In Search of Sweet-Spots in
Parallel Performance Monitoring

Aroon Nataraj, Allen D. Malony, Alan Morris

Department of Computer and Information Science
University of Oregon, Eugene, OR, USA

{anataraj, malony, amorris}@cs.uoregon.edu

Abstract—Parallel performance monitoring extends parallel
measurement systems with infrastructure and interfaces for
online performance data access, communication, and analysis.
At the same time it raises concerns for the impact on application
execution from monitor overhead. The application monitoring
scheme parameterized by performance events to monitor, access
frequency and data analysis operation defines a set of monitoring
requirements. The monitoring infrastructure presents its own
choices, particularly the amount and configuration of resources
devoted explicitly to monitoring. The key to scalable, low-
overhead parallel performance monitoring, then, is to match
the application monitoring demands to the effective operating
range of the monitoring system (or vice-versa). A poor match
can result in over-provisioning (wasted resources) or in under-
provisioning (lack of scalability, high overheads and poor quality
of performance data). We present a methodology and evaluation
framework to determine the sweet-spots for performance moni-
toring using TAU and MRNet.

I. INTRODUCTION

Post-mortem analysis of parallel application performance
measurements has been the status quo for iterative perfor-
mance diagnosis and tuning. However, the increased scal-
ing of parallel systems argues for more online support for
performance data access and processing. The importance of
understanding parallel execution dynamics motivates the use
of performance tracing, but scale amplifies trace size and
analysis complexity. In contrast, profiling methods lose insight
on temporal performance variation, which could prove to be
important for identifying patterns of performance inefficiency.
From the standpoint of adaptive parallel programs, neither con-
ventional profiling nor tracing measurement, per se, provide
adequate support for performance-driven dynamic tuning.

Parallel performance monitoring extends parallel measure-
ment systems with infrastructure and interfaces for online
performance data access, communication, and analysis. Use
of performance monitoring immediately raises concerns for
the impact on parallel application execution from monitor
overhead. Whereas the cost/benefit value of monitor use
is ultimately determined by user requirements, innovations
in scalable monitoring technology seek to reduce overhead
impact by allocating additional physical computing resources
for monitor deployment. The Supermon [1] and MRNet [2]
systems can both operate in this manner. Integration of a
parallel performance measurement facility with a monitoring

Dorian C. Arnold, Barton P. Miller

Computer Sciences Department
University of Wisconsin, Madison, WI, USA

{darnold, bart}@cs.wisc.edu

framework built on supplemental resources can deliver effec-
tive performance monitoring capability at large scale, as we
demonstrated with the TAU Performance System and both
Supermon [3] and MRNet [4].

What does it mean to be effective in the context of a parallel
applications performance monitoring needs? The monitoring
scheme chosen (e.g., performance events to monitor, access
frequency, data analysis operation, and location of monitor
consumer) are rightly determined by application semantics.
For instance, many parallel scientific applications are both
iterative in nature and phase based. Ascertaining how appli-
cation performance changes from iteration to iteration relative
to phases would naturally define a set of monitoring require-
ments. The problem is determining whether these requirements
conflict with acceptable levels of monitor cost.

The monitoring system presents its own choices, particularly
the amount and configuration of resources devoted to the
monitoring infrastructure. These choices result in a monitoring
system with certain operational performance characteristics
which translate into ranges of practical use. The key to
scalable, low-overhead parallel performance monitoring, then,
is to match the application monitoring demands to the effective
operating range of the monitoring system (or vice-versa). A
poor match can result in over-provisioning (wasted resources)
or in under-provisioning (lack of scalability, high overheads
and poor quality of performance data).

We present a methodology and evaluation framework to
determine the sweet-spots for performance monitoring with
TAU and MRNet. In Section §II, the TAUoverMRNet (ToM)
system for performance monitoring is described. The inef-
fective use of ToM based on naive requirements / configu-
ration matching is demonstrated in Section §III. Following
this, Section §IV presents a scheme for monitor bottleneck
estimation. Section §V, using the estimation method, shows the
relationship of monitor bottlenecks to performance data size
and access frequency. This knowledge can help to characterize
regions of effective monitor operation for different configura-
tions and to guide good application choices for monitor use.
Related work is given in Section §VI followed by conclusions
and future work in Section §VII.

MRNET
Comm Node
+
Filter

TAU
Front-End

MRNET
Comm Node
+
Filter

Fig. 1.

