

Spiral Automating Library Development

Markus Püschel

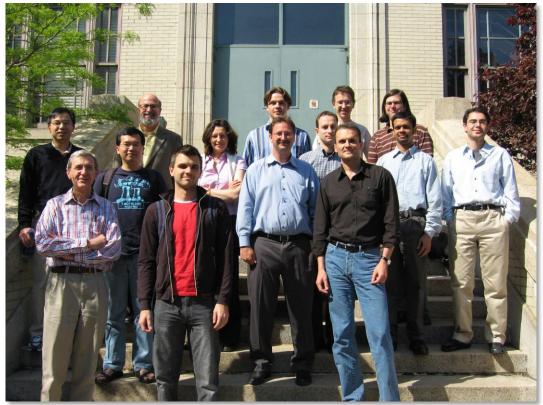
With:

Srinivas Chellappa Frédéric de Mesmay Franz Franchetti Daniel McFarlin Yevgen Voronenko

Electrical and Computer Engineering Carnegie Mellon University

This work was supported by DARPA NSE-NGS/ITR ACR CP/

... and the Spiral team (only part shown)



DARPA, NSF-NGS/ITR, ACR, CPA, Intel, Mercury, National Instruments

Positions and Thoughts

Autotuning definition

- Search over space of alternatives and
- Parameter-based tuning are very important
- but fails to address some key problems; we need to think about

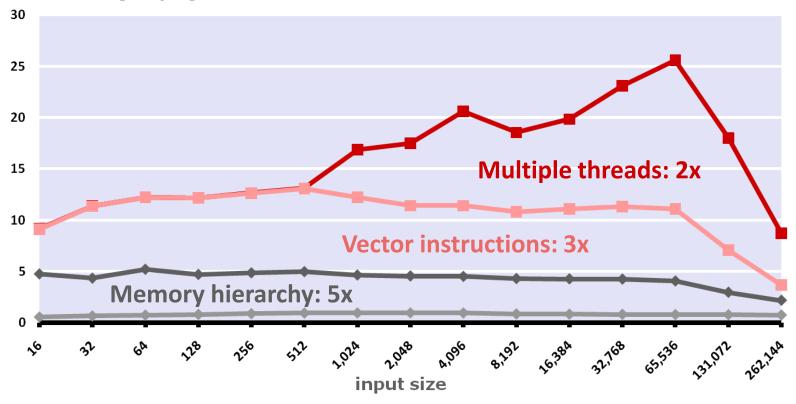
Raising the level of abstraction: Enables

- Use of domain knowledge
- Difficult optimizations: parallelization, vectorization, etc.
- Faster porting to new platforms and platform paradigms
- Possibly automatic software development
- We need coarse platform abstractions
- We need more interdisciplinary collaborations
- Metrics
 - Time for code development, porting to new platforms
 - Performance

DFT Plot: Analysis

Discrete Fourier Transform (DFT) on 2xCore2Duo 3 GHz

Performance [Gflop/s]



High performance library development has become a nightmare

Spiral

- Complete automation of implementation and optimization
- Including vectorization, parallelization

Functionality:

- Linear transforms (discrete Fourier transform, filters, wavelets)
- BLAS
- SAR imaging
- En/decoding (Viterbi, Ebcot in JPEG2000)
- … more

Platforms:

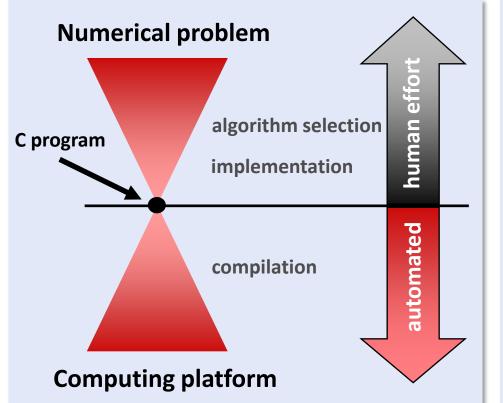
Desktop (vector, SMP), FPGAs, GPUs, distributed, hybrid

Collaboration with Intel (Kuck, Tang, Sabanin)

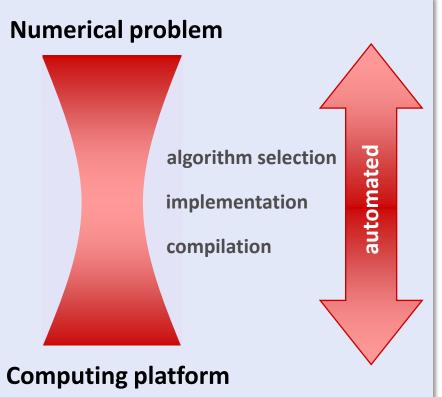
- Parts of MKL/IPP generated with Spiral
- IPP 6.0: ippg domain for Spiral generated code

Vision Behind Spiral

Current



Future



- C code a singularity: Compiler has no access to high level information
- Challenge: conquer the high abstraction level for complete automation

