
Carnegie Mellon

This work was supported by
DARPA, NSF-NGS/ITR,ACR,CPA, Intel, Mercury, National Instruments

Markus Püschel

With:
Srinivas Chellappa
Frédéric de Mesmay
Franz Franchetti
Daniel McFarlin
Yevgen Voronenko

Electrical and
Computer Engineering
Carnegie Mellon University

… and the Spiral team (only part shown)

Spiral
Automating Library Development

Carnegie Mellon

Positions and Thoughts
 Autotuning definition

 Search over space of alternatives and

 Parameter-based tuning are very important

 but fails to address some key problems; we need to think about

 Raising the level of abstraction: Enables
 Use of domain knowledge

 Difficult optimizations: parallelization, vectorization, etc.

 Faster porting to new platforms and platform paradigms

 Possibly automatic software development

 We need coarse platform abstractions

 We need more interdisciplinary collaborations

 Metrics
 Time for code development, porting to new platforms

 Performance

Carnegie Mellon

DFT Plot: Analysis

Memory hierarchy: 5x

Vector instructions: 3x

Multiple threads: 2x

High performance library development has become a nightmare

Carnegie Mellon

Spiral
 Research Goal: “Teach” computers to write fast libraries

 Complete automation of implementation and optimization
 Including vectorization, parallelization

 Functionality:
 Linear transforms (discrete Fourier transform, filters, wavelets)
 BLAS
 SAR imaging
 En/decoding (Viterbi, Ebcot in JPEG2000)
 … more

 Platforms:
 Desktop (vector, SMP), FPGAs, GPUs, distributed, hybrid

 Collaboration with Intel (Kuck, Tang, Sabanin)
 Parts of MKL/IPP generated with Spiral
 IPP 6.0: ippg domain for Spiral generated code

Carnegie Mellon

Vision Behind Spiral

Numerical problem

Computing platform

algorithm selection

compilation

h
u

m
an

 e
ff

o
rt

au
to

m
at

e
d

implementation
C program

au
to

m
at

e
dalgorithm selection

compilation

implementation

Numerical problem

Computing platform

Current Future

 C code a singularity: Compiler has
no access to high level information

 Challenge: conquer the high abstraction
level for complete automation

Carnegie Mellon

Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms

 Conclusions and thoughts

Carnegie Mellon

Linear Transforms

 Mathematically: Matrix-vector multiplication

 Example: Discrete Fourier transform (DFT)

Transform
= matrix

Input vectorOutput vector

Carnegie Mellon

Transform Algorithms: Example 4-point FFT
Cooley/Tukey fast Fourier transform (FFT):

 Algorithms are divide-and-conquer: Breakdown rules
 Mathematical, declarative representation: SPL (signal processing language)
 SPL describes the structure of the dataflow

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

j j

j j j

Fourier transform

Identity Permutation

Diagonal matrix (twiddles)

Kronecker product

Carnegie Mellon

Breakdown Rules (>200 for >50 Transforms)

Combining these rules yields many algorithms for every given transform

Carnegie Mellon

SPL to Sequential Code

Example: tensor product

Correct code: easy fast code: very difficult

Carnegie Mellon

Program Generation in Spiral (Sketched)

Transform
user specified

C Code:

Fast algorithm
in SPL
many choices

∑-SPL:
[PLDI 05]

Iteration of this process
to search for the fastest

But that’s not all …

parallelization
vectorization

loop
optimizations

constant folding
scheduling
……

Optimization at all
abstraction levels

Carnegie Mellon

SPL to Shared Memory Code: Basic Idea [SC 06]

 Governing construct: tensor product

p-way embarrassingly parallel, load-balanced

A

A
A

A

x y

Processor 0

Processor 1

Processor 2

Processor 3

 Problematic construct: permutations produce false sharing

Task: Rewrite formulas to
extract tensor product + keep contiguous blocks

x y

Carnegie Mellon

Parallelization by Rewriting

Load-balanced
No false sharing

coarse
platform

model

Carnegie Mellon

Same Approach for Other Parallel Paradigms

VectorizationMessage Passing

Cg/OpenGL for GPUs: Verilog for FPGAs:

MPI

Carnegie Mellon

Example Results

CPU + GPU

CPU

CPU+FPGA

CELL GPU

Carnegie Mellon

Summary: Complete Automation for Transforms

 Platform: Off-the-shelf desktop

 Often: generated code faster than competition (if exists)

• Memory hierarchy optimization
Rewriting and search for algorithm selection
Rewriting for loop optimizations

• Vectorization
Rewriting

• Parallelization
Rewriting

• Derivation of library structure
Rewriting
Other methods

fixed input size code

general input size library

Carnegie Mellon

Generated Libraries

• 2-way vectorized, 2-threaded
• Most are faster than hand-written libs
• Recursion steps: 4–17
• Code size: 8–120 kloc or 0.5–5 MB
• Generation time: 1–3 hours

DFT

RDFT DHT

DCT2 DCT3 DCT4

Filter Wavelet

Carnegie Mellon

Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms
 Operator language

 BLAS, Viterbi decoding, SAR imaging, Ebcot encoding

 Conclusions and thoughts

Carnegie Mellon

Going Beyond Transforms

 Transform =
linear operator with one vector input and one vector output

 Key ideas:
 Generalize to (possibly nonlinear) operators with several inputs and

several outputs

 Generalize SPL (including tensor product) to OL (operator language)

 Generalize rewriting systems for parallelizations

linear

Carnegie Mellon

Operator Language

Carnegie Mellon

Example: Matrix Multiplication (MMM)

Breakdown rules = algorithm knowledge:
capture various forms of blocking

Carnegie Mellon

Parallelization through rewriting

Load-balanced
No false sharing

Carnegie Mellon

Speed-up (m x k) times (k x n)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

'ratio32' u 1:2:3

 0 5 10 15 20 25 30 35

 0

 5

 10

 15

 20

 25

 30

 35

 Comparison to GotoBLAS similar

1.0–1.5x

1.5–2.0x

MMM Speedup over MKL, n = 32, Core 2 Duo

k

m

example:

Carnegie Mellon

Viterbi Decoding in OL

 Operator for Viterbi decoder

 Breakdown rules

http://www.ece.unb.ca/tervo/ee4253/convolution3.htm

Carnegie Mellon

Results

Karn

16-way

8-way

4-way

scalar

Spiral

16-way

8-way

4-way

scalar

Karn’s implementation: hand-written assembly for 4 Viterbi codes

Carnegie Mellon

EBCOT Coding in OL

Carnegie Mellon

Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms

 Conclusions and thoughts

Carnegie Mellon

Raising the Abstraction Level
 Formally describe and structure algorithms/applications

eternally valid

 In Spiral
 Domain-specific, declarative, mathematical language OL

 Difficult optimizations/transformations by rewriting

 What it enables

 Vectorization, parallelization using
domain knowledge

 Efficient retargeting to new platforms and
new platform paradigms

 Complete automation in some cases

 Other examples
 Libraries

 Identification and definition of BLAS

 Parameter tuning
 Indispensable tool but cannot achieve the above

Carnegie Mellon

Interdisciplinary Research Needed

Programming languages
Program generation Symbolic Computation

Rewriting

Compilers

Software
Scientific Computing

Algorithms
Mathematics

Automating
High-Performance

Parallel Library
Development

We Need to Work Together