II. THE TAUoverMRNet SYSTEM

Scalable, online monitoring of parallel performance decom-
poses naturally into measurement and transport concerns. In
TAU, an extensible plugin-based architecture allows compo-
sition of the underlying measurement system with multiple
transports for performance data offloading. The ToM work
explores the Tree-Based Overlay Network (TBON) model [5]
provided by MRNet with an emphasis on programmability
of the transport for the purpose of distributed performance
analysis/reduction. The main components and the data/control
paths of the system are shown in Figure 1.

Back-End

The ToM Back-End (BE) resides within the instrumented
parallel application. The generic profile data offload routine in
TAU is overridden by a MRNet adapter that uses two streams
(data and control). The data stream is used to send packetized
profiles from the application backends to the monitor. The
offloading of profile data is based on a push-pull model,
wherein the instrumented applications push data into the
transport, which is in turn drained out by the monitor. The
application offloads profile information at application-specific

DUMP()

| | TAU
__

Application J

The TAUoverMRNet System

points (such as every iteration) or at periodic timer intervals.
The control stream is meant to provide a reverse channel from
monitor to application ranks.

ToM Filters

MRNet provides the capability to perform transformations
on the data as it travels through intermediate nodes in the
transport topology. ToM uses this capability to distribute
statistical performance analyses traditionally performed at the
sink, in the process reducing the amount of performance data
that reaches the monitor. One such filter performs distributed
histogramming, with a histogram per profile event reaching
the front-end at every monitoring interval. As an example,
Figure 2 plots the Allreduce event’s cumulative runtime re-
trieved as histograms at every iteration. The data is from
a run of the FLASH [6] application’s 2-D Sod problem on
1024 processors of the LLNL Atlas cluster. The view allows
tracking both temporal and spatial patterns in the event’s
performance. ToM provides these performance views in a
scalable and low-overhead fashion. For instance, in monitored
runs of the FLASH 2-D Sod problem, weak-scaling from 64 to
512 processors, with performance data offload occurring every

iteration, the total overhead from measurement and transport
amounted to less than 1% of uninstrumented runtime [4].

FLASH Sod 2-D | Event: Alireduce | N=1024 No. of Ranks

18 350

300

250
I' 200

150

o

N

o

Total Event Runtime (secs)
©o

100

[

50

50 75 100 125 150
Application Iteration #

Fig. 2. Allreduce Observations from Distributed Histogram Filters

Front-End

The ToM front-end (FE), the root of the transport tree,
invokes the MRNet API to instantiate the network and the
streams. In the simplest case, the data from the application
that is transported as-is, without transformations, is unpacked
and written to disk by the FE. More sophisticated FEs (that are
in turn associated with special ToM filters) accept and interpret
statistical data including histograms and functionally-classified
profiles.

III. NAIVE MONITORING CHOICES

We motivate the need to make informed monitoring choices
through example runs where choices are made without re-
gard to monitoring system capability resulting in unfavorable
outcomes. The ideal solution is one in which the application
monitoring requirements and monitoring system operating
parameters are well matched. Such a system must allow the
overhead caused to the application due to monitoring to be
determined and controlled and provide for global (spatial and
temporal) consistency in the monitored performance views. A
globally consistent view includes all of the ranks’ data (spatial)
with all of the data being drawn from the same monitoring
interval (temporal). We restrict ourselves to overheads related
to the offload and transport of performance data (measurement
related overheads are outside the scope of the current work).

Assuming a SPMD application model, the set of monitoring
choices in the application reduces to the monitoring offload
interval and the profile event count. Fixing the event count (to
64 profile events), we focus on the effect of offload intervals.
A simple bspbench benchmark that models bulk-synchronous
processing (BSP) busy loops over a calibrated work loop to
match the requested computation time. It then executes a
barrier followed by a profile offload. This sequence is repeated
for the configured number of iterations. Since an offload occurs
every iteration, the offload interval matches the compute time
per iteration. ToM is configured with a statistics filter that

produces summary statistics (such as mean, standard deviation,
min, max) for each event across the ranks.

In the following experiments the bspbench is configured
to use 64 application ranks (N), 64 profile events (E), 1000
iterations (I) and the offload intervals of 100, 24 and 6 ms.
ToM is constructed with a fanout (FO) of 8. For every iteration
the maximum time spent within the offload operation across
the ranks is reported as the Offload Cost (OC) and represents
the direct cost to the application from performing the offload.
The maximum time between the start of an offload operation at
a BE and the arrival of the single, reduced profile at the FE is
reported as the One Way Delay (OWD). As the dumps are
assumed to occur synchronously across the ranks, the OWD is
calculated as the difference between the recv-time and the
earliest send-time. TAU performs clock synchronization at
startup across all application and ToM processors.