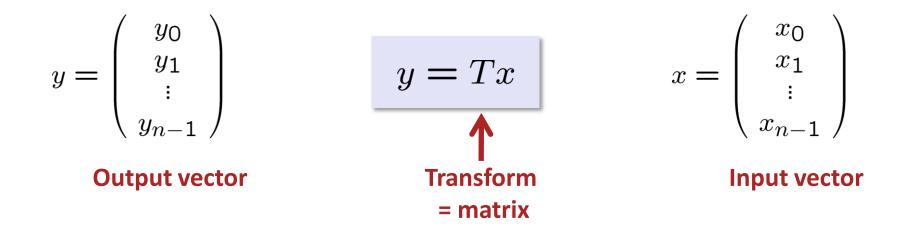
Organization

Spiral's framework: Example transforms

- Complete automation achieved
- Beyond transforms
- Conclusions and thoughts

Linear Transforms

Mathematically: Matrix-vector multiplication



Example: Discrete Fourier transform (DFT)

$$\mathbf{DFT}_n = [e^{-2k\ell\pi i/n}]_{0 \le k, \ell < n}$$

Transform Algorithms: Example 4-point FFT

Cooley/Tukey fast Fourier transform (FFT):

Fourier transform

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} = \begin{bmatrix} 1 & \cdot & 1 & \cdot \\ \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & 1 \end{bmatrix} \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & 1 \end{bmatrix} \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & 1 \\ \cdot & 1 & \cdot & -1 \end{bmatrix} \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & 1 \end{bmatrix}$$

Diagonal matrix (twiddles)

$$DFT_4 \rightarrow (DFT_2 \otimes I_2) \top_2^4 (I_2 \otimes DFT_2) \perp_2^4$$
Kronecker product Identity Permutation

- Algorithms are divide-and-conquer: Breakdown rules
- Mathematical, declarative representation: SPL (signal processing language)
- SPL describes the structure of the dataflow

Breakdown Rules (>200 for >50 Transforms)

$$\begin{split} & \mathrm{DFT}_n \to P_{k/2,2m}^{\mathsf{T}}\left(\mathrm{DFT}_{2m} \oplus \left(I_{k/2-1} \otimes_i C_{2m} \mathrm{rDFT}_{2m}(i/k)\right)\right) \left(\mathrm{RDFT}_k' \otimes I_m\right), \quad k \text{ even}, \\ & \left| \begin{matrix} \mathrm{RDFT}_n \\ \mathrm{DHT}_n \\ \mathrm{DHT}_n' \\ \mathrm{DHT}_n' \end{matrix} \to \left(P_{k/2,m}^{\mathsf{T}} \otimes I_2\right) \left(\begin{matrix} \mathrm{RDFT}_{2m} \\ \mathrm{RDFT}_m \\ \mathrm{DHT}_{2m}' \\ \mathrm{DHT}_{2m}' \\ \mathrm{DHT}_{2m}' \end{matrix} \oplus \left(I_{k/2-1} \otimes_i D_2m \begin{pmatrix} \mathrm{rDFT}_{2m}(i/k) \\ \mathrm{rDHT}_{2m}(i/k) \\ \mathrm{rDHT}_{2m}(i/k) \\ \mathrm{rDHT}_{2m}(i/k) \end{matrix} \right) \right) \left(\begin{matrix} \mathrm{RDFT}_k' \\ \mathrm{RDFT}_n' \\ \mathrm{rDHT}_{2m}(i/k) \\ \mathrm{rDHT}_{2m}(i/k) \\ \mathrm{rDHT}_{2m}(i/k) \end{matrix} \right) \right) \left(\begin{matrix} \mathrm{RDFT}_k' \\ \mathrm{rDHT}_{2m}(i/k) \\ \mathrm{rDHT}_{2m}(i/k) \\ \mathrm{rDHT}_{2m}(i/k) \end{matrix} \right) \left(\begin{matrix} \mathrm{RDFT}_k \\ \mathrm{rDHT}_{2m}(i/k) \\ \mathrm{rDHT}_{2k}(u) \end{matrix} \otimes I_m \right), \\ & \mathrm{RDFT-3_n} \to (Q_{k/2,m}^{\mathsf{T}} \otimes I_2) \left(I_k \otimes_i \mathrm{rDFT}_{2m}(i+u)/k\right) \\ \mathrm{rDHT}_{2m}(i+u)/k) \\ \mathrm{rDHT}_{2k}(u) \end{matrix} \otimes I_m \right), \\ & \mathrm{RDFT-3_n} \to (Q_{k/2,m}^{\mathsf{T}} \otimes I_2) \left(I_k \otimes_i \mathrm{rDFT}_{2m}(i+u)/k\right) \\ & \mathrm{rDHT}_{2m}(i+u)/k) \\ \mathrm{DCT-3_n} \to \mathrm{OCT-2_n}^{\mathsf{T}}, \\ & \mathrm{DCT-4_n} \to Q_{k/2,2m}^{\mathsf{T}} \left(\mathrm{DCT-2_{2m}} K_2^{2m} \oplus \left(I_{k/2-1} \otimes N_{2m} \mathrm{RDFT-3_{2m}^{\mathsf{T}}}\right) \right) B_n(L_{k/2}^{n/2} \otimes I_2) (I_m \otimes \mathrm{RDFT}_k) Q_{m/2,k}, \\ & \mathrm{DFT_n} \to \mathrm{ODT-2_n^{\mathsf{T}}, \\ & \mathrm{DCT-4_n} \to Q_k^{\mathsf{T}}_{22m} \left(\mathrm{I}_{k/2} \otimes N_{2m} \mathrm{RDFT-3_m^{\mathsf{T}}}\right) B_n' \left(L_{k/2}^{n/2} \otimes I_2\right) (I_m \otimes \mathrm{RDFT-3_k}) Q_{m/2,k}, \\ & \mathrm{DFT_n} \to \mathrm{ODFT}_k \otimes \mathrm{DFT}_m \right) D_n (\mathrm{I}_1 \oplus \mathrm{DFT_{p-1}}) R_p, \quad p \text{ prime} \\ & \mathrm{DCT-3_n} \to (\mathrm{Im} \oplus \mathrm{Jm}) \mathrm{L}_m^n (\mathrm{DCT-3_m}(1/4) \oplus \mathrm{DCT-3_m}(3/4)) \\ & \cdot (\mathrm{F}_2 \otimes \mathrm{Im}) \left[\frac{\mathrm{Im} \quad 0 \oplus - \mathrm{Jm-1}}{\sqrt{2}(\mathrm{I}_1 \oplus 2\mathrm{Im})} \right], \quad n = 2m \\ & \mathrm{DCT-4_n} \to S_n \mathrm{DCT-2_n} \operatorname{diag}_{0 \leq k < n} (1/(2 \cos((2k+1)\pi/4n))) \\ & \mathrm{IMDCT}_{2m} \to (\mathrm{Jm} \oplus \mathrm{Im} \oplus \mathrm{Jm}) \left(\left(\left[\frac{1}{-1} \right] \otimes \mathrm{Im} \right) \oplus \left(\left[\frac{-1}{-1} \right] \otimes \mathrm{Im} \right) \right) \mathrm{J}_{2m} \mathrm{DCT-4_{2m}} \\ & \mathrm{WHT}_2 \to \prod_{i=1}^{i=1} (\mathrm{I}_{2k_1+\cdots+k_{i-1}} \otimes \mathrm{WHT}_{2k_i} \otimes \mathrm{I}_{2k_{i+1}+\cdots+k_i}), \quad k = k_1 + \cdots + k_t \\ & \mathrm{DFT}_2 \to \mathrm{F}_2 \\ & \mathrm{DCT-2_2} \to \operatorname{diag}(1, 1/\sqrt{2}) \mathrm{F}_2 \\ & \mathrm{DCT-4_2} \to \mathrm{J}_2 \mathrm{R}_{13\pi/8} \end{aligned}$$

