HPCToolkit Components for

Measurement, Analysis and
Presentation

John Mellor-Crummey, Mark Krentel, Laksono Adhianto
Mike Fagan, Gabriel Marin, Nathan Tallent

Department of Computer Science
Rice University

http://www.hipersoft.rice.edu/hpctoolkit

2\ RICE Snowbird 2008

Outline

e | Brief overview of the HPCToolkit toolchain

e Three new components
— libmonitor
— call stack sampling
— hpcviewer

e New and notable

e Components

Performance Analysis Goals

e Accurate measurement of complex parallel codes
— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped

— complex execution environments

— dynamic loading
— SPMD parallel codes with threaded node programs

— batch jobs

o Effective performance analysis

— insightful analysis that pinpoints and explains problems
— correlate measurements with code (yield actionable results)
— intuitive enough for scientists and engineers
— detailed enough for compiler writers

e Scalable to petascale systems

HPCToolkit Design Principles

 Binary-level measurement and analysis
— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

e Sampling-based measurement (avoid instrumentation)
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

Collect and correlate multiple derived performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles”

 Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

e Support top-down performance analysis
— intuitive enough for scientists and engineers to use
— detailed enough to meet the needs of compiler writers

HPCToolkit Workflow

profile
execution
[hpcrun]

compile & link

app.
source

call stack
profile

program
structure

visualization
[hpcviewer] database

interpret profile

correlate w/ source
[hpcprof]

HPCToolkit Workflow

compile & link

app.
source

profile
execution
[hpcrun]

* Measure execution unobtrusively
— launch unmodified, optimized application binaries
— collect call path (or flat) profiles of events of interest

visualization
[hpcviewer] database

call stack
profile

program
structure

interpret profile

correlate w/ source
[hpcprof]

HPCToolkit Workflow

profile
execution
[hpcrun]

call stack
profile

compile & link

app.
source

 Analyze binary to recover program structure
— extract loop nesting & identify procedure inlining
— map transformed loops and procedures to source

visualization interpret profile
[hpcviewer] database correlate w/ source
[hpcprof]

program
structure

HPCToolkit Workflow

profile
execution

- [hpcrun]
app. [optimized)
source binary

e Combine multiple profiles

call stack
profile

compile & link

program
structure

e Correlate dynamic metrics with static source structure
 Synthesize new metrics by combining metrics

visualization interpret profile
opcvaenes] database correlate w/ source
[hpcprof]

HPCToolkit Workflow

profile
execution
[hpcrun]

call stack
profile

compile & link

app.
source

e Visualization
— support top-down analysis with interactive viewer
— analyze results anytime, anywhere

visualization interpret profile
(hpeviewer] | € database correlate w/ source
[hpcprof]

program
structure

Outline

Brief overview of the HPCToolkit toolchain

e Three new components

— libmonitor

— call stack sampling
— hpcviewer

New and notable

e Components

10

libmonitor: A Profiling Substrate

A substrate for profiling statically and dynamically linked code

¢ |[ntercept and manage notable operations
—monitor gains control & performs bookkeeping operations
—invokes a client callback function
—calls real version

¢ Principal intercepts
—library initialization, finalization
—process creation, finalization

— main, __libc_start_main, exit, _exit
— fork and exec
—threads

— initialize thread support
— parent: thread pre-create, thread-post-create
— child: thread creation, finalization

—dynamic library open, close
—mpi initialize, finalize

11

libmonitor: A Profiling Substrate (part 2)

e Support functions
—sigaction, signal
—system
—stack_bottom, process_bottom_frame
—mpi_comm_size, mpi_comm_rank
e History: rewrite of Phil Mucci's libmonitor (UTK)
— Mucci’s libmonitor originally derived from HPCToolkit

12

Using libmonitor

Platforms

— GNU/Linux (dynamic, static)
— BG/P, CNL, Catamount (static)
— any Unix (static)

Repository host: SciDAC Outreach Center
— https://outreach.scidac.gov/projects/libmonitor
— svn repository

License: BSD (3-clause)