Figure 3 (A) plots the OWD (bottom) and the OC (top)
at every offload iteration for two cases (6bms and 100ms
intervals). Examining the 100ms case first, we see that apart
from a few small spikes, the OWD remains stable at about
60ms. Similarly its OC is stable and relatively low (2 to 4
ms). In contrast, the OWD in the 6ms case starts small but very
quickly grows two orders of magnitude (to over 6000ms). The
OWD then plateaus and exhibits a periodic pattern of growth
followed by sudden drops. Associated with the sudden periodic
drops are large spikes in the OC.

This behavior can be explained by the fact that MRNet uses
a tree of TCP connections as its underlying transport. Offload-
ing at the rate of once every 6ms happens to be higher than
the service capacity of the system resulting in queuing of the
profiles in the path from BEs to FE. This queuing is reflected
in large OWD values. As the queuing persists, buffer overflows
occur at some point in the path (before or at the bottleneck).
This triggers the TCP flow-control at the sender in the previous
hop to stop forwarding, eventually causing that hop’s buffers
to overflow as well. The back-pressure propagates all the
way to the BE. The TCP flow-control at the BE causes the
MRNetsocket send operation to block resulting in the large
OC spike. Due to the blocked time, the application’s offload
rate is temporarily lowered allowing the ToM system to catch
up. But once buffers become available again, the application
returns to its original offload interval leading to the repetitive
pattern.

The impact to the application follows directly from the
blocked send operations (large OC spikes). Figure 4 plots the
mean OC on the left-side axis for the three offload intervals
as the curve labeled OC Blocking. These OC values represent
overheads ranging from 2.4% (at 100ms) to 779.4% (at 6ms)
of application runtime. While consistent global snapshots
are being delivered, the choice of 6ms intervals leads to
an excessive overhead level. Given that the overheads are
attributable to the large blocking times, would a non-blocking
offload solution help? The actual offload can be performed in
a separate consumer thread with the main application thread
placing the profiles into an unbounded buffer. This decouples
the application from the actual offload and provides latency-

10000

1000

Offload Cost (ms)
=
o
o
T

i
o

Il

1

100000 ¢

10000 ¢

OWD (ms)

1000

10

Offload Interval: 6ms ——
Offload Interval: 100ms === -+-

200 300 400

500 600 700 800 900 1000

Offload Iteration #

(A) Blocking Offload

10

Offload Cost (ms)
=
T

0.1

100000 ¢

Offload Interval: 6ms ——
Offload Interval: 100ms ===+

10000

OWD (ms)

1000

ELUVIN SSUNPUNIE NUURION S0 WUNOSIUOND SUON NOURUON FOURUUURVUNON VRSSOV NONRUUO BUUOTS SR SO

10

0 100 200 300 400

500 600 700 800 900 1000

Offload Iteration #

(B) Non-blocking Offload

Fig. 3.

hiding.

Figure 3 (B) plots the results from such a non-blocking
scheme. The OC (top plot) of both configurations is relatively
small and stable (since the actual offload is occurring in a
worker thread). But the OWD of the 6ms case shows an
early large growth followed by a continuous steady growth
(unlike the plateau in (A)). The final OWD is in the range
of 60000ms, an order of magnitude larger than the blocking
case. This is attributable to the fact that in the absence of
blocking experienced by the producer, there are no temporary
rate reductions. As the curve labeled OC Non-Blocking in
Figure 4 shows, the overhead goes from 1.8% (at 100ms) to
27.8% (at 6ms) of runtime. While 27.8% is still quite large,

Varying Offload Interval: Offload Cost (top), One Way Delay (bottom)

it is a linear increase (of approx. 16 times) matching exactly
the decrease in the interval.

Unfortunately the non-blocking scheme does not fare much
better. Figure 4’s right-side y-axis plots the Excess Data
Reception Time which represents the extra time taken (after
completion of the parallel application) to retrieve any re-
maining queued performance data. It took about 4.75 times
longer to get the remaining data out resulting in an overall
overhead of 607%. If performance data collection had stopped
with application execution, only a few snapshots of the early
iterations would have been retrieved.

In both previous cases, the choice of certain monitoring
intervals results in more profile offloads than the configured

Loss‘Occured | I‘ terval: Gm‘ +
56 * 'y
; +
3 Fol + *
548 R Fooop 4
Ty & +
W
N T
2N —_— [e———
5. 13 & | — . —
T O +
H f k4
16
o Ve =
8l -
f +
—
0 : t t
Loss Occured | Interval: 24ms ~ +
56
.48
3 e S S | S S S S— w—
& 40 |y
R
<32
5
;24 7 o ———
=16
8 -
0
0 100 200 300 400 500 600 700 800 900 1000

Offload Iteration #

(A) Loss Maps
Fig. 5.

