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OpenMP:  An API for Writing Multithreaded 
Applications

A set of compiler directives and library 
routines  for parallel application programmers
Greatly simplifies writing multi-threaded (MT) 

programs in Fortran, C and C++
Standardizes last 20 years of SMP practice

• Version 3.0 has been released May 2008



The compiler may not be able to do the 
parallelization in the way you like to see it:
› It can not find the parallelism

The data dependence analysis is not able to 
determine whether it is safe to parallelize or not

› The granularity is not high enough
The compiler lacks information to parallelize at the 
highest possible level

This is when explicit parallelization through 
OpenMP directives comes into the picture

5



Good performance and scalability
› If you do it right ....
De-facto and mature standard
An OpenMP program is portable
› Supported by a large number of compilers
Requires moderate programming effort
Allows the program to be parallelized 
incrementally
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OpenMP provides thread programming 
model at a “high level”. 
› The user does not need to specify all the details

Assignment of work to threads
Creation of threads

User makes strategic decisions

Compiler figures out details
› Compiler flags enable OpenMP (e.g. –openmp, 

-xopenmp, -fopenmp, -mp)
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provides the means to:
create and destroy threads
assign / distribute  work to threads
specify which data is shared and which 
is private to a thread
coordinate actions of threads on shared 
data
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OpenMP is a shared memory model.
Threads communicate by sharing variables.

Synchronization protects data conflicts.
› Synchronization is expensive.

Change how data is accessed to minimize the 
need for synchronization. 
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Fork-Join Parallelism: 
Master thread spawns a team of threads as needed.

Parallelism is added incrementally until desired 
performance is achieved: i.e. the sequential program 
evolves into a parallel program.

Parallel Regions

Master 
Thread A Nested 

Parallel 
region

A Nested 
Parallel 
region
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Runtime library

OS/system support for shared memory.

Directives,
Compiler OpenMP library Environment 
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Most of the constructs in OpenMP are compiler 
directives or pragmas.
› For C and C++, the pragmas take the form:

#pragma omp construct [clause [clause]…]
› For Fortran, the directives take one of the forms:

Fixed form
*$OMP construct [clause [clause]…]
C$OMP construct [clause [clause]…]
Free form (but works for fixed form too)
!$OMP construct [clause [clause]…]

Include file and the OpenMP lib module
#include <omp.h>
use omp_lib
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In C/C++: a block is a single statement or a group of 
statements between brackets {}
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In Fortran: a block is a single statement or a group of 
statements between directive/end-directive pairs.

C$OMP PARALLEL
10    wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL
10    wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO
do I=1,N

res(I)=bigComp(I)
end do 

C$OMP END PARALLEL DO

C$OMP PARALLEL DO
do I=1,N

res(I)=bigComp(I)
end do 

C$OMP END PARALLEL DO

#pragma omp parallel
{

id = omp_thread_num();
res(id) = lots_of_work(id);

}

#pragma omp parallel
{

id = omp_thread_num();
res(id) = lots_of_work(id);

}

#pragma omp parallel for  
for(I=0;I<N;I++){

res[I] = big_calc(I);
A[I] = B[I] + res[I];

}

#pragma omp parallel for  
for(I=0;I<N;I++){

res[I] = big_calc(I);
A[I] = B[I] + res[I];

}
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lexical
extent of 
parallel 
region

C$OMP PARALLEL
call whoami

C$OMP END PARALLEL

subroutine whoami
external omp_get_thread_num
integer iam, omp_get_thread_num
iam = omp_get_thread_num()

C$OMP CRITICAL
print*,’Hello from ‘, iam

C$OMP END CRITICAL
return
end

+

Orphan directives
can appear outside a 
parallel region

Dynamic extent
of parallel 
region includes 
lexical extent

bar.f
foo.f

OpenMP constructs can span multiple source files.



The “for” Work-Sharing construct splits up 
loop iterations  among the threads in a 
team
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#pragma omp parallel
#pragma omp for 

for (I=0;I<N;I++){
work(I);

}
By default, there is a barrier at the end of the 
“omp for”.  Use the “nowait” clause to turn off 
the barrier.

