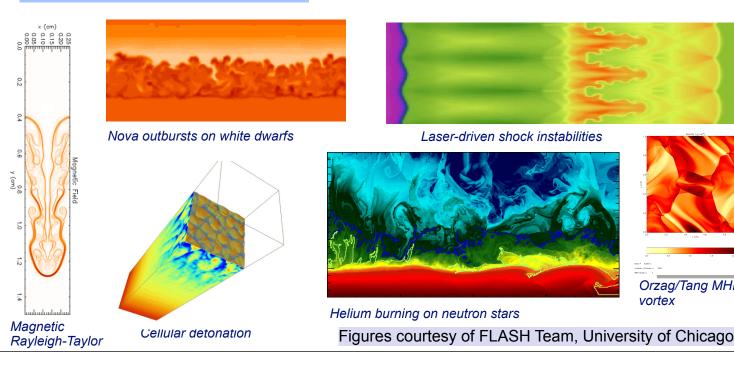

	- Outline
•	Introduction to HPCToolkit Five new approaches for analyzing parallel program performance – scalability analysis using call path profiles [SC09] – blame shifting to analyze lock contention in threaded codes [PPoPP10] – pinpointing load imbalance in parallel codes [SC10] – understanding temporal dynamics of parallel codes – data centric analysis of program performance Conclusions

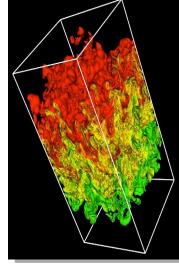




Scalability Analysis Challenges

- Parallel applications
 - modern software uses layers of libraries
 - performance is often context dependent
- Monitoring
 - bottleneck nature: computation, data movement, synchronization?
 - pragmatics: need low data volume and low perturbation





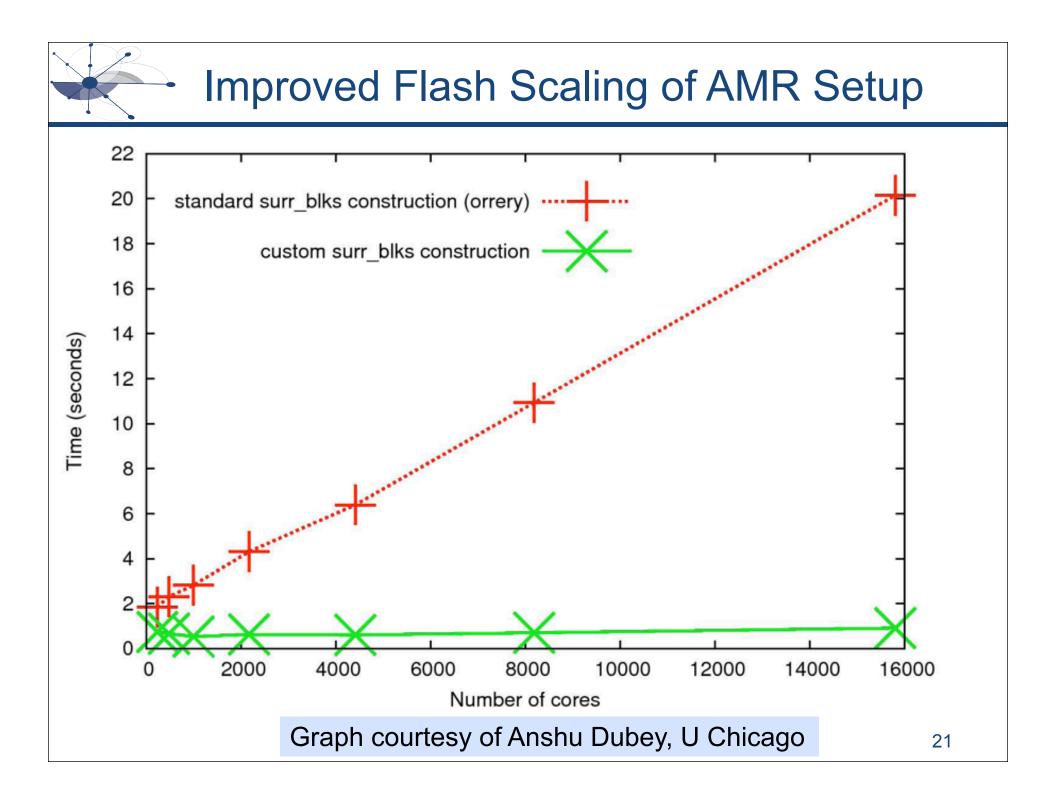
Scalability Analysis Demo: FLASH

Code: Simulation: **Platform**: **Experiment**: Scaling type:

University of Chicago FLASH white dwarf collapse Blue Gene/P 8192 vs. 256 processors weak

