
1

OpenMP Tools API for Profiling 

Xu Liu, John Mellor-Crummey and Mike Fagan
Department of Computer Science

Rice University

http://hpctoolkit.org



Requirements for performance tools

• Accurate measurement
– low overhead: support sampling based data collection
– attribute metrics to user-level global view
– attribute performance losses to causes rather than symptoms

• Effective metrics: measure and attribute ...
– idleness, work, and overhead
– lock and critical section costs

• quantify lock contention as well

• Complete support
– work-sharing parallel regions
– nested parallel regions
– tasks

• Intuitive and insightful analysis
– code centric: overhead & parallel efficiency of OpenMP constructs
– time centric: how execution unfolds over time

2



Approach

• Key features
– support unified, user-level view of calling contexts across all threads
– shift blame from symptoms to causes of performance losses
– pinpoint lock and critical section contention
– support both profiling and tracing

• Methods
– lightweight instrumentation of OpenMP runtime system
– efficient sampling-based measurement
– post-mortem analysis

3



           Problem: separate views for different threads
 Worker threads don’t know the full user-level context for work

4

parallel region 
work executed 

by worker threads



           Solution: efficient deferred context construction

• OpenMP runtime system
– supply a tool callback interface

• parallel region begin: void region_entry_callback(void)
• parallel region end: void region_exit_callback(void)

– assign a unique region ID for every instance of a parallel region
• use atomic increment to generate an ID for each 

new region instance upon entry
– implement query API

• get parallel region ID: uint64_t omp_get_region_id()
• whether the frame should be elided or replaced

– elided: e.g., GOMP_thread_start, GOMP_team_start
– replace with <parallel region> in the call stack

– make callbacks upon parallel region entry/exit
• if (region_entry_callback) (*region_entry_callback)()
• if (region_exit_callback) (*region_exit_callback)()
• minimal cost if callback pointers not provided by a tool (see slide 26)

5



• Tool support
– mechanisms

• register callbacks with the OpenMP tools API
– enter/exit a parallel region

• maintain a global map: region ID ➞ region info
– key: region ID
– value: region info

• number of samples in the region
• the calling context of the region

– mechanisms in use
• master thread callback at region entry

– create a new entry in the map
• worker threads at a sample event

– unwind to a root in TBD set indexed by a region ID
– update number of samples for the region ID in the map
– if the calling context for region ID is available in the map, resolve it for the work

• master thread callback at region exit 
– iff number of samples for the region ID > 0

• unwind the stack to determine the calling context for the region 
• insert the full context of the region to the map

6

           Solution: efficient deferred context construction



         Results of deferred context construction

7

main._omp_fn.*:
outlined functions 
that correspond to 
<parallel region>

parallel regions are 
identified with full 

calling context 
through the deferred 

context creation 
mechanism that 

involves unwinding 
at region end if 

samples were taken 
in the region by any 

worker thread



Nested regions

• OpenMP runtime system
– add an additional query API for use by a tool

• get parent parallel region ID: uint64_t omp_get_parent_region_id()

• Tool
– uses the same map discussed before
– thread actions

• master thread
– do the same operations described previously

• worker threads
– record the outer-most region ID
– unwind itself to the root with outer-most region ID in the TBD set

• sub-master threads
– partially resolve the context of parallel regions
– add the partially resolved context to its TBD set until resolved

– at process termination, process writes out the performance data after 
all trees in TBD set are fully resolved

8



Tasks

• Resolve task context to its execution point
– openMP runtime system

• no special support needed
– tool

• use deferred context construction for parallel regions
• no special handling for tasks

• Resolve task context to its creation point (costly, but available if desired)
– openMP runtime system

• allocate an 8-byte slot in a task structure for tool use (to record its creation context)
• add a callback when creating a new untied task

– passes the address of the 8-byte slot to the tool
• add a query API to identify when a procedure frame is the root of a untied task instance

– tool
• register the callback 
• unwind the call stack at task creation callback and return a pointer to a calling context
• fills in the 8-byte slot in the task structure with a pointer to the task creation context
• when executing an untied task is interrupted at a sample event

– unwind the call stack to the task’s root frame
– concatenate with the task creation context as the prefix

9



         Blame shifting: from symptoms to causes

• Goals
– quantify insufficient parallelism
– quantify excessive parallelism (too fine granularity)
– attribute performance losses to causes rather than symptoms

10



Blame shifting support
• Approach

– create derived metrics
• idleness: time threads are idle waiting for work
• work: time threads execute user code
• overhead: time threads execute code in the OpenMP runtime system

– blame idleness and overhead to working threads
• overhead blamed directly to an executing thread
• shift blame for idleness to code that is being executed while other threads are idle

• Implementation
– openMP runtime system

• make callbacks when at thread state transitions
– thread transitions idle ↔ working
– thread creation/exit 

• these callbacks identify to the tool which threads belong to OpenMP
– tool

• maintains two global counters
– number of threads that are created (or dedicated HW resources that are reserved)
– number of threads that are working

• idleness is the difference between the two counters
• at a sample event

– if the thread is actively working
• attribute a sample of work to the present context
• attribute a fractional sample of idleness to the present context of the active worker

       fractional sample = # idle threads / # active workers
– else, ignore the sample event