Combining these rules yields many algorithms for every given transform

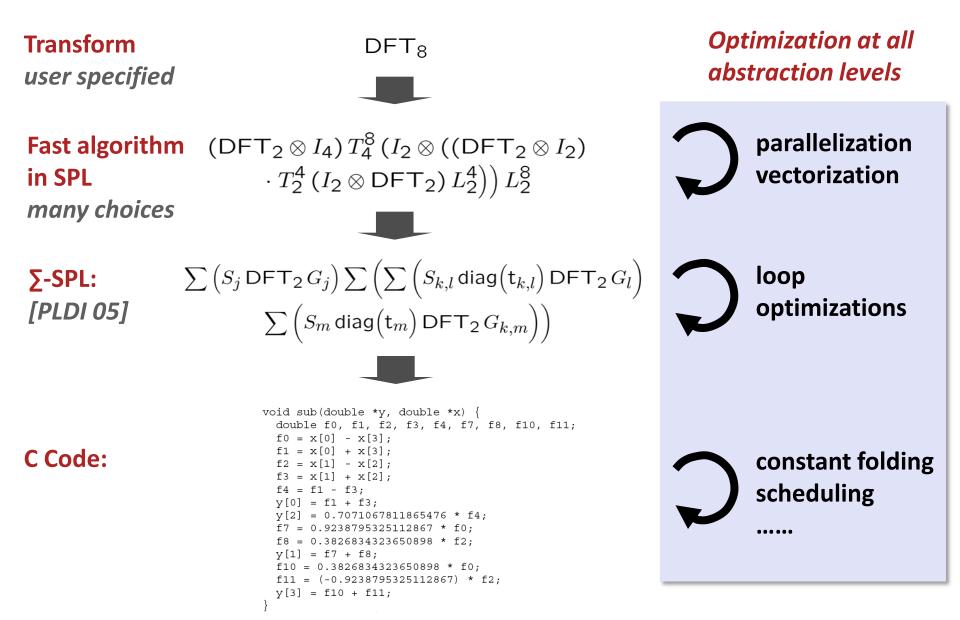
SPL to Sequential Code

SPL construct	code	
$y = (A_n B_n) x$	t[0:1:n-1] = B(x[0:1:n-1]); y[0:1:n-1] = A(t[0:1:n-1];)	
$y = (I_m \otimes A_n)x$	<pre>for (i=0;i<m;i++) y[i*n:1:i*n+n-1]="</td"><td>Example: tensor product</td></m;i++)></pre>	Example: tensor product
$y = (A_m \otimes I_n)x$	<pre>for (i=0;i<m;i++) y[i:n:i+m-1]="</td"><td>$\mathbf{I}_m \otimes A_n = \begin{vmatrix} A_n & & \\ & \ddots & \\ & & & A_n \end{vmatrix}$</td></m;i++)></pre>	$\mathbf{I}_m \otimes A_n = \begin{vmatrix} A_n & & \\ & \ddots & \\ & & & A_n \end{vmatrix}$
$y = \left(\bigoplus_{i=0}^{m-1} A_n^i \right) x$	<pre>for (i=0;i<m;i++) y[i*n:1:i*n+n-1]="</td"><td></td></m;i++)></pre>	
$y = D_{m,n}x$	<pre>for (i=0;i<m*n;i++) y[i]="Dmn[i]*x[i];</pre"></m*n;i++)></pre>	
$y = L_m^{mn} x$	<pre>for (i=0;i<m;i++) (j="0;j<n;j++)" for="" y[i+m*j]="x[n*i+j];</pre"></m;i++)></pre>	