#pragma omp for nowait

“nowait” is useful between two consecutive, 
independent omp for loops. 
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for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;I<iend;i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;I<iend;i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel 
#pragma omp for schedule(static) 

for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel 
#pragma omp for schedule(static) 

for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel 
region

OpenMP parallel 
region and a 
work-sharing for-
construct
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Schedule Clause When To Use

STATIC Pre-determined and 
predictable by the 
programmer

DYNAMIC Unpredictable, highly 
variable work per 
iteration

GUIDED Special case of dynamic 
to reduce scheduling 
overhead

The OpenMP APIThe OpenMP API

OpenMP For/Do schedule clauseOpenMP For/Do schedule clause

Least work at 
runtime : 
scheduling 
done at 
compile-time

Least work at 
runtime : 
scheduling 
done at 
compile-time

Most work at 
runtime : 
complex 
scheduling 
logic used at 
run-time

Most work at 
runtime : 
complex 
scheduling 
logic used at 
run-time



The schedule clause affects how loop iterations are 
mapped onto threads
› schedule(static [,chunk])

Deal-out blocks of iterations of size “chunk” to each 
thread.

› schedule(dynamic[,chunk])
Each thread grabs “chunk” iterations off a queue until all 
iterations have been handled.

› schedule(guided[,chunk])
Threads dynamically grab blocks of iterations. The size of 
the block starts large and shrinks down to size “chunk” as 
the calculation proceeds.

› schedule(runtime)
Schedule  and chunk size taken from the 
OMP_SCHEDULE environment variable.
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Auto
› The compiler (or runtime system) decides 

what is best to use
› Choice could be implementation 

dependent
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The Sections work-sharing construct 
gives a different structured block to 
each thread.  
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#pragma omp parallel
#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

#pragma omp parallel
#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}By default, there is a barrier at the end of the “omp 

sections”.  Use the “nowait” clause to turn off the barrier.



The master construct denotes a structured 
block  executed by the master thread. The 
other threads just skip it (no synchronization 
is implied).
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#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp master

{     exchange_boundaries();   }
#pragma barrier

do_many_other_things();
}



The single construct denotes a block of 
code that is executed by only one thread.
A barrier is implied at the end of the single 
block.
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#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp single

{     exchange_boundaries();   }
do_many_other_things();

}



The task construct defines an explicit 
task.
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#pragma omp task [clause[[,] clause] ...] 
{

do_a_task();
}

where clause is one of the following:
•if(scalar-expression)
•untied
•default(shared | none)
•private(list)
•firstprivate(list)
•shared(list)



At implicit thread barrier
At explicit thread barrier
› C/C++: #pragma omp barrier
› Fortran: !$omp barrier
At task barrier
› C/C++: #pragma omp taskwait
› Fortran: !$omp taskwait

26



27

void increment_list_items(node * head)
{
#pragma omp parallel
{

#pragma omp single
{

node * p = head;
while (p) {

#pragma omp task        // p is firstprivate by default
process(p);

p = p->next;
}

}
}

}

Hard to do before 
OpenMP 3.0
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Tasks are tied by default
› Tied tasks are executed always by the same 

thread
› Tied tasks have scheduling restrictions

Deterministic scheduling points (creation, 
synchronization, ... )
Another constraint to avoid deadlock problems

› Tied tasks may run into performance problems
Programmer can use untied clause to lift all 
restrictions
› Note: Mix very carefully with threadprivate, 

critical and thread-ids
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Implemente
d in OpenUH



If the expression of a IF clause evaluates 
to false
› The encountering task is suspended
› The generated task is executed immediately

with its own data environment
different task with respect to synchronization

› The parent task resumes when the task 
finishes

› Allows implementations to optimize task 
creation

31



Granularity is a key performance factor
› Tasks tend to be fine-grained
› Try to “group“ tasks together
› Use if clause or manual transformations

32
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Shared Memory programming model: 
Most variables are shared by default

Global variables are SHARED among threads
Fortran: COMMON blocks, SAVE variables, MODULE 
variables
C: File scope variables, static

But not everything is shared...
Stack variables in sub-programs called from parallel 
regions are PRIVATE
Automatic variables defined inside the parallel region 
are PRIVATE.
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Shared Data
a[size][size]

b=?