Rayleigh-Taylor instability

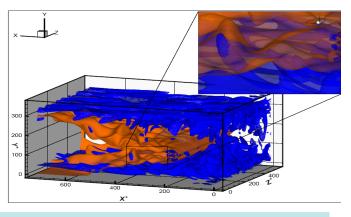
Orzag/Tang MHD

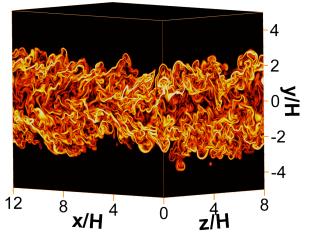

vortex

19

Pinpointing a Scalability Loss in Flash

-


hpcviewer: FLASH/white dw	arf: IBM BG/P, weak 256->8192	Ģ
Flash.F90 👰 Driver_initFlash.F90 👰 local_tree_build.F90 🔀		- [
210 lnblocks_old = lnblocks		6
211 proc = mype 211 !Loop through all processors	21% of the program's scal	ing
21: Do iproc = 0, nprocs-1	loss is due to a loop over a	
214	•	
215 If (iproc == 0) Then	processors in the adaptive	-
216 off_proc = .False. 217 Else	• • • •	
218 off_proc = .True.	mesh refinement setup cal	ieu
219 End If	during program initializatio	n
220		Υ.
Calling Context View 🐛 Callers View 👫 Flat View		
🕆 🖑 🔞 🕅 💹 📰 🗛 🚽		
Scope	% scalability loss v 256/WALLCLOCK (us) (I) 8192/WALLCL	OCK (us) (l)
Experiment Aggregate Metrics	2.46e+01 100 % 5.07e+08 100 % 6.71e	+08 100 %
▼flash		+08 100 %
driver_evolveflash		+08 80.6%
▼ B driver_initflash		+08 19.4%
▼ B⇒ grid_initdomain		+07 13.7%
▼ B>gr_expanddomain		+07 13.7%
▼loop at gr_expandDomain.F90: 119		+07 11.9%
▼ B amr_refine_derefine		+07 6.0%
▼ 卧 amr_morton_process ▼ 卧 find_surrblks		+07 5.6%
▼ B>local_tree_build		+07 5.38
▼ loop at local_tree_build.F90: 211		+07 5.38
loop at local_tree_build.F90: 216	5.18e+00 21.1% 8.25e+05 0.2% 3.56e	
▶ B> pmpi_allreduce	1.49e-03 0.0%	
▶ B>pmpi_allreduce	7.45e-04 0.0% 5.00e	
▶ ₿⇒free_local_tree	7.45e-04 0.0% 5.00e	+03 0.0%
	1 544 - 6 4224 m 1	
	54M of 433M	



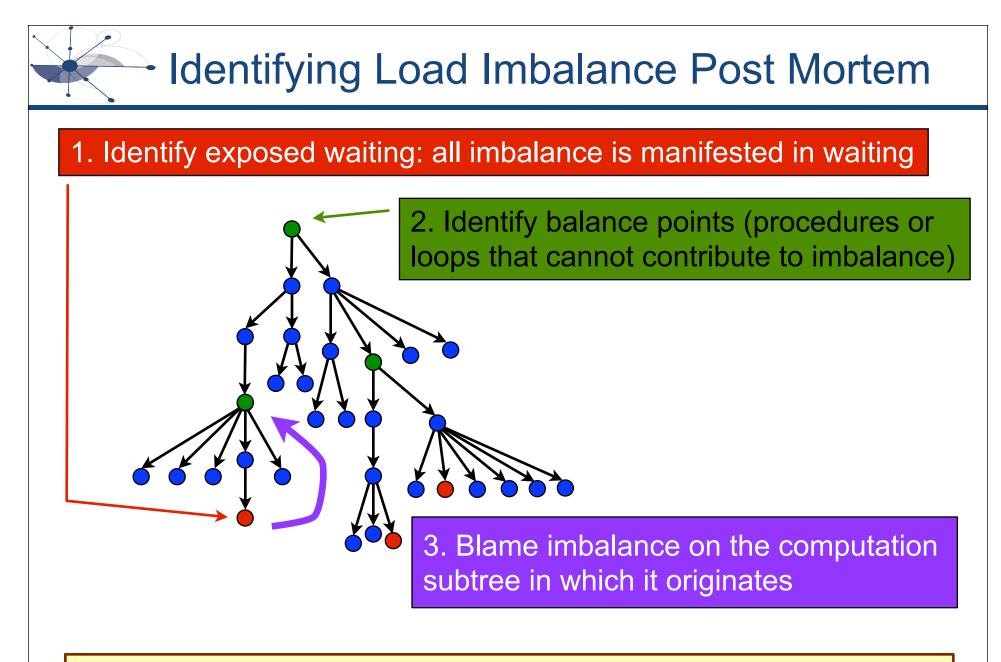
S3D - DNS Solver

- Solves compressible reacting Navier-Stokes equations
- High fidelity numerical methods
 - 8th order finite-difference
 - 4th order explicit RK integrator
- Hierarchy of molecular transport models
- Detailed chemistry
- Multi-physics (sprays, radiation and soot)
 - from SciDAC-TSTC (Terascale Simulation of Turbulent Combustion)

