A

Argonne

NATIONAL
LABORATORY

Parallel 1/0: Not Your Job

... for a brighter future

Rob Latham and Rob Ross
Mathematics and Computer Science Division

Argonne National Laboratory

UChicago »

Argonne

{robl, rross}@mcs.anl.gov

Computational Science

B Use of computer simulation as a tool for greater
understanding of the real world

Complements experimentation and theory

B As our simulations become ever more IBM BG/L system.
complicated

— Large parallel machines needed to perform
calculations

— Leveraging parallelism becomes more
important

B Managing code complexity bigger issue as well
— Use of libraries increases (e.g. MPI, BLAS)
B Data access is a huge challenge
— Using parallelism to obtain performance
— Providing usable and efficient interfaces

Visualization of entropy in Terascale
Supernova Initiative application. Image from
Kwan-Liu Ma’s visualization team at UC Davis.

ye | |
A rggTrO]NrA] LAeﬂokATORV

Outline

® Introduction
M |/O software stacks
M Interfaces
— MPI-IO
— Parallel netCDF
— HDF5
W Best practice

B Wrapping up

Application I/O

B Applications have data models appropriate to
domain

— Multidimensional typed arrays, images composed
of scan lines, variable length records

— Headers, attributes on data
B |/O systems have very simple data models
— Tree-based hierarchy of containers
— Some containers have streams of bytes (files)

Graphic from J. Tannahill, LLNL

— Others hold collections of other containers et oo :
(directories or folders)]
B Someone has to map from one to the other! |
*) mmn HEE
. szmzﬂs 5.0x10% 1r,0(§:n0)5 1.5x%10° 2.0x100
AR o i sk = 9482 Graphic from A. Siegel, ANL

A B ‘
Argonne ™ |

Common Approaches to Application |/O

B Root performs I/O
Pro: trivially simple for “small” I/0O
Con: bandwidth limited by rate one client can sustain
Con: may not have enough memory on root to hold all data
B All processes access their own file
Pro: no communication or coordination necessary between processes
Pro: avoids some file system quirks (e.q. false sharing)
Con: for large process counts, lots of files created
Con: data often must be post-processed to recreate canonical dataset
Con: uncoordinated I/O from all processes may swamp I/O system
M All processes access one file
Pro: only one file (per timestep etc.) to manage: fewer files overall

Pro: data can be stored in canonical representation, avoiding post-
processing

Con: can uncover inefficiencies in file systems (e.qg. false sharing)
Con: uncoordinated I/O from all processes may swamp I/O system

Challenges in Application I/O

Leveraging aggregate communication and I/O bandwidth of clients

...But not overwhelming a resource limited I/O system with uncoordinated
accesses!

Limiting number of files that must be managed (also a performance issue)
Avoiding unnecessary post-processing
Avoiding file system quirks

Often application teams spend so much time on this that they never get
any further:

— Interacting with storage through convenient abstractions
— Storing in portable formats

Computer science teams that are experienced in parallel I/0 have
developed software to tackle all of these problems

— Not your job.

I/O for Computational Science

Application
High-level I/O Library

Application

Parallel File System
|/O Hardware

‘ /O Middleware (MPI-10)

Parallel File System
I/O Hardware

B Applications require more software than just a parallel file system
B Break up support into multiple layers with distinct roles:
— Parallel file system maintains logical space, provides efficient access to data
(e.qg. PVFS, GPFS, Lustre)
— Middleware layer deals with organizing access by many processes
(e.g. MPI-IO, UPC-IO)
— High level I/O library maps app. abstractions to a structured,
portable file format (e.g. HDF5, Parallel netCDF)

Parallel File System

B Manage storage hardware
— Present single view
— Stripe files for performance /O Middleware (MPI-10)

B |n the context of the /O software stack
— Focus on concurrent,

independent access
— Publish an interface that middleware can use effectively
* Rich I/O language
» Relaxed but sufficient semantics

— Knowledge of collective I/O usually very limited

Parallel File Systems

Ipfs
—
astro /bio

HO1 HO5 HO6

PFS

N

HO2
HO3 — =
HO4 astro 0 HO2 05

protO4.seq prot17.seq 10S 10S 10S 10S

HO4

chkpt32.nc HO3 Ipfs HO6 /bio

An example parallel file system, with large astrophysics checkpoints distributed across multiple 1/0
servers (I0S) while small bioinformatics files are each stored on a single 10S.