11



Code-centric view: hypre_BoomerAMGRelax

12

Note:  The highlighted OpenMP loop in 
hypre_BoomerAMGRelax accounts for 
only 4.6% of the execution time for this 

benchmark run. In real runs, solves 
using this loop are a dominant cost

across all instances of this OpenMP 
loop in hypre_BoomerAMGRelax 

19.7% of time in this loop is spent 
idle idle w.r.t. total effort in this loop



Serial Code in AMG2006 8 PE, 8 Threads

13

7 worker threads are 
idle in each process 
while its main MPI 
thread is working



Locks and Critical Sections (CS)
• Issues

– code with many locks or CS; high acquisition rates; substantial time waiting for access
– code that is waiting may be different from the code holding a lock or critical section

• Solution
– quantitatively shift blame to lock holder for the lock waiting time of other threads

• Implementation
– openMP runtime system

• add an interface for switching to a lock implementation supplied by a tool when a thread fails to 
acquire a lock

– if (lock_wait_callback) (*lock_wait_callback)(&lock)
• address of lock needed by tool to blame waiting on the particular lock

– if (unlock_callback) (*unlock_callback)(&lock)
else normal_openmp_unlock()

– tool
• register customized spin lock routine 

– 32 bit representation consistent with pthreads
• 1 lowest bit for the lock
• 30 bits for samples and 1 highest bit for overflow mark

• record the lock ID which the thread is spin waiting for
– charge the sample to the lock: atomic add to the lock

• charge samples attributed to the lock while it was held to the lock holder at the lock release point
– use an atomic swap 

14



Example: blame shifting for locks

15

• lots of locks
• 8.4% of execution 

time waiting for locks 
• 34% of lock waiting 

due to locks acquired 
at highlighted call site



    Blame shifting for locks, optimization

16

• use omp_test_lock
• defer the lock acquisition 

to the next iteration
• eliminate the most lock 

contention time



Tracing

• Tracing 
– captures information about execution dynamics
– trace visualization offers intuition into dynamic interplay between work, 

idleness, and overhead unfold during execution
• Issues

– potentially high overhead
– threads are frequently created/exit because no thread pool is used

• Solution
– sampling-based tracing
– no additional OpenMP runtime support beyond that for assembling 

user-level contexts
– reuse the timeline of one thread and show the logical view

17



          Example: AMG 2006 (solver phase) trace

18

OpenMP loop in hypre_BoomerAMGRelax using 
static scheduling has load imbalance; threads 
idle for a significant fraction of their time



BT-MZ nested parallelism tracing

19

2×4 threads



BT-MZ nested parallelism tracing

20

post-mortem analysis
312s



BT-MZ logical trace view

21

post-mortem analysis
11s



BT-MZ logical trace view

22



BT-MZ logical trace view

23

thread creation



       OpenMP runtime support for our tool API

 Fully worked example for GOMP (GNU OpenMP)
• Summary

– changed 5 files
– added less than 50 lines of code

• Principal changes
– assign a region ID atomically as each parallel region is created
– call to enter/exit callbacks at parallel region enter/exit
– call to idle/work callbacks as threads enter/leave the barrier
– call to start/end callbacks as threads start/end
– add a pointer in the task structure to record the task creation context
– call to task creation callbacks when an untied task is created
– call to a lock_wait_callback callback when a lock acquire fails
– call to a unlock_callback to release a lock

• Source and diffs available upon request

24



Performance evaluation of tools API

• Three case studies
– LULESH

• a real application from LLNL
• uses work-sharing parallel regions without nesting and tasking
• 8 threads

– BT-MZ.B
• BT in multi-zone NPB with workload B
• uses nested parallel regions without tasking
• 8 threads: 2 for outer region and 4 for inner region

– HEALTH
• a benchmark in Barcelona tasking benchmarks
• uses tasking: more than 17 million tasks
• 8 threads, using medium input

25



Profiling and tracing overhead

26

applications unmodified 
GOMP

modified 
GOMP w/o 
callbacks

modified GOMP w/ perf. 
measurement

modified GOMP w/ perf. 
measurement

modified GOMP w/ perf. 
measurementapplications unmodified 

GOMP

modified 
GOMP w/o 
callbacks sampling sampling

+idleness
sampling
+idleness
+tracing

LULESH
82.67s 82.74s 84.66s 84.80s 85.59s

BT-MZ.B
60.87s 61s 72.81s 72.60s 83.22s

HEALTH
72.78s 71.56s 73.18s 73.56s 72.07s

Associating tasks with execution context has low 
overhead; task creation context costs 424.58s

Table measurements: average of three runs
Virtually no overhead if API not in use

high overhead of PAPI profile initialization 
for thousands of dynamic threads

lock contention
73.60s



Summary

• Simple mechanisms in OpenMP runtime can support effective tools
– slide 24 outlines suggested OpenMP runtime tools API mechanisms
– almost no runtime overhead if suggested tools API is unused
– suitable for use in a default high-performance runtime version 

• We believe that any OpenMP tool API should include our 
suggested features
– low to no overhead if unused (see slide 26)
– low implementation cost (see slide 24)

• Other tool groups might want more extensive API features to 
support detailed tracing, e.g. POMP
– if these cause significant overhead, we would prefer them to be 

supported in a separate “debugging” version of the runtime

27