Blocking vs. Non-Blocking : Mean Offload Cost and Excess Data Reception Time
50 T T T T T T

T T 500
OC Blocking —+—
OC Non-Blocking

EDR Blocking -+ %:--
45 EDR Non-Blocking @ 7 450

40

35 [

25 |-
20 |

15

Mean Back-End Offload Cost [OC] (ms)

10

Excess Data Reception Time [EDR] (% of Runtime)

KO M reqrieen e eeeeneaeas

i i ;) . N
0 10 20 30 40 50 60 70 80 90 100 110
Offload Interval (ms)

Fig. 4. Comparing Blocking vs. Non-blocking Offload Schemes

monitoring system can handle. Neither of the schemes attempt
to reduce the number of offloads. Given that the application
ranks (at the BEs) can locally detect spikes in the OC (in the
blocking case) or a full-buffer (in the non-blocking case with
bounded buffers), can the ranks then simply drop the profile
that is yet to be offloaded? A lossy non-blocking scheme
with bounded buffers results in such a local back-off policy.
Figure 5 (A) provides a loss-map indicating the iterations at
which specific ranks dropped profile offloads. In the both cases
that had loses (24ms, 6ms) we see that loss affects the ranks
unfairly, penalizing the same ranks repeatedly. Further, in the
24ms case, for almost every 8 application ranks there is one
being victimized. It is no coincidence that the 7ToM fanout
is 8. The structure is different in the 6ms case. Because
of the losses, the % of globally consistent, complete profile
offloads that could be generated was only 15% (24ms) and

100

90

80

70

60

50

40

% Global Snapshots Successfully Received

30
" /

/

10
0 (Real)

Offload Interval: 6ms —+—
Offload Interval: 24ms
Offload Interval: 100ms ---%:--

1(Sim) 2 (Sim)

Acceptance Threshold

(B) % Successful Global Offloads

Local Decisions : Non-blocking, Lossy Offload

11.4% (6ms) of the 1000 total iterations. In addition, all of
the generated profiles were from the first 200 iterations.

To improve upon this scheme by utilizing the structure
seen in the loss map, one can define a loss Acceptance
Threshold (AT) which allows an intermediate ToM filter to
produce a reduced profile even when at most AT of its children
fail to provide a profile. Figure 5 (B) plots the % global
profiles generated from a simulation of this policy. At AT=0,
the real data is plotted, with the simulated results at the other
points. An AT=1 brings the 24ms case to almost 100% profile
generation (since only one in every § experienced loss). But in
the 6ms case this occurs only at an AT=4. The drawbacks of
this approach arise from the inconsistent back-off signals that
the application ranks receive and to which they react. With
some ranks never being monitored and with no control over
actual monitoring intervals, the result is a profile view at the
FE that is inconsistent in both spatial and temporal aspects.

The choices of 100ms, 24ms and 6ms intervals were made
here knowing a priori that they were on either side of the
system capacity. But they are intended to demonstrate the
resultant behaviors when application monitoring choices (e.g.
monitoring interval) and monitoring infrastructure choices
(e.g. monitoring system resource allocation) are made inde-
pendently without regard to each other. What is needed, then,
is a way for the application (i.e. all its ranks) to determine the
operating capacity of the ToM system as configured so as to
consistently generate global profile views while staying within
an acceptable overhead threshold.

I'V. ESTIMATION OF BOTTLENECK INTERVAL

A global consensus across the application ranks regarding
the operating capacity of the 7oM monitoring system as
configured, allows them to make informed, globally consistent
decisions regarding performance profile offloads. Operating
capacity refers to the number of profiles that the ToM system
can handle per unit time without persistent backlogs for

a given profile size and number of application ranks. The
Bottleneck Offload Interval (BOI) metric is an estimator of
the operating capacity of the system. It specifies the minimum
possible interval between offloads that does not lead to queu-
ing. This needs to be determined for different profile sizes of
interest.