Correct code: easy fast code: very difficult

Program Generation in Spiral (Sketched)

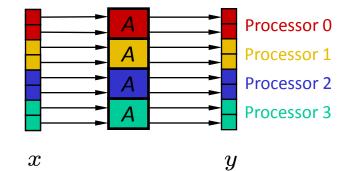
Carnegie Mellon



SPL to Shared Memory Code: Basic Idea [SC 06]

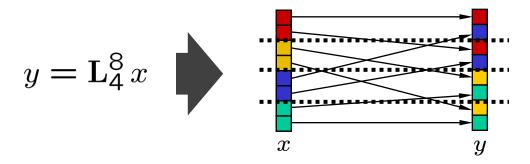
Governing construct: tensor product

$$y = (\mathbf{I}_p \otimes A) x$$



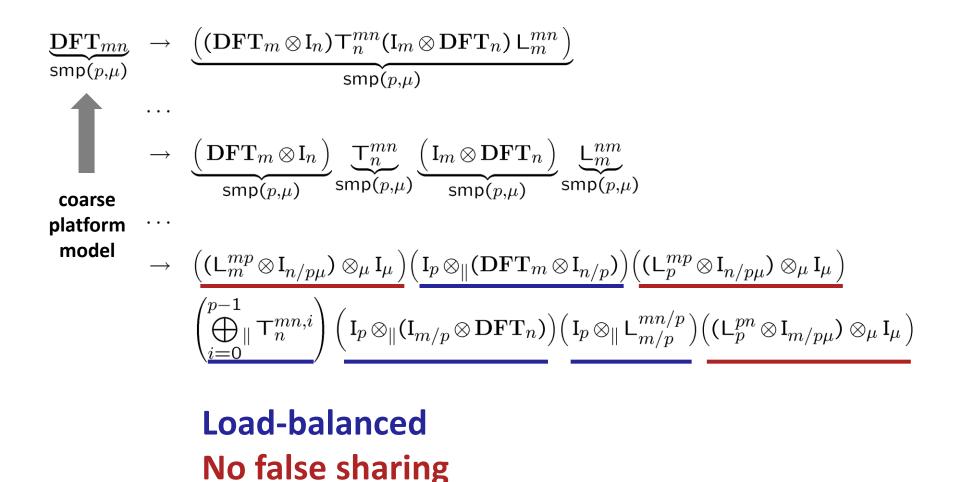
p-way embarrassingly parallel, load-balanced

Problematic construct: permutations produce false sharing



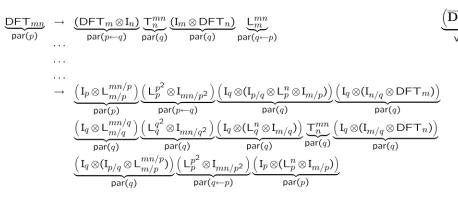
Task: Rewrite formulas to extract tensor product + keep contiguous blocks

Parallelization by Rewriting

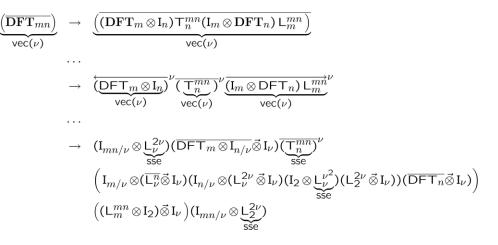


Same Approach for Other Parallel Paradigm

Message Passing



Vectorization



Cg/OpenGL for GPUs:

Verilog for FPGAs:

str

$$\underbrace{\begin{pmatrix} \mathbf{DFT}_{r^k} \\ \mathbf{gpu}(t,c) \end{pmatrix}}_{\mathbf{gpu}(t,c)} \rightarrow \underbrace{\begin{pmatrix} \prod_{i=0}^{k-1} \mathsf{L}_r^{r^k} \left(\mathbf{I}_{r^{k-1}} \otimes \mathbf{DFT}_r \right) \left(\mathsf{L}_{r^{k-i-1}}^{r^k} (\mathbf{I}_{r^i} \otimes \mathsf{T}_{r^{k-i-1}}^{r^{k-i}}) \underbrace{\mathsf{L}_{r^{i+1}}^{r^k}}_{\mathsf{vec}(c)} \right) \\ \mathbf{gpu}(t,c) \\ \cdots \\ \rightarrow \underbrace{\begin{pmatrix} \prod_{i=0}^{k-1} (\mathsf{L}_r^{r^n/2} \otimes \mathbf{I}_2) \left(\mathbf{I}_{r^{n-1}/2} \otimes \times \underbrace{(\mathbf{DFT}_r \otimes \mathbf{I}_2) \mathsf{L}_r^{2r}}_{\mathsf{shd}(t,c)} \right) \mathsf{T}_i \\ (\mathsf{L}_r^{r^n/2} \otimes \mathbf{I}_2) (\mathbf{I}_{r^{n-1}/2} \otimes \times \underbrace{\mathsf{L}_r^{2r}}_{\mathsf{shd}(t,c)}) (\mathsf{R}_r^{r^{n-1}} \otimes \mathbf{I}_r) \\ \end{aligned}}_{\mathbf{hod}(t,c)}$$

