OpenMP Tools API for Profiling

Xu Liu, John Mellor-Crummey and Mike Fagan
Department of Computer Science
Rice University

=<~ - Requirements for performance tools

e Accurate measurement
— low overhead: support sampling based data collection
— attribute metrics to user-level global view
— attribute performance losses to causes rather than symptoms

» Effective metrics: measure and attribute ...
— idleness, work, and overhead
— lock and critical section costs
 quantify lock contention as well
o Complete support
— work-sharing parallel regions
— nested parallel regions
— tasks

Intuitive and insightful analysis
— code centric: overhead & parallel efficiency of OpenMP constructs
— time centric: how execution unfolds over time

Approach

o Key features
— support unified, user-level view of calling contexts across all threads
— shift blame from symptoms to causes of performance losses
— pinpoint lock and critical section contention
— support both profiling and tracing

o Methods
— lightweight instrumentation of OpenMP runtime system

— efficient sampling-based measurement
— post-mortem analysis

=~ Problem: separate views for different threads

Worker threads don’t know the full user-level context for work

800 hpeviewer: a.out

= nestlec 2B | =
1 }

int main()

23 {

omp_set_nested(1);

omp_sot_dynomic(@);

#oragma omp parallel num_threads(2)

{
Fib(N+3);
report_num_threads(omp_get_level());
fpragna omp porallel num_threads(2)

C finun; parallel region

report_num_threods(omp_ get level());

torogm omp paralll mm-thrsads D work executed

Fib(N+3);

: report_num_threods(omp_get_level()); by Worker th readS

Fib(Ne3);
}
}

return(@);

. 2, Calters View Fp, Flat View

T 6T A A
PAPLTOT.CYCSUm (D % PAPI_TOT_CYC Mean () | PAPLTOT_CYC.StdDev () | PAPITOT C

,840410 100 & .80e409 $.660409
«J5%e430 55.5% .dde409 6€.060409
740410 22.2% 180409 5.760409
«J1e4i0 16.7% 530409 4.32e409
«J1e+i0 16.7% 6lesl9 2.11e409
«00e406 0.00 .C0e+06 1.000406
00es0C 0,04 509406 £.10e0%
740430 22.20 100409 $.7%+09

Metrics
¥ gomp_thread_start
» B> main._cmp_fn.0
» B> main._cmp_fn.1
> B> main._omp_fn.2
> B> do_wait

NE e o o e

% - Solution: efficient deferred context construction

e OpenMP runtime system

— supply a tool callback interface
« parallel region begin: void region_entry_callback(void)
 parallel region end: void region_exit_callback(void)
— assign a unique region ID for every instance of a parallel region

 use atomic increment to generate an ID for each
new region instance upon entry

— implement query API
« get parallel region ID: uint64 t omp_get region_id()
» whether the frame should be elided or replaced
— elided: e.g., GOMP _thread_start, GOMP_team_start
— replace with <parallel region> in the call stack
— make callbacks upon parallel region entry/exit
« if (region_entry callback) (*region_entry callback)()
« if (region_exit_callback) (*region_exit_callback)()
« minimal cost if callback pointers not provided by a tool (see slide 26)

- Solution: efficient deferred context construction

e Tool support

— mechanisms
« register callbacks with the OpenMP tools API
— enter/exit a parallel region
« maintain a global map: region ID — region info
— key: region ID
— value: region info
e number of samples in the region
e the calling context of the region
— mechanisms in use
» master thread callback at region entry
— create a new entry in the map
» worker threads at a sample event
— unwind to a root in TBD set indexed by a region ID
— update number of samples for the region ID in the map
— if the calling context for region ID is available in the map, resolve it for the work
« master thread callback at region exit
— iff number of samples for the region ID > 0
e unwind the stack to determine the calling context for the region
 insert the full context of the region to the map

v#é - Results of deferred context construction

enn hpcviewer: a.out

{
4 omp_set_nested(l);
omp_set_dynomic(0);