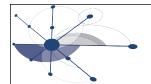
Text and figures courtesy of Jacqueline H. Chen, SNL

- S3D: Multicore Losses at the Loop Level

getrates.f rhsf.f90	diffflux_g	gen_uj.f 🛿 🗌				Exec				. 1
	r30 = (3 -	1 + 1) / 3 *	3 + 1 -	1		incre	ase	es 2.	8X Ι	n the
	,lujUpper						11 <u>-</u> -	1		
	1, n_spec					loop	tna	It SCa	ales	wors
	t2 = 1, n lt1 = 1,					•			_	_
	do lt0 =								_	
200	diffflux((lt0, lt1,						ontrik	nite	202
201 *(lt0, lt1, l									Jun	55 a
202 *s(lt0, lt1, 203		* grad_mixmw(l (lt0, lt1,				6 9	%	scalir	ha l	oss te
204 *lux(lt0, lt1							/0 、	scam	'9 I	033 0
205 *, n, m)	,,				,	who		exec	<u>suti</u>	าท
206		(lt0, lt1,				_m_		UNUC	Jun	511
	1 1+ 2 n	1) * (arad vs(lt 0.	lt_1. lt_	2, n,	m				
207 *xavg(lt0, lt						2				
207 *xavg(lt0, lt 208 *+ 1) + vs(l+ 0						. ?				
208 ** 1) * vs(1+ 0	i+ 1 i+	2 n) * arad				2				
Calling Context View 👻 Caller	i+ 1 i+	2 n) * arad				. 2				
208 ** 1) * vs(1+ 0	i+ 1 i+	2 n) * arad				. 2				
Calling Context View 👻 Caller	i+ 1 i+	2 n) * arad	mi vmw(1 1	8-core(1) (m:	s) (E)	Multicore		
208 ** 1) * v 1+ 0<br [®] Calling Context View [®] Caller] ☆ ☆ ☆ ⊕ 6 f∞ 1	i+ 1 i+ s View 👻 Fla	2 n) * arad at View	mi xmw(1+ 0 1+	1 1+				Loss 🔻	
208 ** 1) * v<(1+ 0 Calling Context View Caller ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1+ 1 1+ s View 🔍 Fla 1-core (m 22: ² .86e06	2 n) * arad at View ns) (l) 1-core (r 2.6% 2.86e06	mi xmw(ms) (E) 2.68	1+ 0 1+	1 1+ ns) (l) 4.3%	8-core(1) (m:	4.3%		Loss ▼ 6.9%	
208 ** 1) * vs(1+ 0 Calling Context View Caller Caller Scope ► loop at diffflux_gen_uj.f: 197-	1+ 1 1+ s View ∞ Fla 1-cor (m 22: ² .86e06 c_ge1.09e08	2 n) * arad at View ns) (l) 1-core (r 2.6% 2.86e06	mi xmw(ns) (E) 2.6% 1.1%	1+ 0 1+ 8 pre(1) (m 8.12e06	1 1+ ns) (l) 4.3% 97.9%	8-core(1) (m: 8.12e06	4.3% 3.2%	5.27e06	Loss ▼ 6.9% 6.1%	
208 ** 1) * v<(1+ 0	i+ 1 i+ s View ℝ Fla 1-cor (m 2232.86e06 t_ge1.09e08 9 1.49e06	2 n) * arad at View ns) (i) 1-core (r 2.6% 2.86e06 98.1% 1.25e06	mi xmw(ns) (E) 2.6% 1.1% 1.3%	1+ 0 1+ 8 pre(1) (m 8.12e06 1.84e08	1 1+ ns) (l) 4.38 97.98 3.28	8-core(1) (m: 8.12e06 5.94e06	4.3% 3.2% 3.2%	5.27e06 4.70e06	6.98 6.18 6.08	
208 ** 1) * v<(1+ 0	i+ 1 i+ s View № Fla 1-core (m 2232.86e06 t_ge1.09e08 9 1.49e06 2.70e06	2 n) * arad at View ns) (l) 1-core (r 2.6% 2.86e06 98.1% 1.25e06 1.3% 1.49e06	mi xmw(2.6% 1.1% 1.3% 1.2%	1+ 0 1+ 8 pre(1) (m 8.12e06 1.84e08 6.08e06	1 1+ ns) (l) 4.38 97.98 3.28 3.58	8-core(1) (m 8.12e06 5.94e06 6.08e06 3.72e06	4.3% 3.2% 3.2%	5.27e06 4.70e06 4.60e06	6.98 6.18 6.08 3.18	
208 ** 1) * v<(1+ 0)	i+ 1 i+ s View № Fla 1-cor (m 223 ² .86e06 c_ge ¹ .09e08 9 1.49e06 2.70e06 3.35e06	2 n) * arad at View ns) (l) 1-core (n 2.6% 2.86e06 98.1% 1.25e06 1.3% 1.49e06 2.4% 1.31e06	mi xmw(2.6% 1.1% 1.3% 1.2% 1.3%	1+ 0 1+ 8 pre(1) (m 8.12e06 1.84e08 6.08e06 6.49e06	1 1+ 1 1+ 4.38 97.98 3.28 3.58 3.88	8-core(1) (m: 8.12e06 5.94e06 6.08e06 3.72e06 3.82e06	4.3% 3.2% 3.2% 2.0%	5.27e06 4.70e06 4.60e06 2.41e06	6.9% 6.1% 6.0% 3.1% 3.1%	
