
Parallel I/O: Not Your Job

Rob Latham and Rob Ross

Mathematics and Computer Science Division

Argonne National Laboratory

{robl, rross}@mcs.anl.gov

2

Computational Science

! Use of computer simulation as a tool for greater

understanding of the real world

! Complements experimentation and theory

! As our simulations become ever more

complicated

– Large parallel machines needed to perform

calculations

– Leveraging parallelism becomes more

important

! Managing code complexity bigger issue as well

– Use of libraries increases (e.g. MPI, BLAS)

! Data access is a huge challenge

– Using parallelism to obtain performance

– Providing usable and efficient interfaces
Visualization of entropy in Terascale

Supernova Initiative application. Image from

Kwan-Liu Ma’s visualization team at UC Davis.

IBM BG/L system.

Outline

! Introduction

! I/O software stacks

! Interfaces

– MPI-IO

– Parallel netCDF

– HDF5

! Best practice

! Wrapping up

4

Application I/O

! Applications have data models appropriate to

domain

– Multidimensional typed arrays, images composed

of scan lines, variable length records

– Headers, attributes on data

! I/O systems have very simple data models

– Tree-based hierarchy of containers

– Some containers have streams of bytes (files)

– Others hold collections of other containers

(directories or folders)

! Someone has to map from one to the other!

Graphic from J. Tannahill, LLNL

Graphic from A. Siegel, ANL

Common Approaches to Application I/O

! Root performs I/O

Pro: trivially simple for “small” I/O

Con: bandwidth limited by rate one client can sustain

Con: may not have enough memory on root to hold all data

! All processes access their own file

Pro: no communication or coordination necessary between processes

Pro: avoids some file system quirks (e.g. false sharing)

Con: for large process counts, lots of files created

Con: data often must be post-processed to recreate canonical dataset

Con: uncoordinated I/O from all processes may swamp I/O system

! All processes access one file

Pro: only one file (per timestep etc.) to manage: fewer files overall

Pro: data can be stored in canonical representation, avoiding post-
processing

Con: can uncover inefficiencies in file systems (e.g. false sharing)

Con: uncoordinated I/O from all processes may swamp I/O system

Challenges in Application I/O

! Leveraging aggregate communication and I/O bandwidth of clients

! …But not overwhelming a resource limited I/O system with uncoordinated
accesses!

! Limiting number of files that must be managed (also a performance issue)

! Avoiding unnecessary post-processing

! Avoiding file system quirks

! Often application teams spend so much time on this that they never get
any further:

– Interacting with storage through convenient abstractions

– Storing in portable formats

! Computer science teams that are experienced in parallel I/O have
developed software to tackle all of these problems

– Not your job.

7

I/O for Computational Science

! Applications require more software than just a parallel file system

! Break up support into multiple layers with distinct roles:

– Parallel file system maintains logical space, provides efficient access to data

(e.g. PVFS, GPFS, Lustre)

– Middleware layer deals with organizing access by many processes

(e.g. MPI-IO, UPC-IO)

– High level I/O library maps app. abstractions to a structured,

portable file format (e.g. HDF5, Parallel netCDF)

High-level I/O Library

I/O Middleware (MPI-IO)

Parallel File System

I/O Hardware

Application

Application

Parallel File System

I/O Hardware

8

Parallel File System

! Manage storage hardware

– Present single view

– Stripe files for performance

! In the context of the I/O software stack

– Focus on concurrent,

independent access

– Publish an interface that middleware can use effectively

• Rich I/O language

• Relaxed but sufficient semantics

– Knowledge of collective I/O usually very limited

High-level I/O Library

I/O Middleware (MPI-IO)

Parallel File System

I/O Hardware

Application

Parallel File Systems

! Block-based or region-oriented accesses

! Stripe data across multiple resources

– Simultaneous use of multiple servers, disks, and network links

! Tradeoffs between performance and consistency

– POSIX: strict consistency hurts performance

– NFS: consistency too weak: much time spent flushing buffers

– More on this later

An example parallel file system, with large astrophysics checkpoints distributed across multiple I/O

servers (IOS) while small bioinformatics files are each stored on a single IOS.