#progma omp parallel num_threods(2)

f\b(N-});

report _num_threods{omp_ get level());

#progma omp parallel num_threads(2)]

{
Fib(Ne3);
report_num_threods(omp get level());
#oragma omp parallel num_threads(2)

fib(N«3);

report _num_threads(omp get level());
}
Fib(Ne3);

)
1

main._omp_fn.*:

outlined functions
that correspond to
<parallel region>

*; Calling Context View £2 ', Callers View J1, Flat View

T 6T A A

Scope
Experiment Aggregate Metrics
Yman
¥ B man _omp fn0
¥inkined from mestl.c: 30
¥ B main._omp_fn.
¥inlined from nestl c: 34
¥ B main,_omp fn.2
> B b
> b
» B gomp_team _end
> B b
> B gomp_team_end
L 1o

L R O S

’
s
€
€
5
‘.
‘
2
1
2
1
1

1let09
180409
+1fes09
16e+09
dber0d
120409
0fet09
+08e+09
Oder0d
2%e006
04009
250406
+02e+09

PAPLTOT_CYCSum (D = PAPLTOT_CYC:Mean () | PAPL.
«Jde+10 100 ©
«J4e410 100 ©
+Jdetl0 100 &
+5Je+10 #8.9%
Sletld B8N
«9C0e+10 £6.00
270410 44,50
270410 44,58
HSle+ll 22.20
00et0? 0.00
6Jesl0 22.200
«00e¢07 0.00
16e+09 11,00

parallel regions are
identified with full
calling context
through the deferred
context creation
mechanism that
involves unwinding
at region end if
samples were taken
in the region by any
worker thread

Nested regions

e OpenMP runtime system

— add an additional query API for use by a tool
« get parent parallel region ID: uint64 t omp_get parent_region_id()

e Tool
— uses the same map discussed before

— thread actions
* master thread
— do the same operations described previously
« worker threads
— record the outer-most region ID
— unwind itself to the root with outer-most region ID in the TBD set
* sub-master threads
— partially resolve the context of parallel regions
— add the partially resolved context to its TBD set until resolved

— at process termination, process writes out the performance data after
all trees in TBD set are fully resolved

Resolve task context to its execution point
— openMP runtime system
* no special support needed
— tool

» use deferred context construction for parallel regions
* no special handling for tasks

* Resolve task context to its creation point (costly, but available if desired)
— openMP runtime system

 allocate an 8-byte slot in a task structure for tool use (to record its creation context)
» add a callback when creating a new untied task
— passes the address of the 8-byte slot to the tool
« add a query API to identify when a procedure frame is the root of a untied task instance

— tool

 register the callback
« unwind the call stack at task creation callback and return a pointer to a calling context
« fills in the 8-byte slot in the task structure with a pointer to the task creation context
« when executing an untied task is interrupted at a sample event
— unwind the call stack to the task’s root frame
— concatenate with the task creation context as the prefix

- Blame shifting: from symptoms to causes

o Goals
— quantify insufficient parallelism
— quantify excessive parallelism (too fine granularity)
— attribute performance losses to causes rather than symptoms

n = omp_num_threads();
#pragma omp parallel{
#pragma omp for nowait— Imb?lance
for(i=0; i<n; i++) { in this loop
ifltodd_thread_id)
do_small_job;
else
do_large_job;
}// no implicit barrier Balance in
#pragma omp for——— this loop
for(i=0; i<n; i++) {
do_job;
}// implicit barrier

'

Blame shifting support

Approach

— create derived metrics
» idleness: time threads are idle waiting for work
« work: time threads execute user code
» overhead: time threads execute code in the OpenMP runtime system
— blame idleness and overhead to working threads
+ overhead blamed directly to an executing thread
» shift blame for idleness to code that is being executed while other threads are idle

Implementation

— openMP runtime system
* make callbacks when at thread state transitions
— thread transitions idle <~ working
— thread creation/exit
» these callbacks identify to the tool which threads belong to OpenMP
— tool
* maintains two global counters
— number of threads that are created (or dedicated HW resources that are reserved)
— number of threads that are working
» idleness is the difference between the two counters
+ atasample event
— if the thread is actively working
e attribute a sample of work to the present context