When the application offload interval falls below the true-
BOI of the system queuing must ensue and this queuing
can be detected via the increasing One Way Delay values.
Based on this we construct a binary-search where the search
space consists of all possible intervals (from zero to infinity)
and the comparison operator uses the OWD as a heuristic
for guidance. To reduce the search-space to a manageable
range, we first determine the upper bound (or the initial High
Interval). We use a stop-and-go protocol with the BEs sending
only after receiving acknowledgment from the FE that the
previous round arrived. This ensures that no queuing occurs
between rounds. The OWD measured in this phase (termed the
Resting OWD or restOWD) is used as the initial High Interval.
For the first search the initial Low Interval would be zero. For
successive searches, performed in increasing order of profile
size, the the BOI of the previous profile-size can serve as
the initial Low Interval. In this resting phase, the standard
deviation of the restOWD is also determined and used in the
calculation of an OWD threshold (restOWD + k * restSD).

Curr. OWD
Rest. OWD + threshold - -x-+:
Growth %

Offload Interval (ms)

Curr. Interval —+— |
Low Interval «--x:-
) High Inter\/a\ e

0 1 2 3 4 5 6 7 8 9
Search Step

Fig. 6. Search Progress : Interval (bottom), OWD (top)

The main search phase starts by setting the Curr. Interval
to the High Interval. The BEs synchronously send / rounds
at the current interval. The FE calculates a growth metric
based on the [OWD values. The growth (defined as the mean
value of successive increases in OWD) captures increasing
OWD trends. When growth > restSD and the mean-One Way
Delay > OWD threshold, the Curr. Interval is set to the
mid-point of the upper-half of the interval range and the
Low Interval is moved up. Otherwise, Curr. Interval is set
to the mid-point of the lower-half of the range and High
Interval is reduced. This procedure continues until the interval
range becomes less than an error threshold, satisfying the
termination condition and returning the Curr. Interval as the
BOI. 1If the growth was larger than the OWD threshold at

termination, the High Interval at that point is instead returned
as the BOL

Figure 6 shows the progress of one such search. Here the
number of application ranks is 64, the ToM fanout (FO) is 8
and number of profile events is 64. The search parameters are
set to [=20, k=2 with an error threshold of 2*restSD. At search
step=0, the Curr. Interval is set to the initial High Interval
(restOWD). The Low Interval is set based on the BOI for 32
profile events. In response to the Curr. Interval, the Curr. One
Way Delay and growth remain below their thresholds. At step
2, the search then tries a lower offload interval, but finds that
the Curr. OWD and growth shoot past their thresholds. This
procedure continues until Step 9, when the range becomes
smaller than the error threshold.

o

zzz
NI
DD
Et
il
o
[RNN]

N
X:
L

o

o

Eval Metric [{ (Data Arrival Interval)*100/(Estimated Offload Interval) } - 100 |

-10 -20 -40
% Change from Estimated Offload Interval Applied to Benchmark

Fig. 7. Offload Interval Estimation Evaluation

To evaluate the estimation we run the benchmark at pro-
gressively lower offload intervals than the estimated-BOI and
measure the data arrival interval at the FE. In the case where
the offload interval is larger than the true-BOI (which is not
known), the data arrival interval should match the offload
interval. But when offload interval is lower than the frue-BOI,
the data arrival interval should never drop below the true-
BOI. The evaluation metric used is the % difference in the
data arrival interval from the estimated-BOI. Figure 7 plots
the evaluation metric resulting from offloading at intervals that
are less than the estimated-BOI by 10, 20 and 40%. The curves
for all three configurations never fall below +6% and instead
begin to increase, suggesting that the estimated-BOI is at most
within 10% of the true-BOI.

ToM provides an API that informs the application of the
BOI, OWD and OC for profile-sizes of interest to the applica-
tion. The application, thus informed, can decide the granularity
of profile offloads. For instance, an iterative application may
determine that its iterations take 75 ms on average, but the
estimated-BOI reported is 100 ms. It can then decide (consis-
tently across the ranks) to drop every 4th profile offload, there
by increasing its average offload interval (with the average
taken over multiples of 4 rounds) to 100 ms, matching the

[OWD] FO=2 —+—
[OWD] FO=4 - -x--
[OWD] FO=8 ---%---

Normalized SD of OWD

05 o

[Interval] F
[Interval] F
[Interval] Ft

[e]e]e}
I
RN

Normalized SD of Interval

16 32 64 128 256
No. of Profile Events

Fig. 8. Stability of One Way Delay (top) and Offload Interval (bottom)

BOI. Further, by backgrounding the offloads (i.e. making them
non-blocking), it can avoid potential backups due to burstiness
from its lower-than-BOI short-term offload interval.