Private
Data

b’=?

Private
Data

b’=?

T0 T1 T2 T3

double a[size][size], b=4; 
#pragma omp parallel private(b)
{   ....  } 

Private
Data

b’=?

Private
Data

b’=?

Local copies
of b

b becomes undefined



Relaxed-consistency, shared-memory model
All threads have access to a “main memory” and its 
own “temporary” view of memory for shared data
› Temporary view can be any intervening structure between 

threads and main memory, e.g. cache, registers, or other 
local storage

› Synchronization between temporary view and main memory 
done through hardware, or specified by user

Main
Memory

Temp View
1

Temp View
2

Thread
1

Thread
1

Thread
2

private

private
Synchronization



A variable reference can be shared or 
private with respect to a parallel region
Key problem: When should the 
temporary view of a shared variable 
synchronize with main memory? Range 
of possibilities:
› Always synchronized (i.e. no temp view)
› Based on H/W coherence scheme
› Only synchronize when FLUSH is explicitly or 

implicitly specified in OpenMP
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program sort
common /input/ A(10)
integer index(10)

C$OMP PARALLEL  
call work(index)

C$OMP END PARALLEL
print*, index(1)

subroutine work (index)
common /input/ A(10)
integer index(*)
real temp(10)
integer count
save count

…………

temp

A, index, count

temp temp

A, index, count

A, index and count are 
shared by all threads.

temp is local to each 
thread

A, index and count are 
shared by all threads.

temp is local to each 
thread

* Third party trademarks and names are the property of their respective owner.



One can selectively change storage attributes 
constructs using the following clauses*

SHARED
PRIVATE
FIRSTPRIVATE
THREADPRIVATE

The value of a private inside a parallel loop can be 
transmitted to a  global value outside the loop with:

LASTPRIVATE
The default status can be modified with:

DEFAULT (PRIVATE | SHARED | NONE)

39

All the  clauses on this page 
only apply to the lexical extent
of the OpenMP construct.

All the  clauses on this page 
only apply to the lexical extent
of the OpenMP construct.

All data clauses apply to parallel regions and worksharing constructs except 
“shared” which only applies to parallel regions.



private(var)  creates a local copy of var for each 
thread.

The value is uninitialized
Private copy is not storage-associated with the original
The original is undefined at the end

40

program wrong
IS = 0

C$OMP PARALLEL DO PRIVATE(IS)
DO J=1,1000 

IS = IS + J
END DO 
print *, IS

IS  was not 
initialized
IS  was not 
initialized

IS  is undefined 
here
IS  is undefined 
here



Firstprivate is a special case of private.
○ Initializes each private copy with the corresponding 

value from the master thread.
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Regardless of initialization, IS is 
undefined at this point
Regardless of initialization, IS is 
undefined at this point

program almost_right
IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS)
DO J=1,1000 

IS = IS + J
1000  CONTINUE 

print *, IS

Each thread gets its own IS 
with an initial value of 0
Each thread gets its own IS 
with an initial value of 0



Lastprivate passes the value of a  private from the 
last iteration  to a global variable.
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IS is defined as its value at the last 
iteration (I.e. for J=1000)
IS is defined as its value at the last 
iteration (I.e. for J=1000)

program closer
IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS) 
C$OMP& LASTPRIVATE(IS)

DO J=1,1000 
IS = IS + J

1000  CONTINUE 
print *, IS

Each thread gets its own IS 
with an initial value of 0
Each thread gets its own IS 
with an initial value of 0
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Here is the correct way to parallelize this code.

program closer
IS = 0

C$OMP PARALLEL DO REDUCTION(+:IS)
DO J=1,1000 

IS = IS + J
1000  CONTINUE 

print *, IS



A range of associative operands can be 
used with reduction:
Initial values are the ones that make sense 
mathematically.
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Operand Initial value

+ 0

* 1

- 0

.AND. All 1’s

Operand Initial value

.OR. 0

MAX 1

MIN 0

// All 1’s



Makes global data private to a thread
› Fortran: COMMON blocks
› C: File scope and static variables