C C C C C

Comm. Network

PFS PFS PFS PFS PFS

IOSIOS IOS IOS

H01

/pfs

/astro

H03 /bioH06

H02
H05

H04

H01

/astro

/pfs

/bio

H02

H03

H04

H05 H06

chkpt32.nc

prot04.seq prot17.seq

10

Process 0 Process 0 Process 0Process 0

Contiguous and Noncontiguous I/O

! Contiguous I/O moves data from a single memory block into a single file region
! Noncontiguous I/O has three forms:

– Noncontiguous in memory, noncontiguous in file, or noncontiguous in both

! Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)
! Describing noncontiguous accesses with a single operation passes more knowledge

to I/O system

Contiguous Noncontiguous

in File

Noncontiguous

in Memory

Noncontiguous

in Both

Supporting Noncontiguous I/O

• Three approaches for noncontiguous I/O

– Use POSIX and suffer

– Perform optimizations at the MPI-IO layer as work-around

– Augment the parallel file system

• Augmenting the parallel file system API is most effective

Results from “Datatype I/O” prototype in PVFS1 with tile example

0

5

10

15

20

25

30

35

40

POSIX I/O Data sieving

I/O

Two-phase I/O List I/O Datatype I/O

B
a

n
d

w
id

t
h

 (
M

B
/
s
)

POSIX I/O

MPI-IO

Optimizations

PFS Enhancements

12

I/O Middleware

! Match the programming model (e.g. MPI)

! Facilitate concurrent access by groups

of processes

– Collective I/O

– Atomicity rules

! Expose a generic interface

– Good building block for high-level libraries

! Efficiently map middleware operations into PFS ones

– Leverage any rich PFS access constructs, such as:

• Scalable file name resolution

• Rich I/O descriptions

High-level I/O Library

I/O Middleware (MPI-IO)

Parallel File System

I/O Hardware

Application

Creating Files Efficiently

! File create rates can actually have a
significant performance impact

! Improving the file system interface improves
performance for computational science

– Leverage communication in MPI-IO layer

...

...

File system interfaces force all
processes to open a file, causing a
storm of system calls.

...

...

MPI-IO can leverage other interfaces,
avoiding this behavior.

Time to Create Files Through MPI-IO

14

Independent and Collective I/O

! Independent I/O operations specify only what a single process will do

– Independent I/O calls do not pass on relationships between I/O on other processes

! Many applications have phases of computation and I/O

– During I/O phases, all processes read/write data

– We can say they are collectively accessing storage

! Collective I/O is coordinated access to storage by a group of processes

– Collective I/O functions are called by all processes participating in I/O

– Allows I/O layers to know more about access as a whole, more opportunities for

optimization in lower software layers, better performance

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Independent I/O Collective I/O

15

The Two-Phase I/O Optimization

! Problems with independent, noncontiguous access

– Lots of small accesses

– Independent data sieving reads lots of extra data, can exhibit false sharing

! Idea: Reorganize access to match layout on disks

– Single processes use data sieving to get data for many

– Often reduces total I/O through sharing of common blocks

! Second “phase” redistributes data to final destinations

! Two-phase writes operate in reverse (redistribute then I/O)

– Typically read/modify/write (like data sieving)

– Overhead is lower than independent access because there is little or no false sharing

! Aggregating to fewer nodes as part of this process is trivial (and implemented!)

Two-Phase Read Algorithm

p0 p1 p2 p0 p1 p2 p0 p1 p2

Phase 1: I/OInitial State Phase 2: Redistribution

16

noncontig Collective I/O Results

! Benchmark that tests file system performance with increasingly small contiguous

regions (keeping total size same)

! All file systems benefit from collective I/O optimizations for all but the most

contiguous patterns

– Collective I/O optimizations can be absolutely critical to performance

17

High Level Libraries

! Match storage abstraction to domain

– Multidimensional datasets

– Typed variables

– Attributes

! Provide self-describing, structured files

! Map to middleware interface

– Encourage collective I/O

! Implement optimizations that middleware cannot, such as

– Caching attributes of variables

– Chunking of datasets

High-level I/O Library

I/O Middleware (MPI-IO)

Parallel File System

I/O Hardware

Application

18

H5perf Write Results

! Performance of high-level I/O
libraries can approach that of well-
formed POSIX and MPI-IO, but
doesn’t always
– Complexities of HLL storage

formats can cause some
performance degradation

– Obviously developers are
sensitive to this potential

What we’ve said so far…

! Application scientists have basic goals for interacting with storage

– Keep productivity high (meaningful interfaces)

– Keep efficiency high (performant systems)