The isolated nature of HPC resource allocations for jobs
suggests a level of stability that may make BOI estimation at
the start of every application run unnecessary. We performed
five periodic probes (45 minutes apart) at varying fanouts and
profile event sizes. Figure 8 plots the standard-deviations of
both the OWD and BOI over the five probes. To be comparable,
the standard-deviation is normalized and reported as a % of
mean. Stability is observed across the configurations in both
metrics. In such stable environments, the BOI estimates for
a wide range of configurations can be generated, cached and
reused for the length of time for which the stability is known
to persist.

V. CHARACTERIZING ToM PERFORMANCE

The Bottleneck Offload Interval estimation method and API
provide the application the ability to discover the limits of
monitoring system capability. The question yet to be answered
is how to bridge monitoring requirements (as specified by
both the user and application semantics) with the monitoring
resource costs. Given an application size and the performance
data reductions to be performed, what are the choices to be
made with regards to ToM fanouts, monitoring offload intervals
and number of profile events to sample? To help answer
that, we characterize different 7oM configurations using three
metrics below.

Bottleneck Offload Interval

The BOI estimation is performed over different profile sizes,
starting at 16 events, increasing at power of two increments
upto 1024 events. For each such configuration we determine
the BOI, by picking the median of three trials. We begin
with 8 applications ranks with 7oM fanouts of 2 and 8.
The filter performs the same summary statistics reduction
as in previous experiments. Figure 9 (A) plots the BOI for
the two N=8 configurations. What is immediately striking is

zz
i
bl
nm
[e]e}
g
-3

2048
1024
512
2 256
E
128
64 a
= —
S
§ 32 ot
g M
8 {
3 16
@
8
4
2 et
1
16 32 64 128 256 512 1024
No. of Profile Events

N=16, FO=2 ——+—
N=16_FO=4 - -
2048 [N=16, FO=16 -~

N
@

@
i3

@
IS

Bottleneck Offload Interval (ms)

>

16 32 64 128 256 512 1024
No. of Profile Events

(B) N=16

N=64, FO=4 %
2048 [N=64, FO=8 -~
N=64, FO=64 &]

1024

512

256

128

64

32 g

Bottleneck Offload Interval (ms)

16 32 64 128 256 512 1024
No. of Profile Events

(C) N=64

Fig. 9. Bottleneck Offload Interval Characterization

that the FO=8 curve performs better than the FO=2 curve
at all profile sizes. At profile-size=16, there is a pronounced
difference in the BOI values of the two configurations. As
the profile size increases, FO=8 grows far more rapidly than
FO=2. Since we are dealing with the BOI, queuing costs can

be safely dismissed. Networking costs cannot account for the
differences observed as in both configurations, the MRNet tree
fits completely within a single (dual socket quad-core) node,
with the application ranks occupying a second node.

There are two primary costs associated with the reduction
tree — reduction costs (Tr) and (de)packetization costs (Tp).
The T refers to the cycles required to perform a binary profile
reduction operation. With N=8, a total of 7*T'r cycles will be
expended in reduction. The current statistics filter performs
the reduction on the arrival of the last child’s profile. In the
case of FO=2, the 7*Tr reduction cycles are split across 7
processors, whereas in FO=8, a single thread performs all
the reduction cycles. The Tp is cycles required to pack an
intermediate performance profile into a 7oM packet (or unpack
a packet into a profile data structure). For a fixed profile-
size, Tp is also fixed. But depending on the configuration,
the number of packetizations and de-packetizations varies. In
contrast to FO=2, in the FO=8 case there are no intermediate
(de)packetization costs.

At small profile sizes, the T dominates the cost in case of
FO=2, causing the large (and counter-intuitive) difference in
performance from the FO=8 case. The FO=8 configuration’s
BOI quickly rises as a single processor is performing all
reductions. Intuitively, this example is similar to the case of
allocating more processors to a problem than required causing
serial costs (and parallelization overheads) to dominate.

This trend is seen to persist in the N=16 runs, results for
which are shown in Figure 9 (B). At the smaller profile
sizes the estimated BOI is larger for smaller fanouts. As
the profile size increases, FO=4 crosses FO=2 at 128 profile
events. This is followed by FO=16 crossing over FO=2 at
256 profile events. The BOI of FO=16 continues to grow
faster than that of FO=4, suggesting that it may further cross
over FO=4 at some point above 1024 profile events. In the
N=64 runs (Figure 9 (C)) the smaller three fanouts (2, 4,
8) seem to have already crossed over at 16 profile events.
FO=64 begins the cross-over of FO=2 at 64 profile events and
eventually becomes the configuration with the largest BOI at
1024 events. Another noteworthy trend is the retreating of the
cross-over points to smaller event sizes as N increases. Overall,
these results suggest that, depending on profile-size and the
reduction operation, reducing fanout is not always beneficial
and can instead even be detrimental.