Different from making them PRIVATE
› with PRIVATE global variables are masked. 
› THREADPRIVATE preserves global scope within each 

thread
Threadprivate variables can be initialized using
COPYIN or by using DATA statements.
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parameter (N=1000)
common/buf/A(N)

C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

C$OMP PARALLEL COPYIN(A)
… Now each thread sees threadprivate array A initialied 
… to the global value set in the subroutine init_data()
C$OMP END PARALLEL
....
C$OMP PARALLEL
... Values of threadprivate are persistent across parallel regions
C$OMP END PARALLEL

end

parameter (N=1000)
common/buf/A(N)

C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

C$OMP PARALLEL COPYIN(A)
… Now each thread sees threadprivate array A initialied 
… to the global value set in the subroutine init_data()
C$OMP END PARALLEL
....
C$OMP PARALLEL
... Values of threadprivate are persistent across parallel regions
C$OMP END PARALLEL

end

You initialize threadprivate data using a copyin clause. 
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Static int *tmp;
#pragma omp threadprivate(tmp)
#pragma omp parallel
{

tmp = (int *)malloc(size);  /* tmp is a 
thread private pointer, each thread has its 
own memory allocation */
#pragma omp for

for(i=0;i<N;i++)
tmp[i]=…

}



High level synchronization:
critical section
atomic
barrier
Ordered
taskwait

Low level synchronization
flush
locks (both simple and nested)

48



Only one thread at a time can enter a 
critical section.

49

C$OMP PARALLEL DO PRIVATE(B) 
C$OMP& SHARED(RES)

DO 100 I=1,NITERS
B =  DOIT(I)

C$OMP CRITICAL
CALL CONSUME (B, RES)

C$OMP END CRITICAL
100 CONTINUE



Atomic is a special case of a critical section 
that can be used for certain simple 
statements.  
It applies only to the update of a memory 
location (the update of X in the following 
example)
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C$OMP PARALLEL PRIVATE(B) 
B =  DOIT(I)

tmp = big_ugly();

C$OMP ATOMIC
X = X + temp

C$OMP END PARALLEL



Barrier: Each thread waits until all threads 
arrive.

51

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for 

for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }
A[id] = big_calc3(id);

}
implicit barrier at the end 
of a parallel region
implicit barrier at the end 
of a parallel region

implicit barrier at the 
end of a for work-
sharing construct

implicit barrier at the 
end of a for work-
sharing construct

no implicit barrier 
due to nowait
no implicit barrier 
due to nowait



The ordered construct enforces the 
sequential order for a block.
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#pragma omp parallel private (tmp)
#pragma omp for ordered

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);

#pragma ordered
res += consum(tmp);

}



The taskwait construct specifies a wait 
on the completion of child tasks 
generated  since the beginning of the 
current task.

53

#pragma omp taskwait 
newline



Note: no specific traverse order guaranteed
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void traverse( struct node *p ) {
if (p->left)

#pragma omp task      // p is firstprivate by 
default

traverse(p->left);
if (p->right)

#pragma omp task      // p is firstprivate by 
default

traverse(p->right);
process(p);

}



Note: post-order  traverse guaranteed
55

void traverse( struct node *p ) {
if (p->left)

#pragma omp task      // p is firstprivate by 
default

traverse(p->left);
if (p->right)

#pragma omp task      // p is firstprivate by 
default

traverse(p->right);
#pragma omp taskwait

process(p);
}



The flush construct denotes a sequence point where 
a thread tries to create a consistent view of memory.

All memory operations (both reads and writes) defined 
prior to the sequence point must complete. 
All memory operations (both reads and writes) defined 
after  the sequence point must follow the flush.
Variables in registers or write buffers must be updated in 
memory.

Arguments to flush specify which variables are 
flushed. No arguments specifies that all thread visible 
variables are flushed.

56
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This example shows how  flush is used to implement 
pair-wise synchronization. 

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)

IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

C$OMP BARRIER
CALL WORK()
ISYNC(IAM) = 1    ! I’m all done; signal this to other threads

C$OMP FLUSH(ISYNC)
DO WHILE (ISYNC(NEIGH) .EQ. 0)

C$OMP FLUSH(ISYNC)
END DO

C$OMP END PARALLEL

Make sure other threads can 
see my write.