! Many solutions have been pursued by application teams, with limited

success

– This is largely due to reliance on file system APIs, which are poorly

designed for computational science

! Parallel I/O teams have developed software to address these goals

– Provide meaningful interfaces with common abstractions

– Interact with the file system in the most efficient way possible

20

MPI-IO Interface

21

MPI-IO

! I/O interface specification for use in MPI apps

! Data Model:

– Stream of bytes in a file

– Portable data format (external32)

• Not self-describing - just a well-defined encoding of types

! Features:

– Collective I/O

– Noncontiguous I/O with MPI datatypes and file views

– Nonblocking I/O

– Fortran bindings (and additional languages)

! Implementations available on most platforms

22

Example: Visualization Staging

! Often large frames must be preprocessed before display on a tiled display

! First step in process is extracting “tiles” that will go to each projector

– Perform scaling, etc.

! Parallel I/O can be used to speed up reading of tiles

– One process reads each tile

! We’re assuming a raw RGB format with a fixed-length header

Tile 0

Tile 3

Tile 1

Tile 4 Tile 5

Tile 2

23

MPI Subarray Datatype

! MPI_Type_create_subarray can describe any N-dimensional subarray of
an N-dimensional array

! In this case we use it to pull out a 2-D tile

! Tiles can overlap if we need them to

! Separate MPI_File_set_view call uses this type to select the file region

frame_size[1]

fr
a

m
e

_
s
iz

e
[0

]

Tile 4

tile_start[1] tile_size[1]

tile
_

s
ta

rt[0
]

tile
_

s
iz

e
[0

]

24

Opening the File, Defining RGB Type

MPI_Datatype rgb, filetype;

MPI_File filehandle;

ret = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/* collectively open frame file */

ret = MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_RDONLY, MPI_INFO_NULL, &filehandle);

/* first define a simple, three-byte RGB type */

ret = MPI_Type_contiguous(3, MPI_BYTE, &rgb);

ret = MPI_Type_commit(&rgb);

/* continued on next slide */

25

Defining Tile Type Using Subarray

/* in C order, last array

 * value (X) changes most

 * quickly

 */

frame_size[1] = 3*1024;

frame_size[0] = 2*768;

tile_size[1] = 1024;

tile_size[0] = 768;

tile_start[1] = 1024 * (myrank % 3);

tile_start[0] = (myrank < 3) ? 0 : 768;

ret = MPI_Type_create_subarray(2, frame_size,
tile_size, tile_start, MPI_ORDER_C, rgb, &filetype);

ret = MPI_Type_commit(&filetype);

frame_size[1]

fr
a

m
e

_
s
iz

e
[0

]

Tile 4

tile_start[1] tile_size[1]

tile
_

s
ta

rt[0
]

tile
_

s
iz

e
[0

]

26

Reading Noncontiguous Data

/* set file view, skipping header */

ret = MPI_File_set_view(filehandle, file_header_size,
rgb, filetype, "native", MPI_INFO_NULL);

/* collectively read data */

ret = MPI_File_read_all(filehandle, buffer,
tile_size[0] * tile_size[1], rgb, &status);

ret = MPI_File_close(&filehandle);

! MPI_File_set_view is the MPI-IO mechanism for describing

noncontiguous regions in a file

! In this case we use it to skip a header and read a subarray

! Using file views, rather than reading each individual piece, gives the

implementation more information to work with (more later)

! Likewise, using a collective I/O call (MPI_File_read_all) provides

additional information for optimization purposes (more later)

27

MPI-IO Wrap-Up

! MPI-IO provides a rich interface allowing us to describe

– Noncontiguous accesses in memory, file, or both

– Collective I/O

! This allows implementations to perform many transformations that result

in better I/O performance

! Also forms solid basis for high-level I/O libraries

– But they must take advantage of these features!

28

PnetCDF Interface and File Format

29

Parallel netCDF (PnetCDF)

! Based on original “Network Common Data Format” (netCDF) work from
Unidata

– Derived from their source code

! Data Model:

– Collection of variables in single file

– Typed, multidimensional array variables

– Attributes on file and variables

! Features:

– C and Fortran interfaces

– Portable data format (identical to netCDF)

– Noncontiguous I/O in memory using MPI datatypes

– Noncontiguous I/O in file using sub-arrays

– Collective I/O

! Unrelated to netCDF-4 work

30

netCDF/PnetCDF Files

! PnetCDF files consist of three regions

– Header

– Non-record variables (all dimensions specified)