» attribute a fractional sample of idleness to the present context of the active worker
fractional sample = # idle threads / # active workers

— else, ignore the sample event

Code-centric view: hypre BoomerAMGRelax

0006

hpcviewer: amg2006

1. #define HYPRE_SMP_PRIVATE 1
13 #include "

#include

size - n/num_threads;

if (3 < rest)

16
|
{
{
\
£
£

1639 {
{
|
£
t
{
£
£
f
£

41 rest = n - size*num_threads;

{
ns = j*size+j;
ne = (J+l)%sizes+)+1;
}
else
{
1649 ns =)*sizesrest;
1650 ne = (J+1)"sizes+reost;
1651 }
. ~n Cow 2 .- . -

. Jutilities/hypre_smp_forloop.h"
for (1 = 0; 1 < n; iee)
tep_data[i] = u_data[i);
6 #define HYPRE_SMP_PRIVATE 1,i1,j),3).,ns,ne,res,rest, size
Jutilities/hypre_smp_forloop.h”
for (3 = ©; J < num_threads; j++)

Note: The highlighted OpenMP loop in

hypre_BoomerAMGRelax accounts for

only 4.6% of the execution time for this
benchmark run. In real runs, solves
using this loop are a dominant cost

across all instances of this OpenMP
loop in hypre_BoomerAMGRelax

19.7% of time in this loop is spent

idle idle w.r.t. total effort in this loop

*X; Calling Context View Ts, Flat View £3

28 6 GA A
Scope

» hypre PCGSetup

» HYPRE BoomerAMGSetup

» hypre BoomerAMCSetup

» . xismpParallelDoSetup TPO

» hyore BoomerAMGBuildCoarseOperator
» hypre BoomerAMGCCoarsenFalgout

¥ hypre BoomerAMCRelaxSSOLSS24

*inlined from par relax.c: 1638
» hypre BoomerAMGCCoarsen

B hunea DanmarAVMS D dldinsarnt eI €2

IWALLCLOCK (us)Sum () » WALLCLOCK (us):Sum (E) idleness % work %

6.81e+08
6.81c+08
6.81c+08
3.770+08
J.16e+08
3.0le+08
2.81¢+08
2.81c+08
2.46¢+08

T Tasne

11.1%
11.1%
11.1%
6.1%
5.2%
4.9%
4.6%
4.6%
§4.0%

2 1

7.97e+01 2.03e+01
7.97¢+01 2.03e+01
7.97¢e+01 2.03c+01
3.200+04 0.0% 2.35e+01 7.65e+01
1.44e+06 0.0% 4.80e+01 5.20e+01
1.00e+03 0.0% B.75e+01 1.25e+01
2.81e+08 4.6% 1.97e+01 8.03e+01
2.00e+03 0.0% 1.97e+01 8.03e+01
1.75¢+08 2.9% 8.75¢+01 1.25¢+01

T YTasne 2 1 A TEasM £ Ofas

12

Serial Code in AMG2006 8 PE, 8 Threads

000 hpcviewer: amg2006

= par_relax.c £ | = D

1637 #define HYPRE_SMP_PRIVATE 1

1623 #include "../utilities/hypre_smp_forloop.h"

1634 for (1 = @; 1 < n; 14¢)

1635 tmp_data[i] =~ u_data[i];

1636 #define HYPRE_SMP_PRIVATE i,ii,3,j),ns,ne,res, rest, size
1637 #include ". /ut\I\t\es/hypre_snp_.forloop h"

1638 for (§ = 0; § < num_threads; j++)

1639 {

1640 size = n/num_threcads;

1641 rest = n - size®num_threads;

as g P 7 worker threads are
1643 { Soi idle in each process
s M ISatEReL while its main MPI
1645 ne = (J+l)*size+jel; . .