B Block-based or region-oriented accesses
B Stripe data across multiple resources

— Simultaneous use of multiple servers, disks, and network links
B Tradeoffs between performance and consistency

— POSIX: strict consistency hurts performance

— NFS: consistency too weak: much time spent flushing buffers
— More on this later

A B E
A rgQTQND L@BORATORV

Contiguous and Noncontiguous I/O

Contiguous Noncontiguous Noncontiguous Noncontiguous
in File in Memory in Both

B Contiguous I/O moves data from a single memory block into a single file region
B Noncontiguous I/O has three forms:

— Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
B Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)

B Describing noncontiguous accesses with a single operation passes more knowledge
to I/O system

Supporting Noncontiguous I/O

« Three approaches for noncontiguous |/O

— Use POSIX and suffer
— Perform optimizations at the MPI-IO layer as work-around

— Augment the parallel file system
« Augmenting the parallel file system APl is most effective

MPI-10

Optimizations
w0 o N\ P
d/ 0\ /
V4 PFS Enhancements

Bandwidth (MB/s)

POSIX I/O

0 T
kosn(I/0 / Data sieving Two -phase I/0 \@0 Dalatyp?/
I/0
v

Results from “Datat

/0O Middleware

Match the programming model (e.g. MPI) : AppllcatlorT
B Facilitate concurrent access by groups Aligh-iovel 19 sy
of processes /O Middleware (MPI-10)

— Collective 1/0 Parallel File System
— Atomicity rules
B Expose a generic interface
— Good building block for high-level libraries
B Efficiently map middleware operations into PFS ones
— Leverage any rich PFS access constructs, such as:
« Scalable file name resolution

* Rich I/O descriptions

Creating Files Efficiently

B File create rates can actually have a
significant performance impact

B Improving the file system interface improves
performance for computational science

— Leverage communication in MPI-10 layer

File system interfaces force all
processes to open a file, causing a

Time to Create Files Through MPI-IO storm of system calls.

~
o
=)

(=]
o

a O
o
o

COGPFS
B Lustre
EPVFS2

S
(=
o

w
(=]
o

N
(=]
o

-
(=
o

Avg. Create Time (ms)

oo i [MPI-IO can leverage other interfaces,

- < 0 © 0O WO © avoiding this behavior.
- N IO M O N

o

-— -

Number of Processes

Independent and Collective I/O

D O I O
NS S S S

Independent 1/0O Collective 1/0

B [ndependent I/O operations specify only what a single process will do

— Independent I/O calls do not pass on relationships between 1/O on other processes
B Many applications have phases of computation and I/O

— During I/O phases, all processes read/write data

— We can say they are collectively accessing storage
B Collective I/O is coordinated access to storage by a group of processes

— Collective I/O functions are called by all processes participating in 1/O

— Allows /O layers to know more about access as a whole, more opportunities for
optimization in lower software layers, better performance

A
A rgQTQND EORATORV

The Two-Phase I/O Optimization

e oy

Initial State Phase 1: Phase 2: Redistribution

Two-Phase Read Algorithm

B Problems with independent, noncontiguous access
— Lots of small accesses
— Independent data sieving reads lots of extra data, can exhibit false sharing
B |dea: Reorganize access to match layout on disks
— Single processes use data sieving to get data for many
— Often reduces total I/0 through sharing of common blocks
B Second “phase” redistributes data to final destinations
B Two-phase writes operate in reverse (redistribute then 1/O)
— Typically read/modify/write (like data sieving)
— Overhead is lower than independent access because there is little or no false sharing
B Aggregating to fewer nodes as part of this process is trivial (and implemented!)

noncontig Collective I/O Results

B Benchmark that tests file system performance with increasingly small contiguous
regions (keeping total size same)

m All file systems benefit from collective I/O optimizations for all but the most
contiguous patterns