208 ** 1) * ver(1+ 0 Calling Context View Caller Calling Context View Caller Scope Image: Caller Ioop at diffflux_gen_uj.f: 197- Ioop at diffflux_gen_uj.f: 197- Ioop at diffflux_gen_uj.f: 197- Ioop at diffflux_gen_uj.f: 197- Ioop at rhsf.f90: 516-536 Ioop at rhsf.f90: 516-536 Ioop at rhsf.f90: 538-544	i+ 1 i+ s View 1-cor (m 2232.86e06 2.36e06 2.70e06 3.35e06 2.56e06	2 n) * arad at View at View 1-core (r 2.6% 2.86e06 98.1% 1.25e06 1.3% 1.49e06 2.4% 1.31e06 3.0% 1.45e06 2.3% 1.47e06	mi xmw/ 2.68 1.18 1.38 1.28 1.38 1.38	1+ 0 1+ 8 pre(1) (m 8.12e06 1.84e08 6.08e06 6.49e06 7.06e06 5.86e06	1 1+ 1 1+ 4.38 97.98 3.28 3.58 3.88	8-core(1) (m 8.12e06 5.94e06 6.08e06 3.72e06 3.82e06 3.42e06	4.3% 3.2% 3.2% 2.0% 2.0%	5.27e06 4.70e06 4.60e06 2.41e06 2.36e06	6.98 6.18 6.08 3.18 3.18 2.68	
208 ** 1) * verit @ Calling Context View @ Caller Caller 208 @ Calling Context View @ Caller Caller Scope Ioop at diffflux_gen_uj.f: 197- Ioop at rhsf.f90: 516-536 Ioop at rhsf.f90: 516-536 Ioop at rhsf.f90: 538-544 Ioop at rhsf.f90: 546-552	i+ 1 i+ s View 1-core (m 2232.86e06 c_ge 1.09e08 9 1.49e06 2.70e06 3.35e06 2.56e06 7-18.00e05	2 n) * arad at View at View 1.38 1.25e06 1.38 1.49e06 2.48 1.31e06 3.08 1.45e06 2.38 1.47e06 0.78 8.00e05	mixmw(2.6% 1.1% 1.3% 1.2% 1.3% 1.3% 0.7%	1+ 0 1+ 8 pre(1) (m 8.12e06 1.84e08 6.08e06 6.49e06 7.06e06 5.86e06 2.28e06	1 1+ ns) (l) 4.38 97.98 3.28 3.58 3.88 3.88 3.18	8-core(1) (m 8.12e06 5.94e06 6.08e06 3.72e06 3.82e06 3.42e06 2.28e06	4.3% 3.2% 3.2% 2.0% 2.0% 1.8%	5.27e06 4.70e06 4.60e06 2.41e06 2.36e06 1.96e06	6.98 6.18 6.08 3.18 3.18 2.68 1.98	
 208 ** 1) * v<(1+ 0) Calling Context View Caller Caller Calling Context View Caller Caller <	i+ 1 i+ s View ∞ Fla 1-cor (m 2222.86e06 c_ge1.09e08 1.49e06 2.70e06 3.35e06 2.56e06 7-18.00e05 3.256e06	2 n) * arad at View at View 1.38 1.25e06 1.38 1.49e06 2.48 1.31e06 3.08 1.45e06 2.38 1.47e06 0.78 8.00e05	mixmw(2.6% 1.1% 1.3% 1.2% 1.3% 0.7% 1.3%	1+ 0 1+ 8 pre(1) (m 8.12e06 1.84e08 6.08e06 6.49e06 7.06e06 5.86e06 2.28e06	1 1+ 1	8-core(1) (m 8.12e06 5.94e06 6.08e06 3.72e06 3.82e06 3.42e06 2.28e06	4.3% 3.2% 3.2% 2.0% 2.0% 1.8% 1.2% 1.5%	5.27e06 4.70e06 4.60e06 2.41e06 2.36e06 1.96e06 1.48e06	6.98 6.18 6.08 3.18 3.18 2.68 1.98 1.88	
208 ** 1) * verit @ Caller Calling Context View @ Caller Caller Calling Context View @ Caller Caller Cope Ioop at diffflux_gen_uj.f: 197- Ioop at negrate_erk_istage_ft Ioop at rhsf.f90: 516-536 Ioop at rhsf.f90: 538-544 Ioop at rhsf.f90: 546-552 Ioop at thermchem_m.f90: 122 Ioop at heatflux_lt_gen.f: 5-133	i+ 1 i+ s View 1-cor (m 223 ² .86e06 23 ² .86e06 2.70e06 3.35e06 2.56e06 7-18.00e05 2.1.46e06 6.65e05	2 n) * arad at View at View 2.6% 2.86e06 98.1% 1.25e06 1.3% 1.49e06 2.4% 1.31e06 3.0% 1.45e06 2.3% 1.47e06 0.7% 8.00e05 1.3% 1.46e06	mi xmw/ 2.6% 1.1% 1.3% 1.3% 1.3% 0.7% 1.3% 0.6%	1+ 0 1+ 8 pre(1) (m 8.12e06 1.84e08 6.08e06 6.49e06 7.06e06 5.86e06 2.28e06 2.88e06	1 1+ ns) (l) 4.38 97.98 3.28 3.58 3.88 3.18 1.28 1.58 1.58 1.08	8-core(1) (m: 8.12e06 5.94e06 6.08e06 3.72e06 3.82e06 3.42e06 2.28e06 2.88e06	4.3% 3.2% 3.2% 2.0% 1.8% 1.2% 1.5% 1.0%	5.27e06 4.70e06 4.60e06 2.41e06 2.36e06 1.96e06 1.48e06 1.41e06	6.98 6.18 6.08 3.18 3.18 2.68 1.98 1.88 1.68	