Make sure the read picks up a 
good copy from memory.

Note: OpenMP’s flush is analogous to a fence in 
other shared memory API’s.

Note: OpenMP’s flush is analogous to a fence in 
other shared memory API’s.



Simple Lock routines:
A simple lock is available if it is unset.

omp_init_lock(), omp_set_lock(), 
omp_unset_lock(), omp_test_lock(), 
omp_destroy_lock()

Nested Locks
A nested lock is available if it is unset or if it is set but 
owned by the thread executing the nested lock 
function

omp_init_nest_lock(), omp_set_nest_lock(), 
omp_unset_nest_lock(), 
omp_test_nest_lock(), 
omp_destroy_nest_lock()

58

Note: a thread always accesses the most recent copy of the 
lock, so you don’t need to use a flush on the lock variable.



Protect resources with locks.

59

omp_lock_t lck;
omp_init_lock(&lck);

#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}  
omp_destroy_lock(&lck);

Wait here for 
your turn.
Wait here for 
your turn.

Release the lock 
so the next thread 
gets a turn.

Release the lock 
so the next thread 
gets a turn.

Free-up storage when done.Free-up storage when done.



Runtime environment routines:
Modify/Check the number of threads

omp_set_num_threads(), 
omp_get_num_threads(), 
omp_get_thread_num(), 
omp_get_max_threads()

Are we in a parallel region?
omp_in_parallel()

How many processors in the system?
omp_num_procs()

60



Set the default number of threads to use.
OMP_NUM_THREADS int_literal

Control how “omp for 
schedule(RUNTIME)” loop iterations are 
scheduled.

OMP_SCHEDULE “schedule[, chunk_size]”

61



Relative easy of OpenMP is a mixed 
blessing
We can quickly write a correct 
OpenMP but without the desired 
level of performance.
There are certain “best practices” to 
avoid common performance 
problems.
Extra work needed for program with 
large thread count



Overheads of OpenMP constructs, thread 
management
› E.g. dynamic loop schedules have much higher 

overheads than static schedules
› Synchronization is expensive, use NOWAIT if possible

Overheads of runtime library routines
› Some are called frequently

Load balance
Cache utilization and false sharing
Large parallel regions help reduce overheads, 
enable better cache usage and standard 
optimizations

63
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Reduce usage of barrier with nowait 
clause

#pragma omp parallel
{
#pragma omp for

for(i=0;i<n;i++)
….

#pragma omp for nowait
for(i=0;i<n;i++)

}



#pragma omp parallel private(i)
{
#pragma omp for nowait

for(i=0;i<n;i++)
a[i] +=b[i];

#pragma omp for nowait
for(i=0;i<n;i++)

c[i] +=d[i];
#pragma omp barrier
#pragma omp for nowait reduction(+:sum)

for(i=0;i<n;i++)
sum += a[i] + c[i];

}



Avoid the Ordered Construct
Avoid Large Critical Regions

#pragma omp parallel shared(a,b) private(c,d)
{

….
#pragma omp critical
{

a += 2*c;
c = d*d;

}
}

Move out this
Statement 



Maximize Parallel Regions

#pragma omp parallel 
{
#pragma omp for
for (…) {  /* Work-sharing loop 1 */ }
}
opt = opt + N; //sequential

#pragma omp parallel
#pragma omp for
for(…) { /* Work-sharing loop 2 */ }

#pragma omp for
for(…) { /* Work-sharing loop N */}
}

#pragma omp parallel 
{
#pragma omp for 
for (…) {  /* Work-sharing loop 1 */ }
}
#pragma omp single nowait
opt = opt + N; //sequential

#pragma omp for
for(…) { /* Work-sharing loop 2 */ }

#pragma omp for
for(…) { /* Work-sharing loop N */}
}

Avoid parallel region overheads



Single parallel region enclosing all work-
sharing loops.

for (i=0; i<n; i++)
for (j=0; j<n; j++)

#pragma omp parallel for private(k)
for (k=0; k<n; k++)

{ …….}

#pragma omp parallel private(i,j,k) 
{
for (i=0; i<n; i++)
for (j=0; j<n; j++)

#pragma omp for
for (k=0; k<n; k++)

{ …….}

}

Avoid parallel region
overheads



Address load imbalances
Use parallel for dynamic schedules and
different chunk sizes

Smith-Waterman Sequence 
Alignment Algorithm



Smith-Waterman Algorithm:
#pragma omp for

for(…)
for(…)

for(…)
for(…)

{ /* compute alignments */ }
#pragma omp critical

{. /* compute scores */ }

Default scheduler 
is static even. 