— Collective I/O optimizations can be absolutely critical to performance

Lustre Noncontiguous /O Performance GPFS Noncontiguous /O Performance
Block Read —+— ; _ Block Read —+—
18 = = ol Read =1 1 . g : ZUII. geag#—‘“
— ndep. Read —%—
B "Block Wite —8— 2 Block Write —&—
g 087 Coll. Write —#— - 8. 087 Coll. Write —#— -
‘g, Indep. Write —&— §, Indep. Write —&—
S > 061 = 8 & R
g o8 N . . . 2
: B
¥ oat— N 04
© \%-\
£ T * o g
z 02 e _,__T Z 02
0 = = g 8 o 8

1 8 64 1K 8K 18K 1 64 1K 8K 16K
of Distinct Contiguous Regions # of Distinct Contiguous Regions

A - -
A rgQTQND EORATORV

High Level Libraries

Match storage abstraction to domain Application
High-level I/O Library

I/O Middleware (MPI-10)

— Multidimensional datasets
— Typed variables

— Attributes Parallel File System
Provide self-describing, structured files I/O Hardware

Map to middleware interface
— Encourage collective I/0O
Implement optimizations that middleware cannot, such as

— Caching attributes of variables
— Chunking of datasets

HSperf Write Results

Lustre HSperf Write Performance

. 0 . '
® Performance of high-level I/0 " N
libraries can approach that of well- 0 Coll. MPHIO ——
formed POSIX and MPI-IO, but § 3800 \ "ol HDFs —=—
doesn’t always 2 250
— Complexities of HLL storage g 20
formats can cause some RE
performance degradation B i
— Obviously developers are " &
sensitive to this potential e =
1 2 4 8 16 32
% of Processes
PVFS HS5perf Write Performance son GPFS HSperf Write Performance
50 < POSIX —t—
POSIX —+— -
o mERT]] BERT
3 o g PR —em § - Coll HOFS —m—
o 3 = ’
= 0 = 2500 |
z 25 z 2000 ¢
g 20 © 1500
< 15¢ 2 om0 |
10, 500
5

1 2 4 8 18 32
of Processes

A —— _
A rgQTQND L?BORATORV

% of Processes

What we’ve said so far...

B Application scientists have basic goals for interacting with storage
— Keep productivity high (meaningful interfaces)
— Keep efficiency high (performant systems)

B Many solutions have been pursued by application teams, with limited
success

— This is largely due to reliance on file system APIs, which are poorly
designed for computational science

® Parallel I/O teams have developed software to address these goals
— Provide meaningful interfaces with common abstractions
— Interact with the file system in the most efficient way possible

MPI-IO Interface

MPI-10

I/O interface specification for use in MPI| apps
Data Model:

— Stream of bytes in a file

— Portable data format (external32)

» Not self-describing - just a well-defined encoding of types

Features:

— Collective 1/0

— Noncontiguous I/O with MPI datatypes and file views

— Nonblocking I/O

— Fortran bindings (and additional languages)
Implementations available on most platforms

Example: Visualization Staging

Often large frames must be preprocessed before display on a tiled display

First step in process is extracting “tiles” that will go to each projector
— Perform scaling, etc.

Parallel I/O can be used to speed up reading of tiles
— One process reads each tile

We’re assuming a raw RGB format with a fixed-length header

MPI Subarray Datatype

|) |

o | e |
| ! o |
N = |
P | tile_start[1] =~ tile_size[1] (S !
() I — 1
5| ° |
T Tile 4 a E
| o) |

: S :
S |

frame_size[1]

B MPI_Type create subarray can describe any N-dimensional subarray of
an N-dimensional array

B In this case we use it to pull out a 2-D tile
B Tiles can overlap if we need them to
B Separate MPI_File_set view call uses this type to select the file region

Opening the File, Defining RGB Type

MPI_Datatype rgb, filetype;
MPI_File filehandle;
ret = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/* collectively open frame file */

ret = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_RDONLY, MPI_INFO_NULL, &fﬂehand'le);