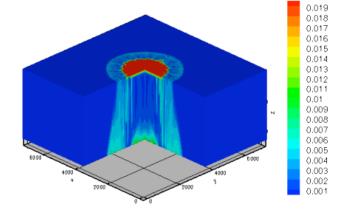

	Outline
•	Introduction to HPCToolkit
•	Five new approaches for analyzing parallel program performance
	 scalability analysis using call path profiles [SC09]
	 blame shifting to analyze lock contention in threaded codes [PPoPP10]
	 pinpointing load imbalance in parallel codes [SC10]
	 understanding temporal dynamics of parallel codes
	 data centric analysis of program performance
•	Conclusions

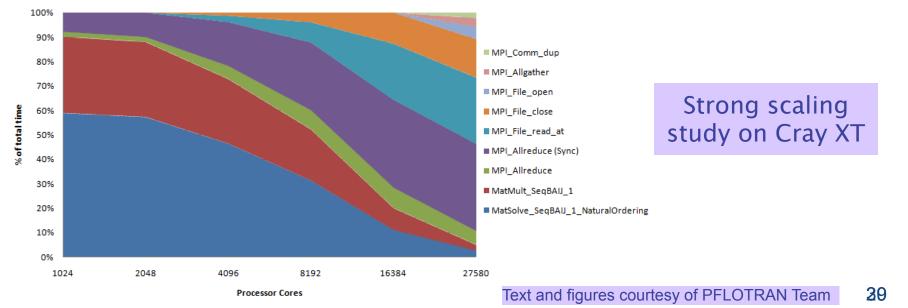
Understanding Lock Contention in Threaded Code

