
HPCToolkit Components for
Measurement, Analysis and

Presentation

John Mellor-Crummey, Mark Krentel, Laksono Adhianto
 Mike Fagan, Gabriel Marin, Nathan Tallent

Department of Computer Science
Rice University

Snowbird 2008

http://www.hipersoft.rice.edu/hpctoolkit

Outline
• Brief overview of the HPCToolkit toolchain

• Three new components
— libmonitor
— call stack sampling
— hpcviewer

• New and notable

• Components

2

3

Performance Analysis Goals
• Accurate measurement of complex parallel codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

– dynamic loading
– SPMD parallel codes with threaded node programs
– batch jobs

• Effective performance analysis
— insightful analysis that pinpoints and explains problems

– correlate measurements with code (yield actionable results)
– intuitive enough for scientists and engineers
– detailed enough for compiler writers

• Scalable to petascale systems

4

HPCToolkit Design Principles
• Binary-level measurement and analysis

— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

• Sampling-based measurement (avoid instrumentation)
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

• Collect and correlate multiple derived performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles”

• Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

• Support top-down performance analysis
— intuitive enough for scientists and engineers to use
— detailed enough to meet the needs of compiler writers

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

5

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

• Measure execution unobtrusively
— launch unmodified, optimized application binaries
— collect call path (or flat) profiles of events of interest

6

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

• Analyze binary to recover program structure
— extract loop nesting & identify procedure inlining
— map transformed loops and procedures to source

7

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

• Combine multiple profiles
• Correlate dynamic metrics with static source structure
• Synthesize new metrics by combining metrics

8

app.
source

optimized
binary

compile & link call stack
profile

profile
execution
[hpcrun]

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
database

visualization
[hpcviewer]

program
structure

HPCToolkit Workflow

• Visualization
— support top-down analysis with interactive viewer
— analyze results anytime, anywhere

9

Outline
• Brief overview of the HPCToolkit toolchain

• Three new components
— libmonitor
— call stack sampling
— hpcviewer

• New and notable

• Components

10

libmonitor: A Profiling Substrate
A substrate for profiling statically and dynamically linked code

• Intercept and manage notable operations
—monitor gains control & performs bookkeeping operations
—invokes a client callback function
—calls real version

• Principal intercepts
—library initialization, finalization
—process creation, finalization

– main, __libc_start_main, exit, _exit
– fork and exec

—threads
– initialize thread support
– parent: thread pre-create, thread-post-create
– child: thread creation, finalization

—dynamic library open, close
—mpi initialize, finalize

11

libmonitor: A Profiling Substrate (part 2)

• Support functions
—sigaction, signal
—system
—stack_bottom, process_bottom_frame
—mpi_comm_size, mpi_comm_rank

• History: rewrite of Phil Mucci's libmonitor (UTK)
— Mucci’s libmonitor originally derived from HPCToolkit

12

Using libmonitor
• Platforms

— GNU/Linux (dynamic, static)
— BG/P, CNL, Catamount (static)
— any Unix (static)

• Repository host: SciDAC Outreach Center
— https://outreach.scidac.gov/projects/libmonitor
— svn repository

• License: BSD (3-clause)

13

libmonitor: Building and Running
• Autoconf and Automake

• Dynamic (libmonitor.so)
— LD_PRELOAD override __libc_start_main()
— works with unmodified, optimized binary
— limited to GNU/Linux with __libc_start_main

• Static (libmonitor_wrap.a)
— ld --wrap main
— define __wrap_main(), refer to __real_main()
— works on most any Unix
— requires re-linking application

14

libmonitor Example
Use libmonitor as glue between application and profiler

void *
monitor_init_process(int argc, char **argv, void *data)
{
 initialize_profiling();
 start_profiling();
 return NULL;
}

void
monitor_fini_process(int how, void *data)
{
 stop_profiling();
 print_results();
 }

15

libmonitor Technical Points
• Lazy dlsym of library functions (e.g. pthread_create)

• Installs signal handler for every signal
— offers signal to client first, then application

• Catches all types of exit, _exit, signals, exec, pthread_exit,
pthread_cancel

• Keeps list of threads for thread shoot down
— mechanism to get into thread at exit (via signal)