– Record variables (ones with an unlimited

dimension)

! Record variables are interleaved, so using more

than one in a file is likely to result in poor

performance due to noncontiguous accesses

! Data is always written in a big-endian format

31

Storing Data in PnetCDF

! Create a dataset (file)

– Puts dataset in define mode

– Allows us to describe the contents

• Define dimensions for variables

• Define variables using dimensions

• Store attributes if desired (for variable or dataset)

! Switch from define mode to data mode to write variables

! Store variable data

! Close the dataset

32

Example: FLASH Astrophysics

! FLASH is an astrophysics code for

studying events such as supernovae

– Adaptive-mesh hydrodynamics

– Scales to 1000s of processors

– MPI for communication

! Frequently checkpoints:

– Large blocks of typed variables

from all processes

– Portable format

– Canonical ordering (different than

in memory)

– Skipping ghost cells

Ghost cell

Stored element

…

Vars 0, 1, 2, 3, … 23

33

Example: FLASH with PnetCDF

! FLASH AMR structures do not map directly to netCDF multidimensional

arrays

! Must create mapping of the in-memory FLASH data structures into a

representation in netCDF multidimensional arrays

! Chose to

– Place all checkpoint data in a single file

– Impose a linear ordering on the AMR blocks

• Use 4D variables

– Store each FLASH variable in its own netCDF variable

• Skip ghost cells

– Record attributes describing run time, total blocks, etc.

34

Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

/* create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename,
NC_CLOBBER, hints, &file_id);

/* define dimensions */

status = ncmpi_def_dim(ncid, "dim_tot_blks",
tot_blks, &dim_tot_blks);

status = ncmpi_def_dim(ncid, "dim_nxb",
nzones_block[0], &dim_nxb);

status = ncmpi_def_dim(ncid, "dim_nyb",
nzones_block[1], &dim_nyb);

status = ncmpi_def_dim(ncid, "dim_nzb",
nzones_block[2], &dim_nzb);

Each dimension gets

a unique reference

35

Creating Variables

int dims = 4, dimids[4];

int varids[NVARS];

/* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks;

dimids[1] = dim_nzb;

dimids[2] = dim_nyb;

dimids[3] = dim_nxb;

for (i=0; i < NVARS; i++) {

status = ncmpi_def_var(ncid, unk_label[i],
NC_DOUBLE, dims, dimids, &varids[i]);

}

Same dimensions used

for all variables

36

Storing Attributes

/* store attributes of checkpoint */

status = ncmpi_put_att_text(ncid, NC_GLOBAL,
"file_creation_time", string_size, file_creation_time);

status = ncmpi_put_att_int(ncid, NC_GLOBAL,
"total_blocks", NC_INT, 1, tot_blks);

status = ncmpi_enddef(file_id);

/* now in data mode … */

37

Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */

size_t start_4d[4], count_4d[4];

start_4d[0] = global_offset; /* different for each process */

start_4d[1] = start_4d[2] = start_4d[3] = 0;

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;

for (i=0; i < NVARS; i++) {

/* ... build datatype “mpi_type” describing values of a
single variable ... */

/* collectively write out all values of a single variable
*/

ncmpi_put_vara_all(ncid, varids[i], start_4d, count_4d,
unknowns, 1, mpi_type);

}

status = ncmpi_close(file_id); Typical MPI buffer-

count-type tuple

38

Inside PnetCDF Define Mode

! In define mode (collective)

– Use MPI_File_open to create file at create time

– Set hints as appropriate (more later)

– Locally cache header information in memory

• All changes are made to local copies at each process

! At ncmpi_enddef

– Process 0 writes header with MPI_File_write_at

– MPI_Bcast result to others

– Everyone has header data in memory, understands placement of all

variables

• No need for any additional header I/O during data mode!