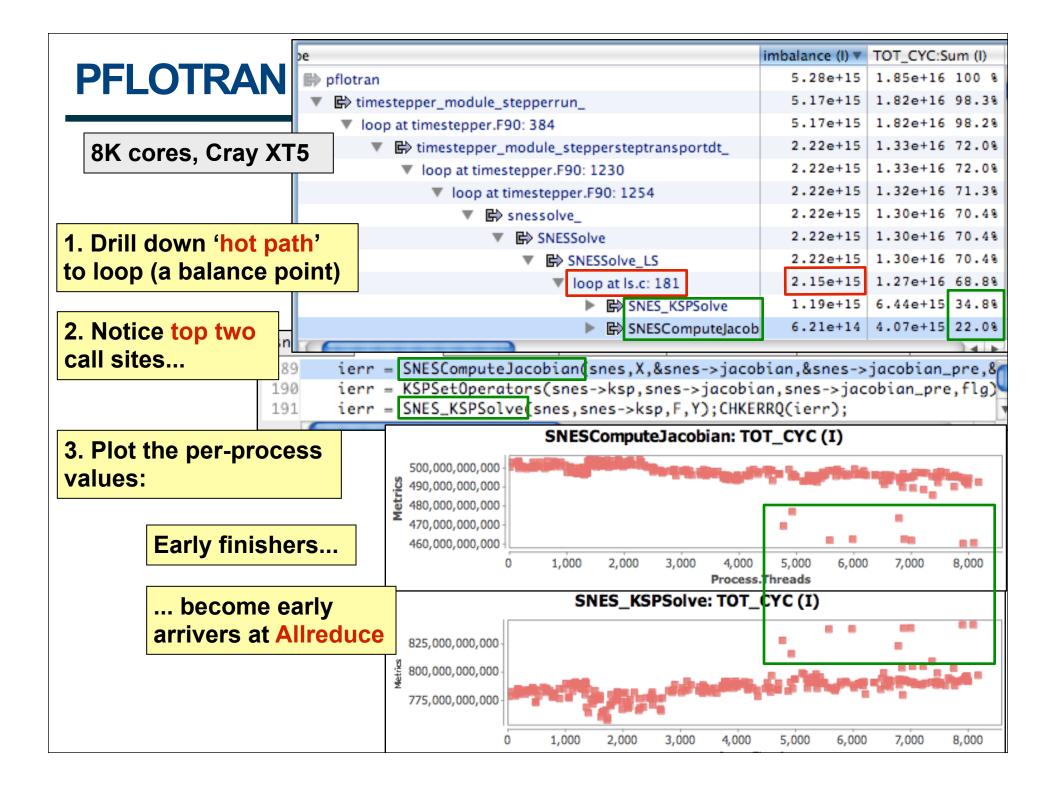

- Lock contention => idleness
 - explicitly threaded programs (Pthreads, etc)
 - implicitly threaded programs (critical sections in OpenMP, ...)
- Strategy: "blame-shifting" of contention from victim to perpetrator
 - use shared state (locks) to communicate blame
- How it works
 - consider spin-waiting
 - sample a working thread:
 - charge to 'work' metric
 - sample an idle thread
 - accumulate in idleness counter associated with a lock (atomic add)
 - working thread releases a lock
 - atomically swap 0 with lock's idleness counter
 - exactly represents contention while that thread held the lock
 - unwind the call stack to attribute lock contention to a calling context

Lock Contention in M	IADNES	S
575Internation meanur,580const arg1T& arg1, const arg2T& arg2, const a581Future <remfuture(memfun_returnt(memfunt))> re582add(new TaskMemfun<memfunt>(result,obj,memfun583return result;</memfunt></remfuture(memfun_returnt(memfunt))>	 65M distinct lo max. of 340K l 	
584 }		1-5% overhead
🔧 Calling Context View 🔧 Callers View † Flat View		
] 🛧 🕂 🔥 🌆 🕅 📰 🗚 🖛 🛛 16 cores; 1 thread/core (4 x B	Barcelona)	μs
Scope	% idleness (all/E).7.	idleness (all/E)
Experiment Aggregate Metrics		.57e+09 100 %
▼ pthread_spin_unlock	2.35e+01 100.0	lock contention
The madness::Spinlock:unlock() const	2.35e+01 100.0	accounts for 23.5%
▼ <1 inlined from worldmutex.h: 142	1.788401 75.68	of execution time.
madness::ThreadPool::add(madness::PoolTaskInterface*) ① inlined from worldtask.h: 581	1.788401 75.86	.92e+08 31.2%
Wall inlined from worldtask.n: 581 Manadness::Future<> madness::WorldObject<>::task<>		
▼ @ inlined from worldtask.h: 569	4.56e+00 19.4% 3	Adding futuros
Mainteen den den den den den den den den den		to charad alabal
Inlined from worlddep.h: 68	1.53e+00 6.5% 1	
🔻 🖑 inlined from worldtask.h: 570	1.49e+00 6.3% 9	.97e+07 6.3%
madness::Future<> madness::WorldObject<>::task<>	> 1.49e+00 6.3% 9	.97e+07 6.3%
Inlined from worldtask.h: 558		.26e+07 5.9%
Madness::Future<> madness::WorldTaskQueue::add<>(madness::WorldTaskQueue::add<>)	na 6.72e-01 2.9% 4	.49e+07 2.9%
		26

	C Outline
•	Introduction to HPCToolkit
•	Five new approaches for analyzing parallel program performance – scalability analysis using call path profiles [SC09] – blame shifting to analyze lock contention in threaded codes [PPoPP10]
	 pinpointing load imbalance in parallel codes [SC10]
	 understanding temporal dynamics of parallel codes
	 data centric analysis of program performance
٠	Conclusions

