ORNL Cray XT3/4 Overview

Jeffrey S. Vetter

And a cast of dozens ...

Cray, NCCS, Pat Worley, Sadaf Alam, Weikuan Yu

http://ft.ornl.gov, http://nccs.gov

Software Development Tools for Petascale Computing Workshop on Aug 1-2

Current NCCS Resources

³ CSM Experimental Computing Lab houses IBM CELL, GPUs, Clearspeed, FPGAs, etc.

NCCS Roadmap for Leadership Computing

Mission: Deploy and operate the computational resources needed to tackle global challenges

- Future Energy
- Understanding the universe
- Nanoscale materials
- Climate Change
- Computational Biology

Vision: Maximize scientific productivity and progress on the largest scale computational problems

- Providing world class computational resources and specialized services
- Providing a stable hardware/software path of increasing scale to maximize productive applications development
- Work with users to scale applications to take advantage of systems

Jaguar – Cray XT4 with 11,706 Dual-Core AMD Opteron Processors

- 119 TF peak performance
- 46 TB main memory
- 2.5 MW of power (20 KW per rack)
- 124 cabinets 96 Opterons per cabinet
- Air cooled bottom-to-top
- Single 3000 CFM variable speed fan per rack
- 2.3 miles of interconnect cables
- Upgrade to Quad-core processors in Fall, 2007

1000 TF Cray "Baker" system in 2008

System configuration

- 🏓 1 PF peak
- ~24,000 quad-core processors
- ~50 KW per cabinet
- 🗢 ~7 MW power
- Over 3,000 watts/ft²
- 40+ heat exchange units (chilled water to R-134a)

1 PF Cray system in 2008

Used by permission: Cray, Inc.

Cray XT3 Processing Element: Measured Performance

The Cray XT4 Processing Element: Providing a bandwidth-rich environment

I/O

I/O Configuration

Lustre filesystems

- Serviced by 80 I/O nodes
- /lustre/scr144
 - 144 OSTs
 - Peak 72 GB/s
 - Target ~48 GB/s
 - Early results
 - Read 45 GB/s
 - Write 25 GB/s
- /lustre/scr72[a,b]
 - 72 OSTs each
 - Default scratch

User view of I/O

Performance

Performance > Matrix Multiply

Performance > POP

Performance > POP > Phases

Performance Considerations

- Compiler options
- ➡ Page Size
 - 4KB v. 2MB (def)
- ⇒SN v. VN
- Process Mapping
 - Manage logical to physical placement of tasks
 - Cray
 - MPICH_RANK_REORDER_METHOD
 - Wrap, smp-style
- Collectives
 - MPI_COLL_OPT_ON

Software

Cray XT3/4 Software

Operating system

- Catamount
 - Lightweight OS
- Compute Node Linux (in testing)
 - Derived from Linux
 - Targeting quad core release
 - More functionality
 - User threads
- Filesystem
 - Lustre
- Tools

_

- Performance, debugging
 - Cray PAT and Apprentice
 - Tau
 - PAPI
 - MPIP
 - Totalview
- Compilers
 - PGI, Pathscale
- PBS/Moab batch scheduler

Cray Performance Analysis Infrastructure

CrayPat

- pat_build: Utility for automatic application instrumentation
 - No source code modification required
- run-time library for measurements
 - transparent to the user
- pat_report:
 - Performance reports
 - Generation of file for performance visualization
- pat_help: Runtime help utility

Cray Apprentice²

- Graphical performance analysis and visualization tool
 - Can be used off-line on Linux system

Performance Analysis with CrayPat & Cray Apprentice²

Performance Metrics Available in pat_report

Profile by groups

- Threshold
- Load imbalance information

Function Profile

- Flat profile
- Call Tree view
- Callers view
- Hardware counters information

MPI Profiler

- MPI Load balance
- MPI Stats by bin
- I/O Statistics
 - Read and Write Statistics

Heap Statistics

- High water mark
- Memory leaks

CrayPat API

- CrayPat performs automatic instrumentation at function level
- The CrayPat API can be used for fine grain instrumentation
 - Fortran
 - call PAT_region_begin(id, "label", ierr)
 - DO Work
 - call PAT_region_end(id, ierr)
 - C
- include <pat_api.h>
- ...
- ierr = PAT_region_begin(id, "label");
- DO_Work();
- ierr = PAT_region_end(id);

Cray Apprentice²

Apprentice²

Cray Inc.

Usage

NCCS Demographics in 2006

2006 Projects			
Accelerator physics	1	Engineering	1
Astrophysics	3	Fusion	4
Chemistry	1	High energy physics	1
Climate change	3	Biology	2
Combustion	1	Materials science	2
Computer science	2	Nuclear physics	1

FY 2006 Phoenix Usage by Affiliation

Industry Other University 5% 2% DOE Labs 51% 42%

LCF Users by Affiliation

Simulation Job Size Distribution for Science Applications on the ORNL Cray XT3 in 2006

2007 INCITE Allocations at the ORNL LCF Breakdown by Discipline

NERSC Cray XT4

- Very similar to ORNL platform
- Main differences
 - XT4 nodes (homogeneous system)
 - GPFS filesystem