Not good for load 
imbalance.
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Address load imbalances by selecting the 
best scheduler and chunk size
Avoid selecting small chunk size when 
work in chunk is small.



OpenMP Pipeline Processing to overlap 
I/O and Computations

for (i=0; i<N; i++)
{
ReadFromFile(i,…);
for(j=0; j<ProcessingNum; j++)

ProcessData();
WriteResultsToFile(i);

}  



#pragma omp parallel
{
#pragma omp single
{ReadFromFile(0,...);}

for (i=0; i<N; i++) {
#pragma omp single nowait
{ReadFromFile(i+1,….);}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)
ProcessChunkOfData();

#pragma omp single nowait
{WriteResultsToFile(i);}

}
}

Parallelizing
Pipeline Processing
Pre-fetches I/O
Threads Reading  or 
Writing files joins the 
Computations

Load 
Data

Process

Data

Save 
Data

Load 
Data

Process

Data
Save 
Data

Load 
Data

Load 
Data

Process

Data



Single vs. Master work-sharing.
› Depends on the application
› Master is more efficient but requires

thread 0 to be available
› Single more efficient if master thread not 

available but has implicit barrier.



Avoid False Sharing
› Problem when threads access same cache line 
› Use array padding/change schedule to fix the 

problem.

int a[max_threads];
#pragma omp parallel for schedule(static,1)

for(int i=0; i<N; i++)
a[i] +=i;

int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)

for(int i=0; i<N; i++)
a[i][0] +=i;



Data placement on NUMA architectures
Use First Touch Policy or system commands 
to place data.

Quartet of four dual-core Opteron Processor



NUMA architectures: remote vs. local memory accesses
Excessive remote memory accesses saturates the 
interconnect

Quartet of four dual-core Opteron Processor



NUMA architectures
Initialize data consistently with the 
computations

#pragma omp parallel for
for(i=0; i<N; i++) {

a[i] = 0.0; b[i] = 0.0 ; c[i] = 0.0; }
readfile(a,b,c);

/* computations */
#pragma omp parallel for
for(i=0; i<N; i++) {

a[i] = b[i] + c[i];
}



Privatize variables as much as possible
Private variables are stored in the local stack 
to the thread
Private data close to cache

double a[MaxThreads][N][N]
#pragma omp parallel for
for(i=0; i<MaxThreads; i++)
{ for(int j…)

for(int k…)
a[i][j][k] = …

}

double a[N][N]
#pragma omp parallel private(a)
{
for(int j…)
for(int k…)

a[j][k ] = …
}



Example: Hybrid CFD code
MPIxOpenMP

OpenMP version (1x8)

MPI version (8x1)

We find that a single procedure is
responsible for 20% of the total time 
the OpenMP version and is 9 times 
slower than the MPI version…. Why? 



Example: Hybrid CFD code
MPIxOpenMP

When comparing the metrics between OpenMP and
MPI using KOJAK performance algebra.Loop Timings

Some loops are 27 times slower in OpenMP (1x8) than
MPI (8x1). These loops contains large amounts of 
Stalling due to remote memory accesses to the shared heap.

We found: 

Large # of:

• Exceptions
• Flushes
• Cache Misses
• Pipeline stalls



OpenMP: best practices

CFD application psudo-code: Privatization & First Touch
procedure diff_coeff() 
{

allocation of arrays to heap by master thread
initialization of shared arrays

PARALLEL REGION 

{
loop lower_bn [my thread id] , upper bound [my thread id]
computation on shared arrays

…..