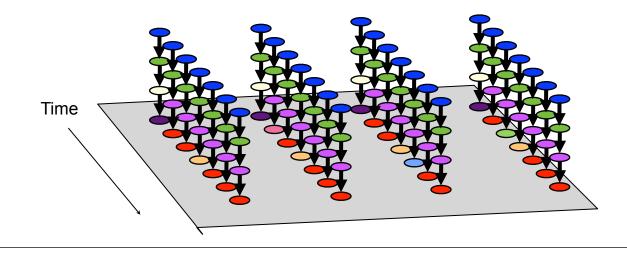

4. Associate each (summary) node with thread-level metric values

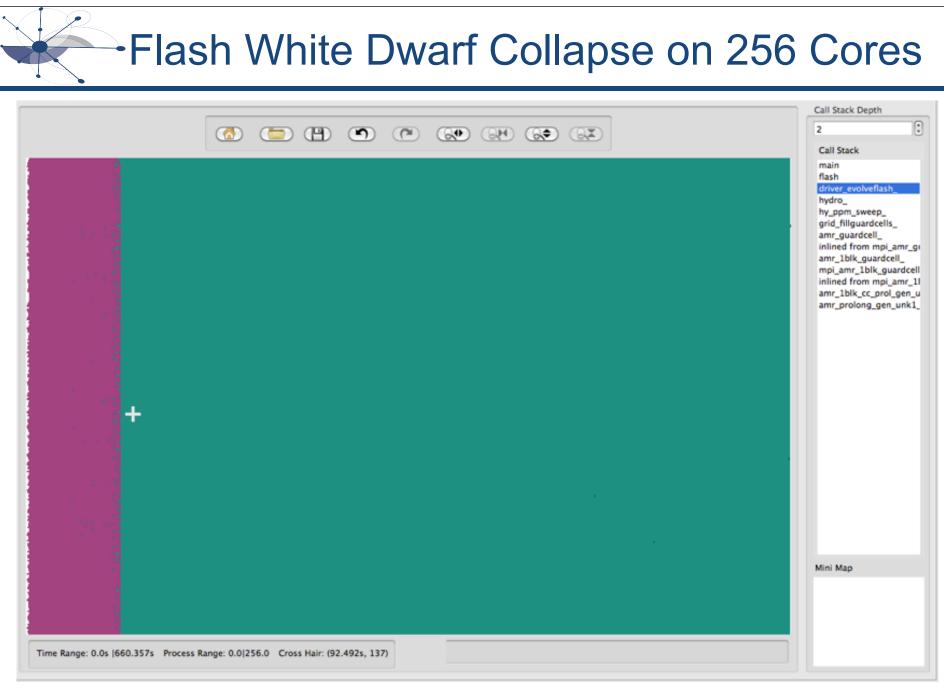



Load Imbalance Analysis Example

PFLOTRAN: modeling multi-scale, multiphase, multi-component subsurface reactive flows

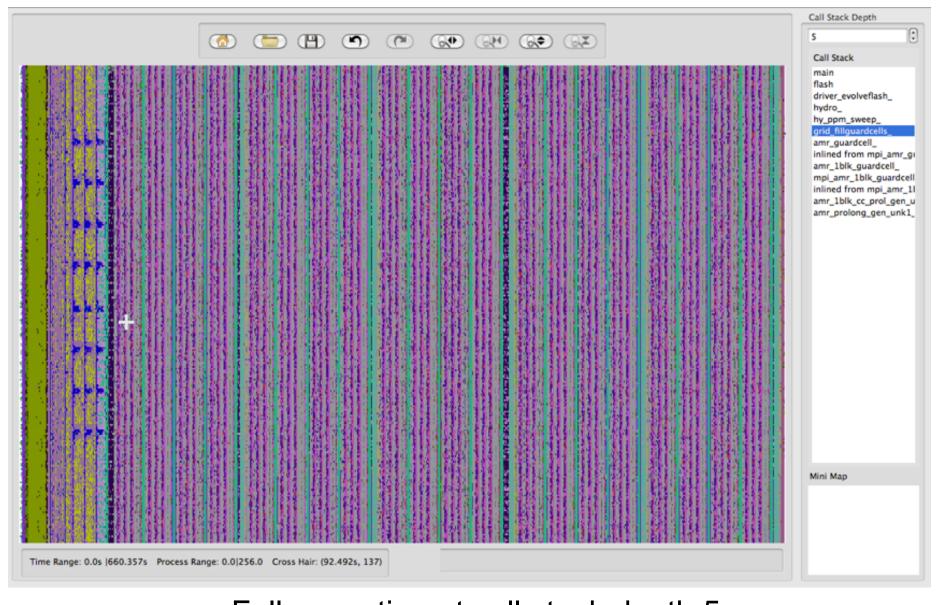
Example use: modeling sequestration of CO₂ in deep geologic formations, where resolving density-driven fingering patterns is necessary to accurately describe the rate of dissipation of the CO₂ plume