1646 } thread is working
1647 else

1648 {

1649 ns = j®sizesrest;

1650 ne = (Jel)*sizcerest;

1651 }

% Calling Context View T Flat¥iew &3 =0
2803 6| TA A~

Scope WALLCLOCK (us)Sum (I) WALLCLOCK (us):Sum (E) idlencss % work %

Experiment Aqqreqgate Metrics 6.13e+09 100 & 6.130+09 100 % 4.91e+01 5.09e+01
3.640407 3.640407 1.260401

> looo It ama lmklust .78 8.47e+06 0.1% 8.47¢+06 0.1% 8.75e+01 1.25e+01
»loop at amq linklist.c: 226 7.80e+06 0.1% 7.80e+06 0.1% 8.75¢+01 1.25e+01
»inlined from RecChannel.h: 349 7.91e+06 0.1% 7.48¢406 0.1% 8.68c+01 1.32¢401
¥ inlined from IniGroup.h: 191 3.42c+06 0.1% 3.38¢+06 0.1% 8.69¢c+01 1.31e+01
» inlined from Fifo.h: 195 2.8%+06 0.0% 2.89%9c+06 0.0% 8.6%9¢+01 1.31e+01
¥ inlined from IniGroup.h: 161 2.78e+06 0.0% 2.78¢+06 0.0% 8.69¢+01 1.31e+01
» loop at par coarsen.c: 838 2.17e+06 0.0% 2.17e+06 0.0% 8.75¢+01 1.25e+01
P lann ar nar rnarcan 7 1010 1 R7a+0i N N% 1 A7a4Nd N M R 75aem 1 2%«

13

Y

w#é - Locks and Critical Sections (CS)

* |ssues
— code with many locks or CS; high acquisition rates; substantial time waiting for access
— code that is waiting may be different from the code holding a lock or critical section

e Solution
— quantitatively shift blame to lock holder for the lock waiting time of other threads

e Implementation

— openMP runtime system

* add an interface for switching to a lock implementation supplied by a tool when a thread fails to
acquire a lock

— if (lock_wait_callback) (*lock_wait_callback)(&lock)
» address of lock needed by tool to blame waiting on the particular lock

— if (unlock_callback) (*unlock_callback)(&lock)
else normal_openmp_unlock()

— tool
* register customized spin lock routine
— 32 bit representation consistent with pthreads
* 1 lowest bit for the lock
e 30 bits for samples and 1 highest bit for overflow mark
» record the lock ID which the thread is spin waiting for
— charge the sample to the lock: atomic add to the lock
charge samples attributed to the lock while it was held to the lock holder at the lock release point
— use an atomic swap

Example: blame shifting for locks

hpcviewer: ua.B.x

M = uaf W diffusef | ™ setupf ™% mason.f o |

s B e e |ots of locks
do j~2,1x1-1

ileidel(j,col ,iface, ie) ° 84% Of exeCUtiOn

ig-idmo(j,col,1,1,iface,ie)

call(c_m;_set_?cl)((t\ggllcgig)) time Waiting for IOCkS
gL * 34% of lock waiting
edges of conforming faces due to IOCkS vaUired