/* first define a simple, three-byte RGB type */
ret = MPI_Type_contiguous(3, MPI_BYTE, &rgb);
ret = MPI_Type_commit(&rgb);

/* continued on next slide */

Defining Tile Type Using Subarray

/* in C order, last array l% i
* value (X) changes most — | § i
* quickly g | ! tle_start[1] tile_size[1] | i
*/ o - i

frame_size[l] = 3*1024; § Tile 4 '% i

frame_size[0] = 2*768; i S |

tile_size[1l] = 1024; STt !

tile_size[0] = 768; frame_size[1]

tile_start[1l] = 1024 * (myrank % 3);
tile_start[0] = (myrank < 3) ? 0 : 768;

ret = MPI_Type_create_subarray(2, frame_size,
tile_size, tile_start, MPI_ORDER_C, rgb, &filetype);

ret = MPI_Type_commit(&filetype);

Reading Noncontiguous Data

/* set file view, skipping header */

ret = MPI_File_set_view(filehandle, file_header_size,
rgb, filetype, "native", MPI_INFO_NULL);

/* collectively read data */

ret = MPI_File_read_all(filehandle, buffer,
tile_size[0] * tile_size[l], rgb, &status);

ret = MPI_File_close(&filehandle);

B MPI_File set view is the MPI-IO mechanism for describing
noncontiguous regions in a file
M In this case we use it to skip a header and read a subarray
B Using file views, rather than reading each individual piece, gives the
implementation more information to work with (more later)
B Likewise, using a collective I/O call (MPI_File read_all) provides
additional information for optimization purposes (more later)

MPI-IO Wrap-Up

B MPI-IO provides a rich interface allowing us to describe
— Noncontiguous accesses in memory, file, or both
— Collective 1/0

B This allows implementations to perform many transformations that result
in better I/O performance

B Also forms solid basis for high-level I/O libraries
— But they must take advantage of these features!

PnetCDF Interface and File Format

Parallel netCDF (PnetCDF)

B Based on original “Network Common Data Format” (netCDF) work from
Unidata

— Derived from their source code

B Data Model:
— Collection of variables in single file
— Typed, multidimensional array variables
— Attributes on file and variables

B Features:
— C and Fortran interfaces
— Portable data format (identical to netCDF)
— Noncontiguous I/O in memory using MPI datatypes
— Noncontiguous I/O in file using sub-arrays
— Collective 1/0

B Unrelated to netCDF-4 work

netCDF/PnetCDF Files

B PnetCDF files consist of three regions
B Header netCDF Header

. . . . o,
— Non-record variables (all dimensions specified) 3||| 15t nonrecord variable
— Record variables (ones with an unlimited ||| 20d non-record variable
. . N
dimension) e A
B Record variables are interleaved, so using more E
. e nth non—record variable
than one in a file is likely to result in poor [} S
performance due to noncontiguous accesses | Record o and Record var |
B Data is always written in a big-endian format o | |
“ |l 2nd Record for 1st,
-E‘ 2nd, ..., rth Record
S ||| Variables in order
£ .
T oLl __ ar
Records grow in the URLINITED
\ dimension for 1,2,..., rth var

A ===
A rggTrO]ND L?BORATORV

Storing Data in PnetCDF

B Create a dataset (file)
— Puts dataset in define mode
— Allows us to describe the contents
« Define dimensions for variables
» Define variables using dimensions
« Store attributes if desired (for variable or dataset)
B Switch from define mode to data mode to write variables
B Store variable data
B Close the dataset

Example: FLASH Astrophysics

B FLASH is an astrophysics code for
studying events such as supernovae

— Adaptive-mesh hydrodynamics
— Scales to 1000s of processors
— MPI for communication

B Frequently checkpoints:

— Large blocks of typed variables
from all processes

— Portable format

CT T 11 3
Vars 0, 1,2, 3, ... 23

— Canonical ordering (different than
in memory)

— Skipping ghost cells

B Ghost cell
B Stored element

Example: FLASH with PnetCDF

B FLASH AMR structures do not map directly to netCDF multidimensional
arrays

B Must create mapping of the in-memory FLASH data structures into a
representation in netCDF multidimensional arrays

B Chose to
— Place all checkpoint data in a single file
— Impose a linear ordering on the AMR blocks
» Use 4D variables
— Store each FLASH variable in its own netCDF variable
» Skip ghost cells
— Record attributes describing run time, total blocks, etc.

Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;
/% create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename,
NC_CLOBBER, hints, &file_id);

/* define dimensions */
status = ncmpi_def dim(ncid, "dim_tot_blks",

tot_blks, &dim_tot_blks -
: < Each dimension gets

status = ncmpi_def_dim(ncid, "dim_nxb", a unique reference
. N
nzones_block[0] ,{&dim_nxb) ; :
status = ncmpi_def_dim(ncid, "dim_nyb",
nzones_block[1], &dim_nyb);
status = ncmpi_def_dim(ncid, "dim_nzb",
nzones_block[2], &dim_nzb);

Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];

/* define variables (X changes most quickly) */
dimids[0] = dim_tot_blks; ———
dimids[1] = dim_nzb;

dimids[2] = dim_nyb;/
dimids[3] = dim_nxb;

for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_Tlabel[i],
NC_DOUBLE, dims, dimids, &varids[i]);

Same dimensions used
for all variables

Storing Attributes

/* store attributes of checkpoint */

status = ncmpi_put_att_text(ncid, NC_GLOBAL,
"file_creation_time", string_size, file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL,
"total_blocks", NC_INT, 1, tot_blks);

status = ncmpi_enddef(file_id);

/* now in data mode .. */

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */

size_t start_4d[4], count_4d[4];

start_4d[0] = global_offset; /* different for each process */
start_4d[1l] = start_4d[2] = start_4d[3] =

count_4d[0] = local_blocks;

count_4d[1] nzb; count_4d[2] = nyb; count_4d[3] = nxb;
for (i=0; 1 < NVARS; 1i++) {

/* ... build datatype “mpi_type” describing values of a
single variable ... */

/% collectively write out all values of a single variable
7‘:/

ncmpi id, varids[i], start_4d, count_4d,

unknowns 1, mpi_type);

}

status = ncmpi_close(file_id); Typical MPI buffer-
count-type tuple

Inside PnetCDF Define Mode

B [n define mode (collective)

— Use MPI_F1ile_open to create file at create time

— Set hints as appropriate (more later)

— Locally cache header information in memory

« All changes are made to local copies at each process

B Atncmpi_enddef

— Process 0 writes header with MPI_File_write_at

— MPI_Bcast result to others

— Everyone has header data in memory, understands placement of all
variables

» No need for any additional header I/0O during data mode!

Inside PnetCDF Data Mode

B Inside ncmpi_put_vara_all (once per variable)
— Each process performs data conversion into internal buffer
— Uses MPI_File_set_view to define file region
« Contiguous region for each process in FLASH case
- MPI_File_write_all collectively writes data
B Atncmpi_close
- MPI_File_close ensures data is written to storage

B MPI-IO performs optimizations
— Two-phase possibly applied when writing variables
B MPI-IO makes PFS calls
— PFS client code communicates with servers and stores data

PnetCDF Wrap-Up

B PnetCDF gives us
— Simple, portable, self-describing container for data
— Collective 1/0
— Data structures closely mapping to the variables described
B |f PnetCDF meets application needs, it is likely to give good performance
— Type conversion to portable format does add overhead

HDF5 Interface and File Format

HDF5

Hierarchical Data Format, from the HDF Group (formerly of NCSA)
Data Model:

— Hierarchical data organization in single file

— Typed, multidimensional array storage

— Attributes on dataset, data
Features:

— C, C++, and Fortran interfaces

— Portable data format

— Optional compression (not in parallel I/O mode)

— Data reordering (chunking)

— Noncontiguous I/O (memory and file) with hyperslabs

HDF5 Files

HDF5 File “chkpt007.h5”

: : Dataset “temp”
® HDFS5 files consist of groups, datatype = HST_NATIVE_DOUBLE

datasets, and attributes dataspace = (10, 20)
20

— Groups are like directories, I
holding other groups and G
datasets

— Datasets hold an array of attributes = ..
typed data

« A datatype describes the type (not an MPI datatype)
« A dataspace gives the dimensions of the array