• Provides a thread-local pointer for each thread

16

libmonitor To-do List
• Revisit some callback functions

— more general access to library functions
— provide real (unmonitored) versions of overrides

• Handle system, compiler quirks
— when pthread_create() called before main().
— libc system() calls hidden fork()
— ia64 __libc_start_main() misbehaves

• Better MPI support

17

Outline

18

• Brief overview of the HPCToolkit toolchain

• Three new components
— libmonitor
— call stack sampling
— hpcviewer

• New and notable

• Components

19

Measurement Challenges

Performance often depends upon context

• Layered design
—application frameworks, math libraries, communication libraries

• Generic programming, e.g. C++ templates
—both data structures and algorithms

• Context-sensitive optimization
—e.g. inlining

• Goals
—identify and quantify context-sensitive behavior
—differentiate between types of performance problems

– cheap procedure called many times
– expensive procedure called few times

20

Call Path Profiling

• No instrumentation
—statistical sampling of hardware performance counter overflows
—gather calling context information using stack unwinding
—overhead proportional to sampling frequency

– not calling frequency

• Capture samples in full calling context
—attribute sample to individual PC and source line
—associate costs with full calling context

– call sites too, not just callers

21

Novel Aspects of Our Approach
• Unwind fully-optimized and even stripped code

• Cope with dynamically loaded shared libraries

• Integrate static & dynamic context information in presentation

• Differentiate between frequent and long calls

22

A Call Path Profile

A call path sample

PC

return address

return address

return address

 Calling Context Tree (CCT)

23

Unwinding Optimized Code

• Optimized code presents challenges for unwinding
—optimized code often lacks frame pointers
—no compiler information about epilogues
—routines may have multiple epilogues, multiple frame sizes
—code may be partially stripped: no info about function bounds

• Difficulties
—where is the return address of the current frame?

– a register, relative to SP, relative to BP
—where is the FP for the caller’s frame?

– a register, relative to SP, relative to BP

• Approach: use binary analysis to support unwinding

Call Stack Unwinding of Optimized Code

cursor = initialize_cursor(machine_context)
do {
 ui = lookup_unwind_interval(PC) // splay tree
 if (ui is NULL)
 pb = lookup_procedure_bounds(PC) // binary search table
 if (pb is NULL)
 sg = lookup_segment_bounds(PC) // populate sg list
 if (sg is NULL) fail
 pb = compute_procedure_bounds(sg, PC) // populate pb table
 if (pb is NULL) fail
 ui = compute_unwind_interval(pb, PC) // populate ui splay tree
 if (ui is NULL) fail
 cursor = unwind_cursor(cursor, ui) // move cursor to caller
} while (more_frames_left(cursor))

24

Unwind Cursor

• SP: stack pointer register for current frame

• BP: base pointer register for current frame

• IP: instruction pointer for the current frame

25

Unwind Interval Information
• [start_addr, end_addr)

• ra_loc
—SP_RELATIVE: unwind using SP

– no BP initialized (yet); SP mods = only add/subtract constant
—STD_FRAME: unwind using SP or BP

– might set up BP as base pointer, but SP manipulation is transparent
—BP_FRAME: unwind using BP

– e.g. if BP overwritten in the routine

• bp_loc
—BP_UNCHANGED: BP on entry is still in BP
—BP_SAVED: BP on entry is saved in stack
—BP_OVERWRITTEN: BP is not useful for unwinding

• sp_ra_pos, sp_bp_pos: SP and BP offsets relative to SP

• bp_ra_pos, bp_bp_pos: SP and BP offsets relative to BP

• next, prev: pointers for doubly-linked list of intervals and splay tree edges
26

Unwinder Analyzer Details

Instructions tracked
• call: set high watermark interval for end of prologue
• enter: set up BP frame; adjust offsets accordingly
• leave: tear down BP frame
• push, pop: note SP change, check for BP save or restore
• mov: BP save/restore to memory; SP save/restore to/from BP
• add, sub: note if modify SP
• conditional branch: set high watermark interval for prologue
• ret: reset to canonical interval at next instruction
• jmp

—set high watermark interval for end of prologue
—reset to canonical interval at next instruction

