CScADS Workshop on Performance Tools for Petascale Systems

John Mellor-Crummey
Department of Computer Science
Rice University
DOE SciDAC Program

- Portfolio of coordinated research efforts directed at exploiting the emerging capabilities of terascale and petascale computing
- These research projects respond to
 - the extraordinary difficulties of realizing sustained peak performance for scientific applications that require terascale and petascale capabilities to accomplish their research goals
 - the need for developing collaborative software environments where distributed resources and expertise are combined to address complex questions that no single institution can manage alone

http://www.scidac.org
DOE SciDAC-2 Mission

- Develop comprehensive scientific computing software infrastructure to enable petascale science
- Develop new generation of data management and knowledge discovery tools for large data sets
DOE SciDAC-2 Program Investments

- Enabling technologies
 - computer science
 - applied math
 - visualization and data mgmt.

- Science application areas
 - physics
 - climate
 - groundwater
 - fusion energy
 - life sciences
 - materials and chemistry

Participants
- 17 labs
- 55 universities
- 3 companies
Partners
Rice University (Kennedy (late), Mellor-Crummey, Cooper)
Argonne National Laboratory (Beckman, Lusk, Gropp)
University of California - Berkeley (Yelick)
University of Wisconsin - Madison (Miller)
University of Tennessee (Dongarra)
Scalable Application Development Software?

Software tools that help automate the process of scaling applications in three different dimensions:

- scaling from simple high-productivity languages on a laptop to efficient applications on high-end, single-processor workstations
- scaling from small numbers of processors to full processor ensembles consisting of thousands of processors with minimal loss of efficiency
- scaling from a single abstract program representation to tuned implementations for many different high-end machines and heterogeneous processors with minimal programming effort
Center for Scalable Application Development Software

Scope of Activities

- Community outreach and vision building
- Research and development
- Open source software infrastructure
 - compiler infrastructure
 - support high-level source-to-source optimization of programs
 - leverage Open64, Rice’s D System compiler infrastructure
 - performance tools infrastructure
 - support binary analysis, instrumentation, data collection, and measurement interpretation
 - leverage Rice’s HPCToolkit and Wisconsin’s Paradyn & Dyninst tools
CScADS Research Themes

• Rapid construction of high-performance applications
 – compiler technology for scripting languages and component composition

• Scaling to homogeneous parallel systems
 – tools for parallel performance analysis and improvement
 – compiler technology for parallel languages
 • partitioned global address space (PGAS) languages
 • global array languages
 • parallel scripting languages
 – support for multicore platforms
 • decomposing and mapping parallelism to available resources
 • transforming applications to reuse data wherever possible
 • choreographing parallelism and data movement

• Portability and support for heterogeneous platforms
 – automatic tuning to new platforms
 – compiling to heterogeneous platforms
Workshop Technical Focus
Workshop Charge

• Identify important open problems and challenges for performance tools for petascale systems
• Brainstorm on promising approaches to open problems
• Identify infrastructure needs to address key challenges
• Assess available infrastructure
• Identify opportunities for synergy
 – opportunities to
 • consolidate and harden existing infrastructures
 • reuse existing components developed by others
 • refactor and extend existing components to apply them to new challenges
• Collaborate on design of sharable components
• Identify targets of opportunity for further investment of resources
 – strategic investment targets for the DOE Office of Science?
Workshop Structure

• 1.5 days: invited presentations
• Tomorrow afternoon
 – general discussion
 • identify candidates for working groups
 • interests and group membership
 – informal presentations of “hot button” issues
• Late Tuesday, Wednesday morning
 – working groups meet
• Thursday morning
 – working groups meet and prepare summary presentations
• Thursday afternoon
 – presentation of working group results and open discussion
Performance Tools for Petascale Systems

Goal: provide insight into how to improve programs for better performance on petascale systems that are ensembles of multicore microprocessors

Classes of issues

- Understanding executables
- Instrumentation
- Measurement
- Analysis
- Modeling
- Presentation
Understanding Executables

- Support for machine-code based
 - instrumentation
 - measurement
 - analysis

- Understand instruction stream
 - mix
 - dependencies
 - delays
 - memory accesses
 - instantaneous state at arbitrary points in the execution
 - e.g. frame state for asynchronous unwinding

- Support work with stripped code, e.g. 3rd party libraries
Instrumentation

- **Goals**
 - correctness
 - efficiency
 - portability

- **Instrumentation approaches**
 - binary rewriting
 - binary patching
 - dynamic compilation

- **Open problems?**
Measurement Challenges

- Multi-scale parallelism
 - ILP, SIMD units, multi-core processor, intra-node, inter-node

- Understanding processor core activity
 - utilization of functional units
 - utilization of memory hierarchy
 - memory parallelism
 - data reuse: temporal, spatial
 - attributing stalls to causes

- Understanding parallelism
 - overheads
 - communication: latency, bandwidth
 - serialization
 - load imbalance
 - contention
 - cache blocks, network links
Measurement Techniques

• Approaches
 – tracing
 – sampling
 • flavors: node-based vs. communication-based
 • calling context or not

• Issues
 – must capture meta-data
 – completeness
 – fidelity
 – efficiency
 – data volume
 – utility
Analysis Challenges 1

• Diagnosing processor utilization inefficiencies
 – instruction mix underutilizes core: improve instruction balance
 – slack instruction schedule
 – memory subsystem inefficiencies
 • too many cache, TLB misses
 • why are we not getting better bandwidth?
 – inadequate memory parallelism?
 – not enough reuse of memory pages?
 • opportunities for reducing bandwidth by improving data reuse?
 • opportunities for hiding latency?

• Diagnosing multithreading deficiencies
 – are the cores/processors underutilized; if so, why?
 – less runnable threads than processors
 • fewer threads than processors or blocked threads?
 – is the system thrashing (time slicing too many active threads)
Analysis Challenges 2

• Diagnosing parallelism deficiencies
 – load imbalance
 – serialization
 – communication overhead
 • communication granularity/frequency
 • exposed data transfer costs
 – strategies for data mining
 • clustering
 • anomaly detection

• Understanding the performance of hybrid parallelizations
Modeling

Understand potential for improving performance by using alternate

- hardware architectures
- data structures
- computation structures
Presentation

- Textual-based approaches
- Visualization