39

Inside PnetCDF Data Mode

! Inside ncmpi_put_vara_all (once per variable)

– Each process performs data conversion into internal buffer

– Uses MPI_File_set_view to define file region

• Contiguous region for each process in FLASH case

– MPI_File_write_all collectively writes data

! At ncmpi_close

– MPI_File_close ensures data is written to storage

! MPI-IO performs optimizations

– Two-phase possibly applied when writing variables

! MPI-IO makes PFS calls

– PFS client code communicates with servers and stores data

40

PnetCDF Wrap-Up

! PnetCDF gives us

– Simple, portable, self-describing container for data

– Collective I/O

– Data structures closely mapping to the variables described

! If PnetCDF meets application needs, it is likely to give good performance

– Type conversion to portable format does add overhead

41

HDF5 Interface and File Format

42

HDF5

! Hierarchical Data Format, from the HDF Group (formerly of NCSA)

! Data Model:

– Hierarchical data organization in single file

– Typed, multidimensional array storage

– Attributes on dataset, data

! Features:

– C, C++, and Fortran interfaces

– Portable data format

– Optional compression (not in parallel I/O mode)

– Data reordering (chunking)

– Noncontiguous I/O (memory and file) with hyperslabs

43

HDF5 Files

! HDF5 files consist of groups,
datasets, and attributes

– Groups are like directories,
holding other groups and
datasets

– Datasets hold an array of
typed data

• A datatype describes the type (not an MPI datatype)

• A dataspace gives the dimensions of the array

– Attributes are small datasets associated with the file, a group, or another
dataset

• Also have a datatype and dataspace

• May only be accessed as a unit

Dataset “temp”

HDF5 File “chkpt007.h5”

Group “/”

Group “viz”
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 20)

attributes = …

10 (data)

20

44

HDF5 Data Chunking

! Apps often read subsets of arrays (subarrays)

! Performance of subarray access depends in part on how data is laid out

in the file

– e.g. column vs. row major

! Apps also sometimes store sparse data sets

! Chunking describes a reordering of array data

– Subarray placement in file determined lazily

– Can reduce worst-case performance for subarray access

– Can lead to efficient storage of sparse data

! Dynamic placement of chunks in file requires coordination

– Coordination imposes overhead and can impact performance

45

Simplified Hyperslab Example

/* define dataspace of entire region */
dims[0] = 9; dims[1] = 4;
filespace = H5Screate_simple(NR_DIMS,

dims, NULL);

/* create dataset from dspace */
fileset = H5Dcreate(file_id, “subtile”, H5T_NATIVE_INT,

filespace, H5P_DEFAULT);

/* define region of interest */
count[0] = 2; count[1] = 3;
offset[0] = 2; offset[1] = 3;

/* define hyperslab: modified fileset passed to H5Dwrite */
H5Sselect_hyperslab(fileset, H5S_SELECT_SET,

offset, NULL, count, NULL); logically contiguous:

no stride

46

Example: FLASH with HDF5

! FLASH AMR structures do not map directly to HDF5 datasets

! Must create mapping of the in-memory FLASH data structures into a

representation in HDF5 datasets

! Chose to

– Place all checkpoint data in a single file

– Impose a linear ordering on the AMR blocks

• Use 1D arrays of 3D blocks (so 4D overall)

– Store each FLASH variable in its own HDF5 dataset

• Skip ghost cells

– Record attributes describing run time, total blocks, etc.

Note: We will just show code storing an attribute and collectively writing a

variable.

47

Noncontiguous I/O with Hyperslabs (1 of 2)

hsize_t dimens_4d[4];

/* Step 1: set up dataspace */

dimens_4d[0] = dim_tot_blks;

dimens_4d[1] = nzb; dimens_4d[2] = nyb; dimens_4d[3] =
nxb;

dspace = H5Screate_simple(4, dimens_4d, NULL);

dset = H5Dcreate(file_id, variable_name,
H5T_NATIVE_DOUBLE, dspace, H5P_DEFAULT);

Remember:

“S” is for dataspace,

“T” is for datatype,

“D” is for dataset!

48

Noncontiguous I/O with Hyperslabs (2 of 2)

hsize_t count_4d[4];

hsize_t start_4d[4] = {0, 0, 0, 0},
 stride_4d[4] = {1, 1, 1, 1};

/* Step 2: setup hyperslab for dataset in file */

start_4d[0] = global_offset; /* different for each
process */

count_4d[0] = local_blocks;

count_4d[1] = nzb; count_4d[2] = nyb; count_4d[3] = nxb;

status = H5Sselect_hyperslab(dspace,
 H5S_SELECT_SET,
 start_4d,
 stride_4d,
 count_4d,
 NULL);

dataspace from

last slide

49

Collectively Writing a Variable

/* Step 1: specify collective I/O */

dxfer_template = H5Pcreate(H5P_DATASET_XFER);

ierr = H5Pset_dxpl_mpio(dxfer_template,
H5FD_MPIO_COLLECTIVE);

/* Step 2: perform collective write */

status = H5Dwrite(dataset,
 H5T_NATIVE_DOUBLE,
 memspace,
 dspace,
 dxfer_template,
 unknowns);

“P” is for property list;

tuning parameters

dataspace

describing memory,

 could also use a

hyperslab

dataspace

describing region in

file,

with hyperslab
Remember:

“S” is for dataspace,

“T” is for datatype,

“D” is for dataset!