}
}

Shared Arrays

ISSUES:

• Shared arrays initialized incorrectly
(first touch policy) 

• Delays in remote memory accesses are
probable causes by saturation of     

interconnect



•Privatizing the arrays improved the performance of  
the whole program by 30% and a speedup of 10 for 
the procedure.

•Now procedure only takes 5% of total time

•Processor Stalls are reduced significantly

OpenMP Privatized Version

Stall Cycle Breakdown for Non-Privatized (NP) and
Privatized (P) Versions of diff_coeff
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OpenMP: best practices



Avoid Thread Migration
› Affects data locality
Bind threads to cores.
Linux:
› numactl –cpubind=0 foobar
› taskset –c 0,1 foobar
SGI Altix
› dplace –x2 foobar  



Incorrect use of synchronization 
constructs
› Less likely if user sticks to directives
› Erroneous use of NOWAIT
Race conditions (true sharing)
› Can be very hard to find
Wrong “spelling” of sentinel
Use tools to check for data races.
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Good for:
› MPI communication overhead can be 

reduced by using OpenMP within the 
node, exploiting shared data

› Application with two levels of 
parallelism

› Application with unbalanced work load 
at the MPI level.

› Application with limited # of MPI 
processes.



Not Good for:
› When MPI library implementation 

doesn’t support threads. 
› Application with one level of parallelism, 

no need for hierarchical parallelism.
› OpenMP is not written correctly, 

introducing its drawbacks.
› Implementation of OpenMP is not 

scalable.
Compiler dependent.



MPI_INIT_THREAD (required, provided, ierr)
IN: required, desired level of thread support (integer).
OUT: provided, provided level of thread support (integer).
Returned provided maybe less than required.

Thread support levels:
MPI_THREAD_SINGLE: Only one thread will execute. 
MPI_THREAD_FUNNELED: Process may be multi-threaded, but 
only main thread will make MPI calls (all MPI calls are ’’funneled'' 
to main thread)..
MPI_THREAD_SERIALIZED: Process may be multi-threaded, 
multiple threads may make MPI calls, but only one at a time: MPI 
calls are not made concurrently from two distinct threads (all MPI 
calls are ’’serialized'').  
MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with 
no restrictions. 



MPI_THREAD_SERIALIZED is required.
OMP_BARRIER is needed since OMP_SINGLE only 
guarantees synchronization at the end.
It also implies all other threads are sleeping!

!$OMP BARRIER
!$OMP SINGLE

call MPI_xxx(…)
!$OMP END SINGLE



Need at least MPI_THREAD_MULTIPLE

Good to overlap computations and 
communication.

!$OMP PARALLEL
if (thread_id .eq. id1) then

call mpi_routine1()
else if (thread_id .e.q. id2) then

call mpi_routine2()
else

do_compute()
endif
!$OMP END PARALLEL

You may create 
OMP tasks to 
do the MPI 
communication
s 



Less Communication with OpenMP: Required replacing send/recv buffers 
with direct memory copies

•Pure MPI faster 16% 
than pure OpenMP but 
OpenMP uses 30% less
memory. Reason: Need
to merge more parallel 
regions and reduce 
synchronization.

•Other hybrid 
configurations may 
benefit from reduced 
communication and 
less memory footprint.
•2x4, 4x2



Important to use OpenMP Best Practices 
strategy to achieve good performance
Data locality is extremely important for 
OpenMP. Privatization or Implicit Data 
Placement.
Important to reduce synchronizations
Hybrid nodes, OpenMP:
› Uses less memory
› Reduces MPI communication overhead.



OpenMP Homepage www.openmp.org:

The primary source of information about OpenMP and its
development.

OpenMP User’s Group (cOMPunity) Homepage
www.compunity.org:

Books:

Using OpenMP, Barbara Chapman, Gabriele Jost, Ruud Van
Der Pas, Cambridge, MA : The MIT Press 2007, ISBN: 978-
0-262-53302-7

Parallel programming in OpenMP, Chandra, Rohit, San
Francisco, Calif. : Morgan Kaufmann ; London : Harcourt, 
2000, ISBN: 1558606718

Search:  www.google.com: OpenMP
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