end do
if local edge 1 is a nonconforming edge at highlighted Ca” Site

1f(idno(1x1,1,1,1,iface,ie).ne.@)then
do ije~1,2 |

"X Calling Context View %, Callers View £2 Ty, Flat View = =|

T 6| T A A
Scope LOCKWAIT: Sum (1) LOCKWAIT:Sum (E » PAPI_TOT_CYC Sum () PAPLTOT_CYC:Sum (E)
Experiment Aggregate Metrics 1.58e+11 100 % 1.58e+11 100 % 1.87e+12 100 % 1.87e+12 100 *
Yunlock_fn 1.58e+11 100.0 1.58e+11 100.0 1.37e+11 7.3% 1.37e+11 7.3
¥ &@ transfb_._omp_fn.2 5.52e+10 34.9% 5.52e+10 34.9% 4.51ev10 2.40 4.51ev10
v 48 vansfh_ 5.52¢+10 34.9% 5.52¢+10 34.95% §.51e+10 2.4% 4.51e+10
¥ 48 diffusion_ «93e+10 31.2% «93e+10 31.2% «03e+l0 2.2% .03e+10
vé@ua «93e+10 231.2% «93e+10 231.2% .03e+10 2.2% .03e+10
48 main «93e+10 31.2% «93e+10 31.2% «03e+l0 2.2% «03e+l0
>4l ua .86e+09 3.1% 86et09 3.1% «99%e+09 0.2% «99e+09
> @ dssum_ «0let09 0.6% «0let0d 0.6% «22e408 0.0% «22e408
» €8 transfb_._omp_fn.2 .4le+l0 8.9% -4le+l0 B.9% .35e+10 0.7% .35e+10
» 48 transfo_._omp_fn.2 170410 T7.4% 1.170410 7.4% .200410 0.6% .200410

7

€

~
—

~
.

» &8 transfb_._omp_fn.2 «10e+10 .0t «10e+10 7.0% «08e+10 0.6% 08e+10
» &3 transfb_._omp_fn.2 .08e+10 .94 .08e+10 6.9% .05e+10 D0.6% .05e+10

o e e e o

PR I R S N N
S BT
oo e e D WS>

O O O 0O O O NvNNN
o.Mk s mad e Dun's e
BB N O N NN

vk Blame shifting for locks, optimization

hpcviewer: ua.B.x

do col=2,1x1-1
do j=2,1x1-1
il=idel(j,col,iface,ic)
Npeiduet] ol 3,1, Ufacasied e use omp_test lock
if(xlindex.ne.®)then - -

call omp_set_lock(tlock(xlindex)) ® defer the IOCk achiSition

tmor(xlindex)~tmor(xlindex)+xlval

call omp_unset_lock(tlock(xlindex))| to the next |te ratl()n

xlindex~9@

endif 1 1
e eliminate the most lock
1f(.not.omp_test_lock(tlock(ig)))then . .
xlindex=ig contention time
xlval=tx(il)
else
call omp_set_lock(tlock(ig))
tmor(1g)~tmor(ig)+tx(il)
call omp_unset_lock(tlock(ig))
endif

A A

\\'. Calling Context View \\ Callers View 23 h. Flat View

O | S A A
Scope LOCKWAIT:Sum () LOCKWAIT:Sum (E » PAPI_TOT_CYCSum (B} PAPI_TOT_CYC:Sum (D
> &3 514 transfb_c_._omp_fn.1 .37e408 .3% .37e408 3% .71e+08 .08 2.71e+08 .0%
¥ 48 442; transfo_._omp_fn.2 «130408 .28 +130408 .28 .000406 .08 .000406 .08

3 2
2 2
v &3 277 wransfb_ 2.12e+08 .28 «12+08 2% 2.00e+06 .08 .00e+06 .08
2 2
2 2
2 2

v43 116 diffusion_ .00e+08 .28 .00e+08 2% .00e+06 .0% .00e+06 .0%
v 221 va .00e+08 .25 .00e+08 . 2% .00e+06 .0% .00e+06 .0%
€3 282: main .00e+08 .28 .00e+08 . 2% .00e+06 .0% .00e+06 .0%

AR S~ - - - - - - - - - - - -

Tracing

e Tracing
— captures information about execution dynamics

— trace visualization offers intuition into dynamic interplay between work,
idleness, and overhead unfold during execution

e Issues

— potentially high overhead

— threads are frequently created/exit because no thread pool is used
e Solution

— sampling-based tracing

— no additional OpenMP runtime support beyond that for assembling
user-level contexts

— reuse the timeline of one thread and show the logical view

’ : B .ThdCode
| J B ._wrap_pthread_cond_wait
. pthread cond_wait
(i

OpenMP loop in hypre_BoomerAMGRelax using
static scheduling has load imbalance; threads
idle for a significant fraction of their time