— Attributes are small datasets associated with the file, a group, or another
dataset

» Also have a datatype and dataspace
« May only be accessed as a unit

HDF5 Data Chunking

B Apps often read subsets of arrays (subarrays)

B Performance of subarray access depends in part on how data is laid out
in the file

— e.g. column vs. row major
B Apps also sometimes store sparse data sets
B Chunking describes a reordering of array data
— Subarray placement in file determined lazily
— Can reduce worst-case performance for subarray access
— Can lead to efficient storage of sparse data
B Dynamic placement of chunks in file requires coordination
— Coordination imposes overhead and can impact performance

Simplified Hyperslab Example

/* define dataspace of entire region */
dims[0] = 9; dims[1] = 4;

filespace = H5Screate_simple(NR_DIMS,
dims, NULL);

/* create dataset from dspace */
fileset = HS5Dcreate(file_id, “subtile”, HS5T_NATIVE_INT,
filespace, HSP_DEFAULT);

/* define region of interest */
count[0] = 2; count[l] = 3;
offset[0] = 2; offset[1l] = 3;

/* define hyperslab: modified fileset passed to H5Dwrite */
H5Sselect_hyperslab(fileset, H5S_SELECT_SET,

offset, ,_count, (NULL)* logically contiguous:
QULD,, no stride

Example: FLASH with HDF5

FLASH AMR structures do not map directly to HDF5 datasets

B Must create mapping of the in-memory FLASH data structures into a
representation in HDF5 datasets

B Chose to
— Place all checkpoint data in a single file
— Impose a linear ordering on the AMR blocks
« Use 1D arrays of 3D blocks (so 4D overall)
— Store each FLASH variable in its own HDF5 dataset
» Skip ghost cells
— Record attributes describing run time, total blocks, etc.

Note: We will just show code storing an attribute and collectively writing a
variable.

Noncontiguous I/O with Hyperslabs (1 of 2)

hsize_t dimens_4d[4];

/* Step 1: set up dataspace */
dimens_4d[0] = dim_tot_blks;

dime1$_4d[1] = nzb; dimens_4d[2] = nyb; dimens_4d[3] =
nxb;

dspace = H5Screate_simple(4, dimens_4d, NULL);

dset = HS5Dcreate(file_id, variable_name,
H5T_NATIVE_DOUBLE, dspace, HS5P_DEFAULT) ;

Remember:

“S” is for dataspace,
“T” is for datatype,
“D” is for dataset!

Noncontiguous I/O with Hyperslabs (2 of 2)

hsize_t count_4d[4];

hsize_t start_4d[4]

{0, 0, 0, 0O},
stride_4d[4] {1, 1, 1, 13};

/* Step 2: setup hyperslab for dataset in file */
start_4d[0] = global_offset; /* different for each
process */

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;

dataspace from
status = H555e1ect_hypers1ab,4 last slide
H5S_SELECT_SET,

start_4d,
stride_4d,
count_4d,
NULL) ;

Collectively Writing a Variable

“P” is for property list;
/* Step 1: specify collective tuning parameters
dxfer_template = HYP¢feate (H5P_DATASET_XFER);

ierr = HS5Pset_dxpl_mpio(dxfer_template,
H5FD_MPIO_COLLECTIVE);

dataspace
/* Step 2: perform collective write */ describing memory,
status = H5Dwrite(dataset, could also use a
H5T_NATIVM hyperslab
memspace,
dspace,+— dataspace
dxfer_template, describing region in
Remember: unknowns) ; file,
“S” is for dataspace, with hyperslab

“T” is for datatype,
“D” is for dataset!

Inside HDF5

MPI_F1i1le_open used to open file
Because there is no “define” mode, file layout is determined at write time
In H5Dwr1 te:
— Processes communicate to determine file layout
* Process 0 performs metadata updates
— CallMPI_File_set_view
— CallMPI_File_write_all to collectively write
* Only if this was turned on (more later)

Memory hyperslab could have been used to define noncontiguous region
in memory

In FLASH application, data is kept in native format and converted at read
time (defers overhead)

— Could store in some other format if desired

At the MPI-IO layer:
— Metadata updates at every write are a bit of a bottleneck
« MPI-IO from process 0 introduces some skew

/O Best Practices

How do | choose an API?