27

Complications

• Invisible alloca
—PGI compiler uses support routines that move SP as side effect
—binary analysis may indicate STD_FRAME
—only unwind with BP will succeed
—approach needed:

– backtracking to use BP instead of SP when necessary

• Register-to-register moves of frame-relevant values
—mov %rbp,%rax
—mov %rax,0xb8(%rsp)
—must track register equivalences for frame relevant registers

• Unconditional control transfers
— reset to “canonical interval” interval for following instruction

28

SPEC 481.wrf, pathscale 3.1 compiler

ADVANCE_PPT.in.MODULE_PHYSICS_ADDTENDC

Finding Procedure Bounds

• Unwind interval analyzer requires function start and end

• Normally, obtain these from the symbol table

• If symbol table is partially stripped, need to recover them

• Approach
—seed process with dynamic symbols
—segment boundaries (PLT, INIT, FINI, TEXT)
—scan code segments (PLT, INIT, FINI, TEXT)

– build candidate set
 note every instruction that is a target of a call
 note every instruction that follows an unconditional control

transfer and pad bytes
– build filter set

 every instruction that is within the span of a conditional branch
—output filtered candidate set

29

Dynamically Loaded Code

• Issue: new code may be loaded/unloaded at any time

• When a new module is loaded
—indicate that a module is being loaded
—load the module (and any of its dependents)
—note new code segment mappings
—build table of new procedure bounds

• When a module is unloaded
—mark end of profiler epoch: code addresses no longer apply
—flush stale cached information

30

Call Stack Unwinding Effectiveness

• Test cases using SPEC CPU 2006 benchmarks
—combination of spec train and ref tests
—compiled with intel 10.0.23 compiler
—compiled with pathscale 3.1 compiler
—compiled with PGI 7.0.3 compiler

• 11M samples, dropped 234 samples
—we know the issues and expect to reduce this further

31

Overhead on Opteron

32

SPEC CPU2006
Benchmarks
Opteron 246
200 samples/sec
ref runs

compilers
pathscale 3.1
intel 10.0.23

note
not yet memoizing
path prefixes

Outline

33

• Brief overview of the HPCToolkit toolchain

• Three new components
— libmonitor
— call stack sampling
— hpcviewer

• New and notable

• Components

hpcviewer
• Open Source

• Built on top of Eclipse platform
— Independent application: Rich client platform

• Available on most platforms
— x86 (32 and 64), PPC
— Linux/GTK, Mac, Windows
— Ongoing work: Itanium

• Requirements
— Java 1.5
— GTK for Linux

34

Derived Metrics
• Allow users to define new metrics

— Use a formula to compose existing metrics
– floating point waste: (2 x Cycle) - FP_Ins
– performance losses: min($1-$2, 0)

• Ongoing work
— predefined derived metrics

– performance losses, bandwith consumed, ...
— storing derived metrics into a database

35

Hot Call Paths
• Account for cost of performance hot-spots

• Show the chain of responsibility for costs

• How long is the chain?
— compare parent and child values
— if the difference is greater than a threshhold (50%)

– continue the path through that child

36

37

Demo

Outline

38

• Brief overview of the HPCToolkit toolchain

• Three new components
— libmonitor
— call stack sampling
— hpcviewer

• New and notable

• Components

New and Notable
• First-generation unwinder for BG/P

— needs binary analysis to identify routine prologues for
completeness

• Pinpointing bottlenecks in multithreaded code
— insufficient parallelism
— parallel overhead

• Detailed modeling of performance bottlenecks
— provide insight into why performance is bad

39

Integrated View of Multiple Threads

40

Thread 0

Thread 2Thread 1

Outline

41

• Brief overview of the HPCToolkit toolchain

• Three new components
— libmonitor
— call stack sampling
— hpcviewer

• New and notable

• Components

Components We Use
• Symtab API - function bounds recovery

• Xed2 - first-party binary analysis of x86, function bounds
recovery

• binutils - binary analysis for structure recovery

• OpenAnalysis - CFG construction, interval analysis

42

Components We Want
• First-party binary analysis of PowerPC instructions

• Saving performance data from large-scale runs to disk

• Storing, indexing, and accessing performance data @ 100K

• Visualization components
— integrate into Eclipse RCP

43