%‘—* BT-MZ nested parallelism tracing

hpctraceviewer: bt-mz.B

m ol EDRE (O™ M T =0 curn

Time Range: [0.0s ,83.402s] Process Range: [0,999] Cross Hair: (0.63453, 14)

2x4 threads

-Dep(hVieul“SummuyView>

%‘« BT-MZ nested parallelism tracing

e 00 hpctraceviewer: bt-mz.8
8 T view Blwett e SN0 M= =0|jicumn =0

Time Range: [38.27s 40.744s] Process Range: [1665,1781] Cross Mair: (39.294s, 1715)

2 -
BMAIN__._omp_fn.3
{ Maci_

post-mortem analysis
312s

BT-MZ logical trace view

hpctraceviewer: bt-mz.B
W EDP I OMMT "0 Hairn =0

Time Range: [0.0s ,84.194s] Process Range: [0,7] Cross Hair: (41.395, 2) 3

B gomp_thread_starnt
BnaN_._omp_fn3
Wadi_

Wz soive_

post-mortem analysis
11s

4 Depth View ‘.l Summary View

hpctraceviewer: bt-mz2.8
Bpeirl-¢&¢df L DM "0 Hcuran =0

Time Range: [39.238s 43.498s]) Process Range: [2,7] Cross Hair: (41.348s, 2) 3

W gomp_thread_start
BvaIN_._omp_fn.3
Wadi_

W x_solve_

e Depth View t' Summary View

BT-MZ logical trace view

hpctraceviewer: bt-mz.B
Aot €24 L DCHT=0|cin =0

Time Range: [41.369s 41 .438s] Process Range: [2,7] Cross Hair: (41.39¢, 2) 3

H gomp_thread_start

thread creation

¥ pepth view Ll summary View

= OpenMP runtime support for our tool API

Fully worked example for GOMP (GNU OpenMP)

e Summary
— changed 5 files
— added less than 50 lines of code

» Principal changes
assign a region |ID atomically as each parallel region is created
call to enter/exit callbacks at parallel region enter/exit
call to idle/work callbacks as threads enter/leave the barrier
call to start/end callbacks as threads start/end
add a pointer in the task structure to record the task creation context
call to task creation callbacks when an untied task is created
call to a lock wait_callback callback when a lock acquire fails
call to a unlock callback to release a lock

Source and diffs available upon request

v#é - Performance evaluation of tools API

e Three case studies

— LULESH
 areal application from LLNL
 uses work-sharing parallel regions without nesting and tasking
« 8 threads
— BT-MZ.B
« BT in multi-zone NPB with workload B
 uses nested parallel regions without tasking
« 8 threads: 2 for outer region and 4 for inner region
— HEALTH
« a benchmark in Barcelona tasking benchmarks
 uses tasking: more than 17 million tasks
» 8 threads, using medium input

Profiling and tracing overhead

applications | unmodified
GOMP

modified
GOMP w/o
callbacks

modified GOMP w/ perf.
measurement

sampling

sampling
+idleness

sampling
+idleness
+tracing

82.67s
LULESH

82.74s

84.66s

84.80s

85.59s

60.87s
BT-MZ.B

61s

72.81s

72.60s

83.22s

high overhead of PAPI profile initialization
for thousands of dynamic threads

72.78s
HEALTH

lock contention
73.60s

71.56s

73.18s

73.56s

72.07s

Associating tasks with execution context has low
overhead; task creation context costs 424.58s

Table measurements: average of three runs
Virtually no overhead if API not in use

Summary

Simple mechanisms in OpenMP runtime can support effective tools
— slide 24 outlines suggested OpenMP runtime tools APl mechanisms
— almost no runtime overhead if suggested tools APl is unused
— suitable for use in a default high-performance runtime version
We believe that any OpenMP tool APl should include our
suggested features
— low to no overhead if unused (see slide 26)
— low implementation cost (see slide 24)
Other tool groups might want more extensive API features to
support detailed tracing, e.g. POMP

— if these cause significant overhead, we would prefer them to be
supported in a separate “debugging” version of the runtime