Your programming model will limit choices
— Domain might too

— e.g. Climate community has substantial existing netCDF data and
tools to manipulate that data

Find something that matches your data model
Avoid APls with lots of features you won't use
— Potential for overhead costing performance is high
Maybe the right APl isn't available?
— Get I/O people interested, consider designing a new library

Summary of APl Capabilities

POSIX |MPI-IO |PnetCDF [HDF5
Noncontig. Memory|Yes Yes Yes Yes
Noncontig. File|Sort-of |Yes Yes Yes
Coll. I/O Yes Yes Yes
Portable Format Yes Yes Yes
Self-Describing Yes Yes
Attributes Yes Yes
Chunking Yes
Hierarchical File Yes

Tuning Application I/O (1 of 2)

B Have realistic goals:

— What is peak I/O rate?

— What other testing has been done?
B Describe as much as possible to the 1/0O system:

— Open with appropriate mode

— Use collective calls when available

— Describe data movement with fewest possible operations
B Match file organization to process partitioning if possible

— Order dimensions so relatively large blocks are contiguous with
respect to data decomposition

Tuning Application I/O (2 of 2)

B Know what you can control:
— What I/O components are in use?
— What hints are accepted?
B Consider system architecture as a whole:
— |s storage network faster than communication network?
— Do some nodes have better storage access than others?

Do’s and Don’ts

B PFSs are not optimized for metadata, instead for moving data
— Don'’t use ‘Is —I' or ‘du’ on millions of files
« Certainly not to check application progress!
— Use your own subdirectory to avoid contention with others
B Keep file creates, opens, and closes to a minimum
— Open once, close once
— Use shared files or at least a subset of tasks

B Aggregate writes — PFSs are not databases, they need large transfers (at
least 64K)

— Contiguous data patterns utilize prefetching and write-behind far better
than noncontiguous patterns

— Collective I/0O can aggregate for you, transform accesses into contiguous
ones

B Avoid overlapped write regions if file systems rely on locks
— Attempt to use block-aligned data
B Check error codes!

Controlling I/O Stack Behavior: Hints

B Most systems accept hints through one mechanism or another
— Parameters to file “open” calls
— Proprietary POSIX 1oct1 calls
— MPI_Info
— HDF5 transfer templates
B Allow the programmer to:
— Explain more about the 1/O pattern
— Specify particular optimizations
— Impose resource limitations

B Generally pass information that is used only during a particular set of
accesses (between open and close, for example)

MPI-IO Hints

B MPI-IO hints may be passed via:
— MPI_F1ile_open
- MPI_File_set_info
— MPI_File_set_view

B Hints are optional - implementations are guaranteed to ignore ones they
do not understand

— Different implementations, even different underlying file systems,
support different hints

B MPI_File_get_info used to get list of hints

MPI-IO Hints: Collective 1/O

cb_buffer_size - Controls the size (in bytes) of the intermediate
buffer used in two-phase collective 1/O

cb_nodes - Controls the maximum number of aggregators to be used

romio_ch_read - Controls when collective buffering is applied to
collective read operations

romio_ch_write - Controls when collective buffering is applied to
collective write operations

cb_config_1l1ist - Provides explicit control over aggregators (see
ROMIO User's Guide)

MPI-IO Hints: FS-Specific

striping_factor - Controls the number of I/O devices to stripe
across

striping_unit - Controls the amount of data placed on one device
before moving to next device (in bytes)

start_iodevice - Determines what I/O device data will first be written
to

direct_read - Controls direct I/O for reads
direct_write - Controls direct I/O for writes

Using MPI_Info

B Example: setting data sieving buffer to be a whole “frame”

char info_value[1l6];

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

snprintf(info_value, 15, "%d", 3%1024 * 2*768 * 3);

MPI_Info_set(info, "ind_rd_buffer_size",
info_value);