50

Inside HDF5

! MPI_File_open used to open file
! Because there is no “define” mode, file layout is determined at write time
! In H5Dwrite:

– Processes communicate to determine file layout
• Process 0 performs metadata updates

– Call MPI_File_set_view
– Call MPI_File_write_all to collectively write

• Only if this was turned on (more later)
! Memory hyperslab could have been used to define noncontiguous region

in memory
! In FLASH application, data is kept in native format and converted at read

time (defers overhead)
– Could store in some other format if desired

! At the MPI-IO layer:

– Metadata updates at every write are a bit of a bottleneck

• MPI-IO from process 0 introduces some skew

51

I/O Best Practices

52

How do I choose an API?

! Your programming model will limit choices

– Domain might too

– e.g. Climate community has substantial existing netCDF data and

tools to manipulate that data

! Find something that matches your data model

! Avoid APIs with lots of features you won't use

– Potential for overhead costing performance is high

! Maybe the right API isn't available?

– Get I/O people interested, consider designing a new library

53

Summary of API Capabilities

YesHierarchical File

YesYesSelf-Describing

YesChunking

YesYesAttributes

YesYesYesColl. I/O

Yes

Yes

Yes

HDF5

Yes

Yes

Yes

PnetCDF

Yes

Yes

Yes

MPI-IO

YesNoncontig. Memory

Sort-ofNoncontig. File

Portable Format

POSIX

54

Tuning Application I/O (1 of 2)

! Have realistic goals:

– What is peak I/O rate?

– What other testing has been done?

! Describe as much as possible to the I/O system:

– Open with appropriate mode

– Use collective calls when available

– Describe data movement with fewest possible operations

! Match file organization to process partitioning if possible

– Order dimensions so relatively large blocks are contiguous with

respect to data decomposition

55

Tuning Application I/O (2 of 2)

! Know what you can control:

– What I/O components are in use?

– What hints are accepted?

! Consider system architecture as a whole:

– Is storage network faster than communication network?

– Do some nodes have better storage access than others?

56

Do’s and Don’ts

! PFSs are not optimized for metadata, instead for moving data
– Don’t use ‘ls –l’ or ‘du’ on millions of files

• Certainly not to check application progress!
– Use your own subdirectory to avoid contention with others

! Keep file creates, opens, and closes to a minimum
– Open once, close once
– Use shared files or at least a subset of tasks

! Aggregate writes – PFSs are not databases, they need large transfers (at
least 64K)
– Contiguous data patterns utilize prefetching and write-behind far better

than noncontiguous patterns
– Collective I/O can aggregate for you, transform accesses into contiguous

ones

! Avoid overlapped write regions if file systems rely on locks
– Attempt to use block-aligned data

! Check error codes!

57

Controlling I/O Stack Behavior: Hints

! Most systems accept hints through one mechanism or another

– Parameters to file “open” calls

– Proprietary POSIX ioctl calls

– MPI_Info

– HDF5 transfer templates

! Allow the programmer to:

– Explain more about the I/O pattern

– Specify particular optimizations

– Impose resource limitations

! Generally pass information that is used only during a particular set of
accesses (between open and close, for example)

58

MPI-IO Hints

! MPI-IO hints may be passed via:

– MPI_File_open

– MPI_File_set_info

– MPI_File_set_view

! Hints are optional - implementations are guaranteed to ignore ones they

do not understand

– Different implementations, even different underlying file systems,

support different hints

! MPI_File_get_info used to get list of hints

59

MPI-IO Hints: Collective I/O

! cb_buffer_size - Controls the size (in bytes) of the intermediate

buffer used in two-phase collective I/O

! cb_nodes - Controls the maximum number of aggregators to be used

! romio_cb_read - Controls when collective buffering is applied to

collective read operations

! romio_cb_write - Controls when collective buffering is applied to

collective write operations

! cb_config_list - Provides explicit control over aggregators (see

ROMIO User's Guide)