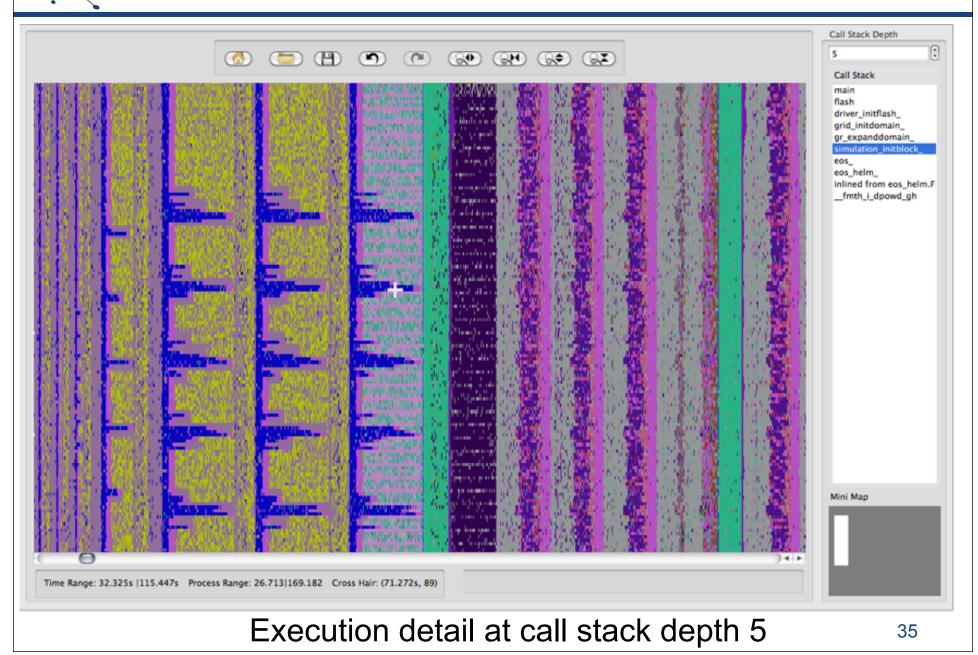




	Outline
•	ntroduction to HPCToolkit
_	 Five new approaches for analyzing parallel program performance scalability analysis using call path profiles [SC09] blame shifting to analyze lock contention in threaded codes [PPoPP10] pinpointing load imbalance in parallel codes [SC10] understanding temporal dynamics of parallel codes
	 data centric analysis of program performance Conclusions

Understanding Temporal Behavior

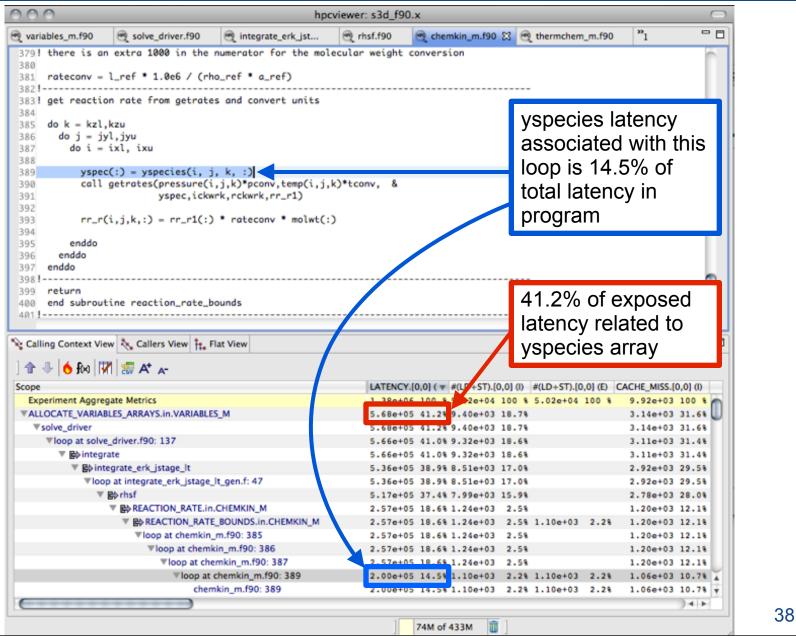

- Profiling compresses out the temporal dimension
 - that's why serialization is invisible in profiles
- What can we do? Trace call path samples
 - sketch:
 - N times per second, take a call path sample of each thread
 - organize the samples for each thread along a time line
 - · view how the execution evolves left to right
 - what do we view?
 - assign each procedure a color; view execution with a depth slice


Full execution at call stack depth 2

Full execution at call stack depth 5

-Flash White Dwarf Collapse on 256 Cores

	Outline
• In	troduction to HPCToolkit
_	 ve new approaches for analyzing parallel program performance scalability analysis using call path profiles [SC09] blame shifting to analyze lock contention in threaded codes [PPoPP10] pinpointing load imbalance in parallel codes [SC10] understanding temporal dynamics of parallel codes
	data centric analysis of program performance
• C	onclusions



Data Centric Analysis

- Goal: associate memory hierarchy locality problems with particular data structures
- Approach
 - intercept memory allocations to associate data range with allocation
 - associate latency with data structures using "instruction based sampling" capability of AMD Opteron CPUs
 - identify instances of loads and store instructions
 - identify the data structure an access touches based on L/S address
 - measure the total latency associated with each L/S
 - present results in hpcviewer

Data Centric Analysis of S3D

Conclusions

- Obtain insight, accuracy & precision by combining call path profiling, binary analysis, and blame shifting
- Show surprisingly effective measurement and source-level attribution for fully optimized code (1-3% overhead)
 - statements in their full static and dynamic context
 - project low-level measurements to much higher levels
- Sampling-based measurements can deliver insight into a range of phenomena
 - scalability bottlenecks
 - sources of lock contention
 - load imbalance
 - temporal dynamics
 - problematic data structures

Some Challenges Ahead

- Data management for scalable measurement and analysis
- Moving from descriptive to prescriptive feedback
- Increasing importance of threading as core counts increase
- Heterogeneous architectures, e.g. GPU accelerators