MPI_File_open(comm, filename, MPI_MODE_RDONLY, info,
&fh);

MPI_Info_free(&info);

Hints and PnetCDF

B Uses MPI_Info, so almost identical

B For example, reducing I/O to a smaller number of processors
(aggregators):

MPI_Info info;
MPI_File fh;
MPI_Info_create(&info);

MPI_Info_set(info, ”cb_nodes”, “16”);
ncmpi_open(comm, filename, NC_NOWRITE, 1info,
&ncfile);

MPI_Info_free(&info);

Surprising Results and Fixing Them

B Recent testing on Jaguar (XT3) IOR on Jaguar @ ORNL
showed terrible performance —#-POSIX MPHO - HDFS —%— PnetCDF —8— PnetCDF (No Hints)
with PnetCDF (bottom of graph)! S,

B Turned out to be an interaction reo00 o
between a bug in the MPI-IO _, n/
implementation and a quirk of 200t g/
the file system & 15000 =

B Using a hint allowed A i /
programmer to work around the el —l'-;g;/i/

MPI-10 bug, avoiding the FS
quirk and getting performance L R S R O L
baCk Number of MPIl processes

B Didn’t have to implement Results compliments of W.-K. Liao, NWU

anything new

Helping 1/0O Experts Help You

M Scenarios

— Explaining logically what you are doing

— Separate the conceptual structures from their representation on

storage

— Common vs. infrequent patterns

— Possible consistency management simplifications
B Application I/O kernels

— Simple codes exhibiting similar I/O behavior

— Easier for I/O group to work with

— Useful for acceptance testing!

— Needs to be pretty close to the real thing...

Concluding Remarks

Wrapping Up

B Computer scientists have developed solutions to many common
computational science I/O problems

— In most cases, these solutions will lead to high efficiency with
minimal effort

— Knowing how these components work will lead you to better
performance

B Building this software is not your job, but using it appropriately is!
— Choosing appropriate APIs
— Using those APls well
— Understanding what you're asking the system to do

B |/O systems will continue to get more complicated, but hopefully easier to
use at the same time!

— Remote access to data
— More layers to I/O stack
— Domain-specific application interfaces

Printed References

B John May, Parallel I/O for High Performance Computing, Morgan
Kaufmann, October 9, 2000.

— Good coverage of basic concepts, some MPI-10, HDF5, and serial
netCDF

® William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2: Advanced

Features of the Message Passing Interface, MIT Press, November 26,

1999.

— In-depth coverage of MPI-10 API, including a very detailed
description of the MPI-10 consistency semantics

On-Line References (1 of 3)

B netCDF
http://www.unidata.ucar.edu/packages/netcdf/

B PnetCDF
http://www.mcs.anl.gov/parallel-netcdf/

B ROMIO MPI-IO
http://www.mcs.anl.gov/romio/

® HDF5 and HDF5 Tutorial
http://www.hdfgroup.org/
http://hdf.ncsa.uiuc.edu/HDF5/
http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

On-Line References (2 of 3)

® PVFS
http://www.pvfs.org/

W Lustre
http://www.lustre.org/

m GPFS
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

On-Line References (3 of 3)

LLNL 1/O tests (IOR, fdtree, mdtest)
http://www.lInl.gov/icc/lc/siop/downloads/download.html

Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-io, mpi-md-test)

http://www.mcs.anl.gov/pio-benchmark/
FLASH I/O benchmark
http://www.mcs.anl.gov/pio-benchmark/
http://flash.uchicago.edu/~jbgallag/io_bench/ (original version)
b_eff io test
http://www.hlrs.de/organization/par/services/models/mpi/b_eff io/
mpiBLAST
http://www.mpiblast.org

Acknowledgements

This work is supported in part by U.S. Department of Energy Grant DE-
FC02-01ER25506, by National Science Foundation Grants EIA-9986052,
CCR-0204429, and CCR-0311542, and by the U.S. Department of Energy
under Contract W-31-109-ENG-38.

This work was performed under the auspices of the U.S. Department of

Energy by University of California, Lawrence Livermore National Laboratory
under Contract W-7405-Eng-48.