13

libmonitor: Building and Running

e Autoconf and Automake

e Dynamic (libmonitor.so)
— LD_PRELOAD override __libc_start_main()
— works with unmodified, optimized binary
— limited to GNU/Linux with __libc_start_main

e Static (libmonitor_wrap.a)
— Id --wrap main
— define __wrap_main(), refer to __real_main()
— works on most any Unix
— requires re-linking application

14

l[ibmonitor Example

Use libmonitor as glue between application and profiler

void *
monitor_init_process(int argc, char **argv, void *data)
{

initialize _profiling();

start_profiling();

return NULL;

}

void
monitor_fini_process(int how, void *data)

{
stop_profiling();

print_results();

}

15

libmonitor Technical Points

Lazy disym of library functions (e.g. pthread_create)

Installs signal handler for every signal
— offers signal to client first, then application

Catches all types of exit, _exit, signals, exec, pthread_exit,
pthread cancel

Keeps list of threads for thread shoot down
— mechanism to get into thread at exit (via signal)

Provides a thread-local pointer for each thread

16

libmonitor To-do List

Revisit some callback functions
— more general access to library functions
— provide real (unmonitored) versions of overrides

Handle system, compiler quirks

— when pthread_create() called before main().
— libc system() calls hidden fork()

— ia64 __ libc_start_main() misbehaves

Better MPI support

17

Outline

Brief overview of the HPCToolkit toolchain

e Three new components

— libmonitor

— call stack sampling

— hpcviewer

New and notable

e Components

18

Measurement Challenges

Performance often depends upon context

Layered design

—application frameworks, math libraries, communication libraries

Generic programming, e.g. C++ templates
—both data structures and algorithms

Context-sensitive optimization
—e.g. inlining
Goals

—identify and quantify context-sensitive behavior
—differentiate between types of performance problems
— cheap procedure called many times
— expensive procedure called few times

19

Call Path Profiling

No instrumentation
—statistical sampling of hardware performance counter overflows

—gather calling context information using stack unwinding
—overhead proportional to sampling frequency
— not calling frequency

Capture samples in full calling context

—attribute sample to individual PC and source line

—associate costs with full calling context
— call sites too, not just callers

20

Novel Aspects of Our Approach

e Unwind fully-optimized and even stripped code
e Cope with dynamically loaded shared libraries
e Integrate static & dynamic context information in presentation

 Differentiate between frequent and long calls

21

A Call Path Profile

A call path sample Calling Context Tree (CCT)

@return address

‘return address

;return address

gPC

/

22

Unwinding Optimized Code

¢ Optimized code presents challenges for unwinding

—optimized code often lacks frame pointers

—no compiler information about epilogues

—routines may have multiple epilogues, multiple frame sizes
—code may be partially stripped: no info about function bounds

e Difficulties

—where is the return address of the current frame?
— aregister, relative to SP, relative to BP

—where is the FP for the caller’s frame?
— aregister, relative to SP, relative to BP

e Approach: use binary analysis to support unwinding

23

Call Stack Unwinding of Optimized Code

cursor = initialize _cursor(machine_context)

do {
ui = lookup_unwind_interval(PC) Il splay tree
if (ui is NULL)
pb = lookup_procedure bounds(PC) /] binary search table
if (pb is NULL)
sg = lookup_segment_bounds(PC) I/l populate sg list
if (sg is NULL) fail
pb = compute_procedure_bounds(sg, PC) /I populate pb table
if (pb is NULL) fail
ui = compute_unwind_interval(pb, PC) Il populate ui splay tree
if (ui is NULL) fail
cursor = unwind_cursor(cursor, ui) I/ move cursor to caller

} while (more_frames_left(cursor))

24

Unwind Cursor

e SP: stack pointer register for current frame
e BP: base pointer register for current frame

¢ |P: instruction pointer for the current frame

25

Unwind Interval Information

[start_addr, end_addr)

ra_loc

—SP_RELATIVE: unwind using SP
— no BP initialized (yet); SP mods = only add/subtract constant