Back-End Offload Costs

Another metric of interest is the cost to perform the offload
operation at the back-end (within an application rank). After
all, the monitoring overhead to the application in terms of
runtime is a consequence of this offload cost. Figure 10
plots the mean direct and overall costs of performing a
single offload at increasing profile sizes. The measurements
indicate the costs when the application offloads profiles at the
Bottleneck Offload Interval. The seven curves represent the
three N=16 fanouts and four N=64 fanouts.

The direct cost is measured as the time between the start and
end of the offload call. In contrast, the overall cost is measured

Overall and Direct Overheads of Offload | N=16, 64

3
‘
z
i
DE
m
o
:
L
‘

=
T
z
i
>
RS
i
o
¥
L
h

N=64, FO=8 --0--
N=64, FO=64 =

o o
T
L

©
T
L

Overall Cost (ms)

@
T
\

IS
T
@

3.8 [N=16, FO=2 —+— 1

33

N=64, F

Direct Cost (ms)

16 32 64 128 256 512 1024
No. of Profile Events

Fig. 10. BE Offload Costs: Direct (bottom) and Overall (top)

as the difference between the measured mean iteration runtime
with offloads and the mean iteration runtime without offloads.
OS buffering and variability in direct costs across the ranks
(propagated globally at the barrier) explain the difference in
the two costs. The Overall cost estimates application offload
overhead.

Limiting Transport Overhead

Limiting-Overhead (% Runtime)

12
"
10 \
U P \\
P S W SO T e
4
2
0
16 32 64 128 256 512 1024
No. of Profile Events
Fig. 11. Limiting Overhead

Lastly, taking together the BOI and the overall offload cost
provides us with a notion of Limiting Overhead (or Limiting
Transport Overhead), defined as:

{Overall Of fload Cost}@BOI .
BOI + {Overall Of fload Cost}@QBOI

LO = 100

As long as the application maintains its offload interval below
the BOI, the overhead will be linearly related to the interval.
But if the configuration is used outside its operating capacity
(i.e. below BOI), the overheads will grow rapidly (as seen
earlier in Figure 4). The LO refers to the maximum overhead

in terms of % runtime that an application would experience at
a certain profile size, provided the offload interval >= BOI.
Figure 11 plots, given 64 application ranks, the LO at different
fanouts and profile sizes. It is interesting that, depending on
configuration, the LO can be relatively small. Except for one
data point, the maximum LO measured is 13%. At profile sizes
> 256, this maximum (in all but the FO=2 case), drops to
5.5%. Even if a user were willing to sacrifice 10% of runtime
in return for detailed performance information, under such a
configuration that would be inadvisable.

VI. RELATED WORK

On-line automated computational steering frameworks (such
as [7], [8], [9], [10]) use a distributed system of sensors to
collect data about an application’s behavior and actuators to
make modifications to application variables. While we have
not applied our framework to steering, it is conceivable that
higher-level methods provided by these tools could also be
layered over ToM. Paradyn’s Distributed Performance Consul-
tant [11] supports introspective online performance diagnosis
and uses a high-performance data transport and reduction
system, MRNet [2], to address scalability issues [12]. The On-
line Monitoring Interface Specification (OMIS) [13] and the
OMIS compliant monitoring (OCM) [14] system target the
problem of providing a universal interface between online,
external tools and a monitoring system. OMIS supports an
event-action paradigm to map events to requests and response
to actions, and OCM implements a distributed client-server
system for these monitoring services. However, the scalability
of the monitoring sources and their efficient channeling to
off-system clients are not the primary problems considered
by the OMIS/OCM project. Periscope [15] addresses both the
scalability and external access problems by using hierarchical
monitoring agents executing in concert with the application
and client. The agents are configured to implement data
reduction and evaluate performance properties, routing the
results to interactive clients for use in performance diagnosis
and steering. In contrast to these systems that have built-in,
specialized transport support, TAU, by exposing an underlying
virtual transport layer that allows adaptors (such as for the
filesystem, Supermon and MRNet), provides flexibility in
transport choice.