60

MPI-IO Hints: FS-Specific

! striping_factor - Controls the number of I/O devices to stripe

across

! striping_unit - Controls the amount of data placed on one device

before moving to next device (in bytes)

! start_iodevice - Determines what I/O device data will first be written

to

! direct_read - Controls direct I/O for reads

! direct_write - Controls direct I/O for writes

61

Using MPI_Info

! Example: setting data sieving buffer to be a whole “frame”

char info_value[16];

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

snprintf(info_value, 15, "%d", 3*1024 * 2*768 * 3);

MPI_Info_set(info, "ind_rd_buffer_size",
info_value);

MPI_File_open(comm, filename, MPI_MODE_RDONLY, info,
&fh);

MPI_Info_free(&info);

62

Hints and PnetCDF

! Uses MPI_Info, so almost identical

! For example, reducing I/O to a smaller number of processors

(aggregators):

MPI_Info info;

MPI_File fh;

MPI_Info_create(&info);

MPI_Info_set(info, ”cb_nodes”, “16”);

ncmpi_open(comm, filename, NC_NOWRITE, info,
&ncfile);

MPI_Info_free(&info);

Surprising Results and Fixing Them

! Recent testing on Jaguar (XT3)

showed terrible performance

with PnetCDF (bottom of graph)!

! Turned out to be an interaction

between a bug in the MPI-IO

implementation and a quirk of

the file system

! Using a hint allowed

programmer to work around the

MPI-IO bug, avoiding the FS

quirk and getting performance

back

! Didn’t have to implement

anything new

Results compliments of W.-K. Liao, NWU

64

Helping I/O Experts Help You

! Scenarios

– Explaining logically what you are doing

– Separate the conceptual structures from their representation on

storage

– Common vs. infrequent patterns

– Possible consistency management simplifications

! Application I/O kernels

– Simple codes exhibiting similar I/O behavior

– Easier for I/O group to work with

– Useful for acceptance testing!

– Needs to be pretty close to the real thing...

65

Concluding Remarks

66

Wrapping Up

! Computer scientists have developed solutions to many common

computational science I/O problems

– In most cases, these solutions will lead to high efficiency with

minimal effort

– Knowing how these components work will lead you to better

performance

! Building this software is not your job, but using it appropriately is!

– Choosing appropriate APIs

– Using those APIs well

– Understanding what you’re asking the system to do

! I/O systems will continue to get more complicated, but hopefully easier to

use at the same time!

– Remote access to data

– More layers to I/O stack

– Domain-specific application interfaces

67

Printed References

! John May, Parallel I/O for High Performance Computing, Morgan

Kaufmann, October 9, 2000.

– Good coverage of basic concepts, some MPI-IO, HDF5, and serial

netCDF

! William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2: Advanced

Features of the Message Passing Interface, MIT Press, November 26,

1999.

– In-depth coverage of MPI-IO API, including a very detailed

description of the MPI-IO consistency semantics

68

On-Line References (1 of 3)

! netCDF

http://www.unidata.ucar.edu/packages/netcdf/

! PnetCDF

http://www.mcs.anl.gov/parallel-netcdf/

! ROMIO MPI-IO

http://www.mcs.anl.gov/romio/

! HDF5 and HDF5 Tutorial

http://www.hdfgroup.org/

http://hdf.ncsa.uiuc.edu/HDF5/

http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html

69

On-Line References (2 of 3)

! PVFS

http://www.pvfs.org/

! Lustre

http://www.lustre.org/

! GPFS

http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/

70

On-Line References (3 of 3)

! LLNL I/O tests (IOR, fdtree, mdtest)

http://www.llnl.gov/icc/lc/siop/downloads/download.html

! Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-io, mpi-md-test)

http://www.mcs.anl.gov/pio-benchmark/

! FLASH I/O benchmark

http://www.mcs.anl.gov/pio-benchmark/

http://flash.uchicago.edu/~jbgallag/io_bench/ (original version)

! b_eff_io test

http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/

! mpiBLAST

http://www.mpiblast.org

71

Acknowledgements

This work is supported in part by U.S. Department of Energy Grant DE-

FC02-01ER25506, by National Science Foundation Grants EIA-9986052,

CCR-0204429, and CCR-0311542, and by the U.S. Department of Energy

under Contract W-31-109-ENG-38.

This work was performed under the auspices of the U.S. Department of

Energy by University of California, Lawrence Livermore National Laboratory

under Contract W-7405-Eng-48.