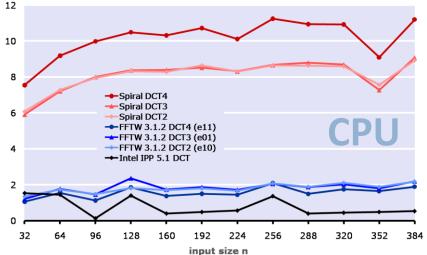
$$\underbrace{\begin{pmatrix} \mathbf{DFT}_{rk} \\ \mathsf{stream}(r^s) \end{pmatrix}}_{\mathsf{stream}(r^s)} \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \mathsf{L}_r^{r^k} \left(\mathbf{I}_{r^{k-1}} \otimes \mathbf{DFT}_r \right) \left(\mathsf{L}_{r^{k-i-1}}^{r^k} (\mathbf{I}_{r^i} \otimes \mathsf{T}_{r^{k-i-1}}^{r^{k-i}}) \mathsf{L}_{r^{i+1}}^{r^k} \right) \right] \mathsf{R}_r^{r^k}}_{\mathsf{stream}(r^s)} \\ \cdots \\ \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \underbrace{\mathsf{L}_r^{r^k}}_{\mathsf{stream}(r^s)} \underbrace{\left(\mathbf{I}_{r^{k-1}} \otimes \mathbf{DFT}_r \right)}_{\mathsf{stream}(r^s)} \underbrace{\left(\mathsf{L}_{r^{k-i-1}}^{r^k} (\mathbf{I}_{r^i} \otimes \mathsf{T}_{r^{k-i-1}}^{r^{k-i}}) \mathsf{L}_{r^{i+1}}^{r^k} \right)}_{\mathsf{stream}(r^s)} \right] \underbrace{\mathsf{R}_r^{r^k}}_{\mathsf{stream}(r^s)} \\ \cdots \\ \rightarrow \underbrace{\left[\prod_{i=0}^{k-1} \underbrace{\mathsf{L}_r^{r^k}}_{\mathsf{stream}(r^s)} \left(\mathbf{I}_{r^{k-s-1}} \otimes s(\mathbf{I}_{r^{s-1}} \otimes \mathbf{DFT}_r) \right) \underbrace{\mathsf{T}_i'}_{\mathsf{stream}(r^s)} \right] \underbrace{\mathsf{R}_r^{r^k}}_{\mathsf{stream}(r^s)} \\ \underbrace{\mathsf{R}_r^{r^k}}_{\mathsf{stream}(r^s)} \underbrace{\mathsf{R}_r^{r^k}}_{\mathsf{stream}(r^s)} \left(\mathbf{I}_{r^{k-s-1}} \otimes s(\mathbf{I}_{r^{s-1}} \otimes \mathbf{DFT}_r) \right) \underbrace{\mathsf{T}_i'}_{\mathsf{stream}(r^s)} \right] \underbrace{\mathsf{R}_r^{r^k}}_{\mathsf{stream}(r^s)} \\ \underbrace{\mathsf{R}_r^{r^k}}_{\mathsf{stream}(r^s)} \underbrace{\mathsf{R}_r^{r^k}}_{\mathsf$$

SPIRA

www.spiral.net

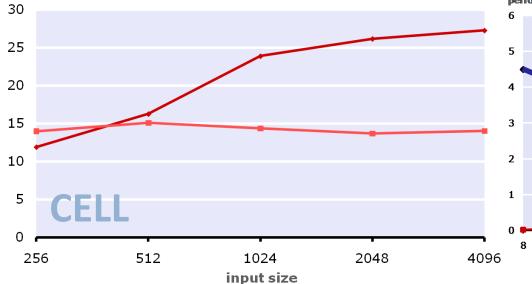
Example Results

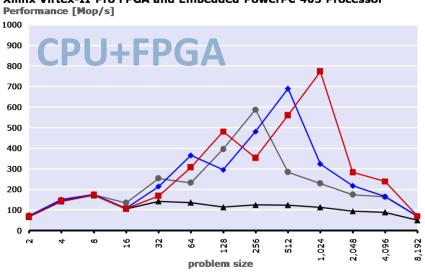
DCT on 2.66 GHz Core2 (single-precision, 4-way SSE)



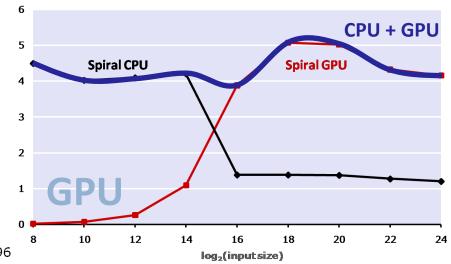
Spiral-generated FFT on 3.2 GHz Cell BE (PlayStation 3)

performance [Gflop/s], single-precision, block-cyclic format, data resident on SPU





WHT (single precision) on 3.6 GHz Pentium 4 with Nvidia 7900 GTX performance [Gflops/s]



DFT (16 bit fixed point): Hardware Accelerated Software on Xilinx Virtex-II Pro FPGA and Embedded PowerPC 405 Processor

Summary: Complete Automation for Transforms

- Platform: Off-the-shelf desktop
- Often: generated code faster than competition (if exists)