VII. CONCLUSION

A sweet spot is “a position, often numerical as opposed to
physical, where a combination of factors suggest a particularly
suitable solution” [16]. Parallel performance monitoring is
motivated by a need for runtime access to performance data,
but the monitoring system must be utilized judiciously to meet
user requirements for overhead, latency, and responsiveness.
Finding sweet spots for performance monitor use depends on
characterizing its operational behavior and exploring factors
for suitable operating range. In this paper, we have developed
a methodology and resulting characterizations for making
informed monitoring decisions. This methodology allows us
to determine both profile offload intervals and offload size. For

instance, an iterative application with a per-iteration runtime
of 10 ms and a requirement of monitoring performance at
least every 10th iteration presents a target offload interval
of 100 ms. For 64 processes, if the user were to use the
least amount of monitoring resources (1.6% at MRNet fanout
of 64), then, conservatively, the application would be able
to offload no more than 256 profile events, for a resulting
maximum overhead of 5.5%.

Although we studied only performance profile reduction,
our methodology will extend to other analysis operations. We
intend to conduct experiments for histogramming and clus-
tering in the near future. We are also interested in how sweet
spot analysis is applied when offload behavior is irregular, less
periodic or less uniform than here. Finally, our future work
will include feedback to the application to help control offload
behavior to stay within the sweet spot during execution.

REFERENCES

[1] M. Sottile and R. Minnich, “Supermon: A high-speed cluster monitoring
system,” in CLUSTER’02: International Conference on Cluster Comput-
ing, 2002.

[2] P. Roth, D. Arnold, and B. Miller, “Mrnet: A software-based multi-
cast/reduction network for scalable tools,” in SC’03: ACM/IEEE confer-
ence on Supercomputing, 2003.

[3] A. Nataraj, M. Sottile, A. Morris, A. Malony, and S. Schende, “TAUover-
Supermon : Low-Overhead Online Parallel Performance Monitoring,” in
Europar’07: European Conference on Parallel Processing, 2007.

[4] A. Nataraj, A. Malony, A. Morris, D. Arnold, and B. Miller, “A
Framework for Scalable, Parallel Performance Monitoring using TAU
and MRNet,” in Under Submission., 2008.

[5] D. Arnold, G. Pack, and B. Miller, “Tree-based Overlay Networks
for Scalable Applications,” in HIPS’06: International Workshop on
High-Level Parallel Programming Models and Supportive Environments,
2006.

[6] R. Rosner et. al., “Flash Code: Studying Astrophysical Thermonuclear
Flashes,” Computing in Science and Engineering, vol. 2, pp. 33-41,
2000.

[71 W. Gu et. al., “Falcon: On-line monitoring and steering of large-scale
parallel programs,” in Sth Symposium of the Frontiers of Massively
Parallel Computing, McLean, VA,, 1995, pp. 422-429.

[8] R.Ribler, H. Simitci, and D. Reed, “The Autopilot performance-directed
adaptive control system,” Future Generation Computer Systems, vol. 18,
no. 1, pp. 175-187, 2001.

[9] C. Tapus, I.-H. Chung, and J. Hollingworth, “Active harmony: Towards

automated performance tuning,” in SC’02: ACM/IEEE conference on

Supercomputing, 2002.

G. Eisenhauer and K. Schwan, “An object-based infrastructure for

program monitoring and steering,” in 2nd SIGMETRICS Symposium on

Parallel and Distributed Tools (SPDT’98), 1998, pp. 10-20.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Kar-

avanic, K. Kunchithapadam, and T. Newhall, “The paradyn parallel

performance measurement tool,” Computer, vol. 28, no. 11, 1995.

P. Roth and B. Miller, “On-line automated performance diagnosis

on thousands of processes,” in //th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2006, pp. 69-80.

T. Ludwig, R. Wismiiller, V. Sunderam, and A. Bode, “Omis — on-line

monitoring interface specification (version 2.0),” LRR-TUM Research

Report Series, vol. 9, 1998.

R. Wismuller, J. Trinitis, and T. Ludwig, “Ocm — a monitoring system

for interoperable tools,” in 2nd SIGMETRICS Symposium on Parallel

and Distributed Tools (SPDT’98), 1998, pp. 1-9.

M. Gerndt, K. Fiirlinger, and E. Kereku, “Periscope: Advanced tech-

niques for performance analysis.” in Parallel Computing: Current &

Future Issues of High-End Computing, In the International Conference

ParCo 2005, 13-16 September 2005, Department of Computer Architec-

ture, University of Malaga, Spain, 2005, pp. 15-26.

[16] Wikipedia, “Sweet spot — wikipedia, the free encyclopedia,” 2008,

[Online; accessed 26-April-2008]. [Online]. Available: \url{http:
/len.wikipedia.org/w/index.php?title=Sweet_spot&oldid=186828670}

[10]

[11]

[12]

[13]

[14]

[15]