—STD_FRAME: unwind using SP or BP

— might set up BP as base pointer, but SP manipulation is transparent

—BP_FRAME: unwind using BP
— e.g. if BP overwritten in the routine

bp_loc

—BP_UNCHANGED: BP on entry is still in BP
—BP_SAVED: BP on entry is saved in stack
—BP_OVERWRITTEN: BP is not useful for unwinding

sp_ra_pos, sp_bp_ pos: SP and BP offsets relative to SP
bp_ra_pos, bp _bp_pos: SP and BP offsets relative to BP

next, prev: pointers for doubly-linked list of intervals and splay tree edges

26

Unwinder Analyzer Details

Instructions tracked

o call: set high watermark interval for end of prologue
e enter: set up BP frame; adjust offsets accordingly
e |eave: tear down BP frame
e push, pop: note SP change, check for BP save or restore
e mov: BP save/restore to memory; SP save/restore to/from BP
e add, sub: note if modify SP
¢ conditional branch: set high watermark interval for prologue
e ret: reset to canonical interval at next instruction
* jmp

—set high watermark interval for end of prologue

—reset to canonical interval at next instruction

27

Complications

Invisible alloca

—PGI compiler uses support routines that move SP as side effect
—binary analysis may indicate STD_FRAME
—only unwind with BP will succeed

—approach needed:
— backtracking to use BP instead of SP when necessary

Register-to-register moves of frame-relevant values

—movV %rbp,%rax SPEC 481.wrf, pathscale 3.1 compiler
—movV %rax,Obe(%rsp) ADVANCE_PPT.in.MODULE_PHYSICS ADDTENDC

—must track register equivalences for frame relevant registers

Unconditional control transfers
— reset to “canonical interval” interval for following instruction

28

Finding Procedure Bounds

¢ Unwind interval analyzer requires function start and end
¢ Normally, obtain these from the symbol table
¢ |f symbol table is partially stripped, need to recover them

e Approach

—seed process with dynamic symbols
—segment boundaries (PLT, INIT, FINI, TEXT)
—scan code segments (PLT, INIT, FINI, TEXT)
— build candidate set
note every instruction that is a target of a call

note every instruction that follows an unconditional control
transfer and pad bytes

— build filter set
every instruction that is within the span of a conditional branch
—output filtered candidate set
29

Dynamically Loaded Code

¢ |ssue: new code may be loaded/unloaded at any time

e When a new module is loaded

—indicate that a module is being loaded
—load the module (and any of its dependents)
—note new code segment mappings

—build table of new procedure bounds

e When a module is unloaded

—mark end of profiler epoch: code addresses no longer apply
—flush stale cached information

30

Call Stack Unwinding Effectiveness

e Test cases using SPEC CPU 2006 benchmarks

—combination of spec train and ref tests
—compiled with intel 10.0.23 compiler
—compiled with pathscale 3.1 compiler
—compiled with PGI 7.0.3 compiler

e 11M samples, dropped 234 samples
—we know the issues and expect to reduce this further

