Parallel Performance for Reacting Flow Using Adaptive Mesh Refinement

Andy Nonaka Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory July 27, 2009

- Personnel
 - John Bell, Director
 - Ann Almgren
 - Andy Aspden
 - Vince Beckner
 - Marc Day
 - Xinfeng Gao
 - Candace Gilet
 - Mike Lijewski
 - George Pau

Our Research

• Our primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for reacting flow.

Scientific Applications

- Incompressible Navier-Stokes
- Compressible Astrophysics
- Low Mach Number Flows
 - Combustion
 - Astrophysics
 - Porous Media
- Machines
 - Franklin @ Lawrence Berkeley National Lab
 - Jaguar @ Oak Ridge National Lab
 - Intrepid @ Argonne National Lab

Example: 3D Incompressible Navier-Stokes

- Entrainment behavior of turbulent jets subject to off-source heating. The movies show a tracer injected with the jets. The jet on the left is unheated. Three different heating rates were applied (increasing to the right).
- 2 levels of refinement; effective 512 x 512 x 768 resolution
- 1000 processors on Franklin, ~10 sec/time step

Movie removed due to large file size. Visit our website at ccse.lbl.gov

Example: 3D Low Mach Number Combustion

- Low swirl burner simulation of an H₂ flame. The color represents log(OH⁻ Concentration). The clouds are contours of constant vorticity.
- 3 levels of refinement; effective 2048³ resolution.
- 4,000 processors on Franklin, ~2,000 sec/time step

Movie removed due to large file size. Visit our website at ccse.lbl.gov

Example: 3D Low Mach Number Astrophysics

- Convection patterns of a carbon-oxygen white dwarf leading up to a type Ia supernovae. Red is outward radial velocity, blue is inward.
- Single level run with 384³ resolution
- 1,728 processors on Jaguar; ~10 sec/time step

Movie removed due to large file size. Visit our website at ccse.lbl.gov

- Written in C++, F77, and F90
- Based on the BoxLib framework
- Block structured AMR with subcycling in time
- All parallel communication uses MPI

- We solve a system of advection, reaction, and diffusion equations.
 - Advection discretized with Godunov method.
 - Diffusion treated semi-implicitly, uses multigrid.
 - Reactions use an ODE solver within each cell.
- Elliptic equations are required to constrain the velocity for incompressible and low Mach number equations, or to solve for gravity in our astrophysics codes. Elliptic solves use multigrid.

• Here is the base grid. Let's say that we have 4 processors available.

• We divide up the domain into grids, assigning each grid to a particular processor.

• In order to advance the solution at this level, we need to communicate between grids.

• We repeat this process for each level of refinement. Note potential load balance problems.

• In order to advance the solution at this level, we need to communicate between grids.

• We also require two-way communication between levels.

Scaling Numbers: Low Mach Combustion

- Weak scaling on Franklin
- 2 levels of refinement
- Effective 256 x 256 x 512 resolution for the 64 processor case

# processors	time / time step [s]	time / time step [s]
	trial #1	trial #2
64	3,783	3,627
256	3,418	3,535
1,024	3,417	3,773
4,096	3,990	4,802

note variability in time step for larger runs

Scaling Numbers: Low Mach Astrophysics

- Strong scaling on Jaguar
- No AMR
- 1024³ resolution

# processors	time / time step [s] 32,768 – 32 ³ grids	time / time step [s] 4,096 – 64 ³ grids
2,048	81	71
4,096	48	36
8,192	38	
16,384	29	
32,768	22	

Scaling Numbers: Compressible Astrophysics

- Weak scaling on Franklin
- 1 level of refinement
- Effective 128³ resolution for 4 processor case

Parallel Performance Issues

- Scaling
 - We scale well up to \sim 4,000 processors.
 - Timers in our code show that multigrid is the worst offender, but communication in all parts of code is non-trivial as well.
- I/O
 - Data files currently 100GB each. Can easily reach 1TB when we double the effective resolution in 3D.
 - Visualization using Vislt, handles large datasets well.
- Single-node performance
 - What tools are available to analyze this? What can be done to increase performance?
- What about hierarchical programming models (threading?)
 - Automatic tools on Intrepid show minimal speedup. Straight MPI easily outperforms threading.