Memory hierarchy optimization

Rewriting and search for algorithm selection Rewriting for loop optimizations

Vectorization

Rewriting

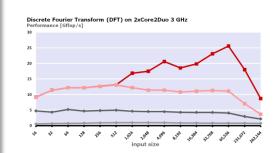
Parallelization

Rewriting

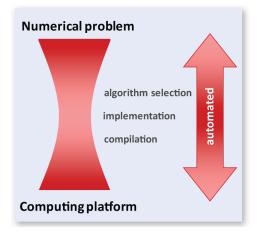
fixed input size code

Derivation of library structure

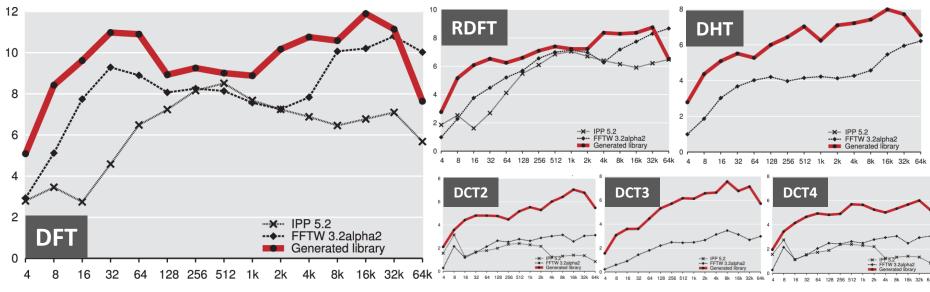
Rewriting Other methods *general input size library*



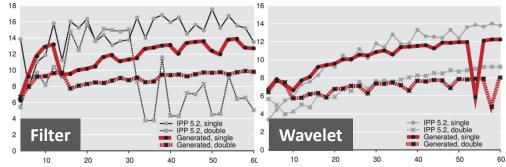
Carnegie Mellon



Generated Libraries



- 2-way vectorized, 2-threaded
- Most are faster than hand-written libs
- Recursion steps: 4–17
- Code size: 8–120 kloc or 0.5–5 MB
- Generation time: 1–3 hours



Organization

- Spiral's framework: Example transforms
 - Complete automation achieved

Beyond transforms

- Operator language
- BLAS, Viterbi decoding, SAR imaging, Ebcot encoding
- Conclusions and thoughts

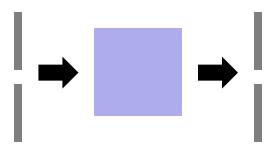
Going Beyond Transforms

Transform =

linear operator with one vector input and one vector output

• Key ideas:

- Generalize to (possibly nonlinear) operators with several inputs and several outputs
- Generalize SPL (including tensor product) to OL (operator language)
- Generalize rewriting systems for parallelizations



Operator Language

name	definition
basic operators	
projection	$\pi_{\mathbf{x}}: \mathbb{C}^m \times \mathbb{C}^n \to \mathbb{C}^m; \ (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}$
linear transform	$M:\mathbb{C}^n ightarrow\mathbb{C}^m;\mathbf{x}\mapsto M\mathbf{x}$
stride	$L_m^{mn}:\mathbb{C}^{mn} o\mathbb{C}^{mn}$; $\mathbf{x}\mapstoL_m^{mn}\mathbf{x}$
vector sum	$\Sigma_n : \mathbb{C}^n \to \mathbb{C}; \mathbf{x} \mapsto \sum_{i=0}^{n-1} x_i$
vector minimum	$\min_n : \mathbb{C}^n \to \mathbb{C}; \ \mathbf{x} \mapsto \min(x_0, \dots, x_{n-1})$
constant vector	$C_{\mathbf{c}}: arnothing o \mathbb{C}^n$; () $\mapsto \mathbf{c}$
operations	
addition	(M+N)(x,y) = M(x,y) + N(x,y)
multiplication	$(M \cdot N)(\mathbf{x}, \mathbf{y}) = M(\mathbf{x}, \mathbf{y}) \cdot N(\mathbf{x}, \mathbf{y})$
direct sum	$(M \oplus N)(\mathbf{x} \oplus \mathbf{u}, \mathbf{y} \oplus \mathbf{v}) = M(\mathbf{x}, \mathbf{y}) \oplus N(\mathbf{u}, \mathbf{v})$
cartesian product	$(M \times N)(\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}) = M(\mathbf{x}, \mathbf{y}) \times N(\mathbf{u}, \mathbf{v})$
composition	$(M \circ N)(\mathrm{x},\mathrm{y}) = M(N(\mathrm{x},\mathrm{y}))$
iterative composition	$\left(\prod_{i=0}^{n-1}M_{i}\right)(\mathbf{x},\mathbf{y})=(M_{0}\circ\cdots\circM_{n-1})(\mathbf{x},\mathbf{y})$
tensor product	$I \otimes M, M \otimes I$

Breakdown rules = algorithm knowledge:

capture various forms of blocking

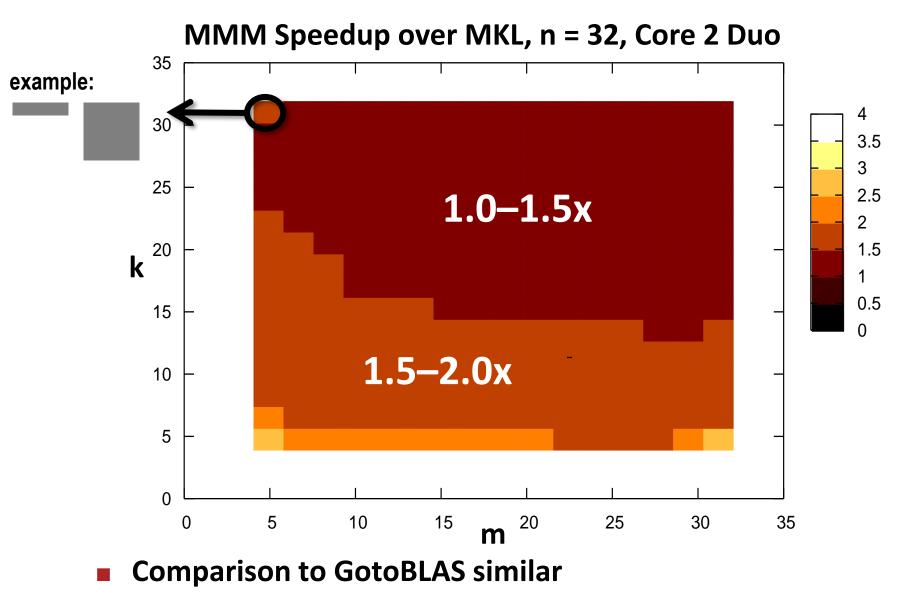
 $\begin{array}{lll} \hline \mbox{breakdown rule} & \mbox{description} \\ \hline \mbox{MMM}_{1,1,1} \rightarrow (\cdot)_1 & \mbox{base case} \\ \mbox{MMM}_{m,n,k} \rightarrow (\otimes)_{m/m_b \times 1} \otimes \mbox{MMM}_{m_b,n,k} & \mbox{horizontal blocking} \\ \hline \mbox{MMM}_{m,n,k} \rightarrow \mbox{MMM}_{m,nb,k} \otimes (\otimes)_{1 \times n/nb} & \mbox{interleaved blocking} \\ \hline \mbox{MMM}_{m,n,k} \rightarrow \mbox{(} (\Sigma_{k/k_b} \circ (\cdot)_{k/k_b}) \otimes \mbox{MMM}_{m,n,k_b}) \circ & \mbox{accumulative blocking} \\ \hline \mbox{(} (L^{mk/k_b}_{k/k_b} \otimes I_{k_b}) \times I_{kn}) & \mbox{MMM}_{m,n,k} \rightarrow \mbox{(} (L^{mn/n_b}_{m} \otimes I_{n_b}) \circ & \mbox{(} ((\otimes)_{1 \times n/n_b} \otimes \mbox{MMM}_{m,n_b,k}) \circ & \mbox{vertical blocking} \\ \hline \mbox{(} (I_{km} \times (L^{kn/n_b}_{n/n_b} \otimes I_{n_b})) & \ \end{tabular}$

Parallelization through rewriting

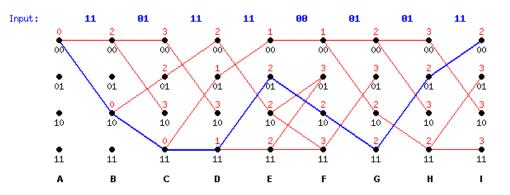
$$\begin{split} \underbrace{\mathsf{MMM}_{m,n,k}}_{\mathsf{smp}(p,\mu)} \\ \rightarrow \underbrace{\left(\mathsf{I}_m \otimes \mathsf{L}_p^n\right) \circ \left(\mathsf{MMM}_{m,n/p,k} \otimes (\otimes)_{1 \times p \to p}\right) \circ \left(\mathsf{I}_{km} \times (\mathsf{I}_k \otimes \mathsf{L}_{n/p}^n)\right)}_{\mathsf{smp}(p,\mu)} \\ \rightarrow \underbrace{\left(\mathsf{I}_m \otimes \mathsf{L}_p^n\right) \circ \left(\mathsf{MMM}_{m,n/p,k} \otimes (\otimes)_{1 \times p \to p}\right) \circ \left(\mathsf{I}_{km} \times (\mathsf{I}_k \otimes \mathsf{L}_{n/p}^n)\right)}_{\mathsf{smp}(p,\mu)} \\ \rightarrow \underbrace{\left(\mathsf{I}_m \otimes \mathsf{L}_p^n\right) \circ \left(\mathsf{MMM}_{m,n/p,k} \otimes (\otimes)_{1 \times p \to p}\right) \circ \left(\mathsf{I}_{km} \times (\mathsf{I}_k \otimes \mathsf{L}_{n/p}^n)\right)}_{\mathsf{smp}(p,\mu)} \circ \underbrace{\left(\mathsf{I}_{km} \times \mathsf{L}_p^n\right) \circ \left(\mathsf{I}_{km} \times (\mathsf{I}_k \otimes \mathsf{L}_{n/p}^n)\right)}_{\mathsf{smp}(p,\mu)} \\ \rightarrow \underbrace{\left(\mathsf{I}_m \otimes \mathsf{L}_p^n\right) \circ \left(\mathsf{MMM}_{m,p,n,k} \otimes (\otimes)_{1 \times p \to p} \otimes_{\parallel} \mathsf{MMM}_{m/p,n,k}\right) \circ \underbrace{\left(\mathsf{I}_{km} \times \mathsf{L}_p^{kn}\right) \circ \left(\mathsf{I}_{km} \times (\mathsf{I}_k \otimes \mathsf{L}_{n/p}^n)\right)}_{\mathsf{smp}(p,\mu)} \\ \rightarrow \underbrace{\left((\mathsf{L}_m^{mp} \otimes \mathsf{I}_{n/(p\mu)}) \otimes \mathsf{I}_\mu\right) \circ \left((\otimes)_{1 \times p \to p} \otimes_{\parallel} \mathsf{MMM}_{m,n/p,k}\right) \circ \left((\mathsf{I}_{km/\mu} \otimes \mathsf{I}_\mu) \times \left((\mathsf{L}_p^{kp} \otimes \mathsf{I}_{n/(p\mu)}) \otimes \mathsf{I}_\mu)\right)} \end{split}$$