31

Overhead on Opteron

400.perlbench 1037.64 1049.35 1.13 1078.79 1104.68 2.40
401.bzip2 1397.57 1318.45 -5.66 1328.97 1336.70 0.58
403.gcc 1320.43 1209.24 -8.42 1247.53 1208.62 -3.12
429.mef 1687.41 1703.71 0.97 1084.54 1100.16 1.44
445.gobmk 907.38 929.10 2.39 1140.31 1159.96 1.72
456.hmmer 1098.40 1107.32 0.81 867.04 879.87 1.48
458.sjeng 1218.29 1228.91 0.87 1307.24 1314.02 0.52
462.libquantum 1850.02 1861.00 0.59 1738.72 1750.45 0.67
464.h264ref 1897.79 1909.53 0.62 1544.49 1596.84 3.39
471.omnetpp 990.72 1002.84 1.22 993.98 1003.14 0.92
473.astar 1069.19 1076.91 0.72 1026.62 1032.83 0.60
483.xalancbmk 906.09 1019.04 12.47 920.67 1063.77 15.54
999.specrand 0.23 1.79 685.99 0.22 1.47 559.62
410.bwaves 1277.41 1296.05 1.46 1169.10 1191.95 1.95
416.gamess 1769.74 1777.28 0.43 2099.06 2122.12 1.10
433.milc 1137.34 1113.90 -2.06 1071.40 1067.53 -0.36
434.zeusmp 1064.95 1096.93 3.00 1092.61 1094.73 0.19
435.gromacs 808.66 814.71 0.75 824.94 829.14 0.51
436.cactusADM 1276.82 1320.08 3.39 1229.49 1245.18 1.28
437 leslie3d 1217.68 1236.99 1.59 1172.38 1194.29 1.87
444.namd 922.21 925.75 0.38 951.64 953.07 0.15
447 dealll 1057.41 1037.34 -1.90 854.29 861.18 0.81
450.s0plex 1083.53 1107.86 2.25 1169.66 1161.72 -0.68
453.povray 437.44 443.40 1.36 442.66 443.51 0.19
454 calculix 1484.73 1494.84 0.68 1574.34 1584.51 0.65
459.GemsFDTL 1883.90 1444.66 -23.32 1448.85 1404.32 -3.07
465.tonto 1031.49 1029.54 -0.19 1005.57 969.97 -3.54
470.lbm 1526.78 1507.01 -1.30 1463.73 1372.36 -6.24
481.wrf 1218.33 1027.28 -15.68 1088.75 1078.20 -0.97
482.sphinx3 2014.36 2058.90 2.21 1988.31 1842.07 -7.35
998.specrand 0.23 1.66 626.90 0.28 1.47 423.30
total 36594.19 36151.36 -1.21 34926.18 34969.85 0.13

SPEC CPU2006
Benchmarks
Opteron 246

200 samples/sec
ref runs

compilers
pathscale 3.1
intel 10.0.23

note
not yet memoizing
path prefixes

32

Outline

Brief overview of the HPCToolkit toolchain

e Three new components

— libmonitor
— call stack sampling

— hpcviewer

New and notable

e Components

33

hpcviewer

e Open Source

e Built on top of Eclipse platform
— Independent application: Rich client platform

e Available on most platforms
— x86 (32 and 64), PPC
— Linux/GTK, Mac, Windows
— Ongoing work: ltanium

* Requirements
— Java 1.5
— GTK for Linux

34

Derived Metrics

Allow users to define new metrics

— Use a formula to compose existing metrics
— floating point waste: (2 x Cycle) - FP_Ins
— performance losses: min($1-$2, 0)

Ongoing work
— predefined derived metrics

— performance losses, bandwith consumed, ...
— storing derived metrics into a database

35

Hot Call Paths

e Account for cost of performance hot-spots
e Show the chain of responsibility for costs

e How long is the chain?

— compare parent and child values

— if the difference is greater than a threshhold (50%)
— continue the path through that child

36

Demo

37

Outline

 Brief overview of the HPCToolkit toolchain

e Three new components
— libmonitor
— call stack sampling
— hpcviewer

e INew and notable

e Components

38

New and Notable

* First-generation unwinder for BG/P
— needs binary analysis to identify routine prologues for
completeness
* Pinpointing bottlenecks in multithreaded code

— insufficient parallelism
— parallel overhead

 Detailed modeling of performance bottlenecks
— provide insight into why performance is bad

39

Integrated View of Multiple Threads

Thread 0

Thread 1 Thread 2

40

Outline

 Brief overview of the HPCToolkit toolchain

e Three new components
— libmonitor
— call stack sampling
— hpcviewer

e New and notable

e [Components

41

Components We Use

e Symtab API - function bounds recovery

e Xed2 - first-party binary analysis of x86, function bounds
recovery

e binutils - binary analysis for structure recovery

e OpenAnalysis - CFG construction, interval analysis

42

Components We Want

e First-party binary analysis of PowerPC instructions
e Saving performance data from large-scale runs to disk
e Storing, indexing, and accessing performance data @ 100K

e Visualization components
— integrate into Eclipse RCP

43