Load-balanced No false sharing

Speed-up (m x k) times (k x n)



Viterbi Decoding in OL



http://www.ece.unb.ca/tervo/ee4253/convolution3.htm

- Operator for Viterbi decoder $\operatorname{Vit}_{r,K,N,p} : \mathbb{N}^{rN} \to \mathbb{N}^{2^{K-1}} \times \mathbb{N}^{N2^{K-1}}$
- Breakdown rules

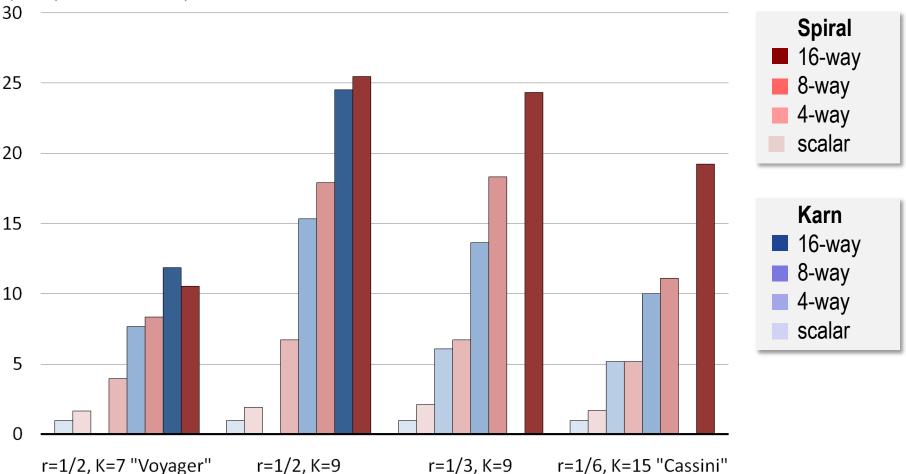
$$\operatorname{Vit}_{r,K,N,p} \to \\ \pi_{2,3} \circ \left(\prod_{0 \le x < N} (L_{2K-2}^{2K-1} \times I_{r2K-1 \times N2K-1}) \circ (I_{2K-2 \times 2K-2 \times 1} \otimes C_{r,K,p}^{x}) \right) \circ Id_{(1)_2 \otimes i_{2K-2}}$$

$$C^x_{r,K,p} \circ Id_y \to B^{x,y}_{r,K,p}$$

Results

Karn's implementation: hand-written assembly for 4 Viterbi codes

Performance Gain of Various Generated Viterbi Decoders



Speedup over Karn's C implementation

EBCOT Coding in OL

 $SC(\chi_{m,n}, \sigma_{m,n}) : (\mathbb{Z}_2^9 \times \mathbb{Z}_2^9) \to (\mathbb{N}, \mathbb{Z}_2)$ $(I \times \operatorname{xor}_2) \circ (T_{SC} \times I) \circ (H \times V \times I) \circ (\underline{L_4^2} \times G_4) \circ (\begin{pmatrix} 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix})$ H, V : $(\mathbb{Z}_2^9 \times \mathbb{Z}_2^9) \to \mathbb{N}$ $h \circ (f \times f) \circ (G_1 \times C_{-2} \times G_1 \times G_7 \times C_{-2} \times G_7) \circ L^2_4 \circ (\begin{pmatrix} 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \end{pmatrix})$ H: V: $h \circ (f \times f) \circ (G_3 \times \mathbb{C}_{-2} \times G_3 \times G_5 \times \mathbb{C}_{-2} \times G_5) \circ \overline{L_4^2} \circ (\overline{\binom{1}{1}} \times \overline{\binom{1}{1}})$ $f: \operatorname{mul}_2 \circ (I \times \operatorname{sub}_2) \circ (I \times \operatorname{C}_1 \times \operatorname{mul}_2)$ $h: \min_2 \circ (C_1 \times \max_2) \circ (C_{-1} \times \operatorname{sum}_2)$

sppCode
$$(\sigma_{m,n}): \mathbb{Z}_2^9 \to \mathbb{Z}_2$$

and₂ \circ (eqz \times nez) \circ $(G_{(4)_9} \times (G_0 + G_1 + G_2 + G_3 + G_5 + G_6 + G_7 + G_8)) \circ \begin{pmatrix} 1\\1 \end{pmatrix}$

Organization

- Spiral's framework: Example transforms
 - Complete automation achieved
- Beyond transforms
- Conclusions and thoughts

Raising the Abstraction Level

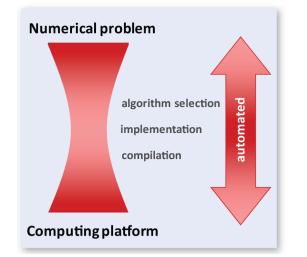
- Formally describe and structure algorithms/applications eternally valid
- In Spiral
 - Domain-specific, declarative, mathematical language OL
 - Difficult optimizations/transformations by rewriting
 - What it enables
 - Vectorization, parallelization using domain knowledge
 - Efficient retargeting to new platforms and new platform paradigms
 - Complete automation in some cases

Other examples

- Libraries
- Identification and definition of BLAS

Parameter tuning

Indispensable tool but cannot achieve the above



Interdisciplinary Research Needed

Programming languages

Program generation

Symbolic Computation Rewriting

Software Scientific Computing

Automating High-Performance Parallel Library Development

Algorithms Mathematics

Compilers

We Need to Work Together