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Introduction

Emergence of many-core architectures
High computation power
e.g. GPUs 

Development of high-performance codes for 
such architectures – Non-trivial!
CUDA parallel programming model for NVIDIA 
GPUs

Good abstraction of the underlying architecture
Not straight-forward to write a high-performance 
CUDA code
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Introduction
Optimizations needed to address architectural challenges

Memory access model
Granularity and levels of parallelism in architecture

Solution: TwoSolution: Two--foldfold
Compiler infrastructure to automatically generate Compiler infrastructure to automatically generate 
efficient parallel program structures; efficient parallel program structures; 
Use modelUse model--driven empirical search for tuningdriven empirical search for tuning

Framework:
PLuTo compiler framework [CC 08, PLDI 08] recently developed 
for gen-purpose multicore: Sequential C to OpenMP Parallel Tiled 
Code
Develop a framework to automatically generate parallel CUDA 
code



Snowbird 2008 Autotuning Workshop

Polyhedral Model

An algebraic framework for representing affine 
programs – statement domains, dependences, 
array access functions – and affine program 
transformations
Regular affine programs
◦ Dense arrays
◦ Loop bounds – affine functions of outer loop 

variables, constants and program parameters
◦ Array access functions - affine functions of 

surrounding loop variables, constants and program 
parameters
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for (i=1; i<=7; i++)
for (j=2; j<=6; j++)

S1: a[i][j] = a[j][i] + a[i][j-1];
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PLuTo Framework

Available at
http://sourceforge.net/projects/pluto-compiler
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NVIDIA GPU Architecture

Two levels of parallelism
Threads (Processor cores)

Grouped into SIMD warps
Thread blocks 
(Multiprocessors)

Various memory units
Different memory access 
model
Cache and local store 
hierarchy

Partitioning (e.g. 
registers) and sharing of 
resources (e.g. shared 
memory)

OffOff--chip memorychip memory

. . .. . .P1P1 P2P2 P8P8

Shared MemoryShared Memory

Constant CacheConstant Cache

RegistersRegisters

Texture CacheTexture Cache

SM1SM1

SM16SM16
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Performance Characterization of 
NVIDIA GeForce 8800 GTX

Get insights into optimizations to be addressed 
by a compiler framework
Characterize key features of the machine 
architecture and their impact on different 
strategies:

Global memory access
Shared memory (scratchpad) access
Concurrency and register pressure
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Global Memory Access-1
Measured memory read bandwidth for

Different data sizes, N
Blocked and cyclic distribution of data access among 
the threads of a single thread block
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Global Memory Access-2
Measured memory read bandwidth for

Different strides (1 .. 64)
Different number of threads per thread block (32 ... 512)
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Global Memory Access

Cyclic access has much higher bandwidth
Hardware optimization called global memory 
coalescing

Access from consecutive threads of a (half) warp to 
consecutive locations are coalesced
Base address of (half) warp aligned to 4, 8 or 16 bytes
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Optimizing Global Memory Access
Determine the extent of reuse of arrays
For arrays with sufficient reuse

Copy from global memory to shared memory 
[PPoPP 08]

For arrays with no reuse
Find affine transformations enabling global memory 
coalescing
If no suitable affine transformation enabling global 
memory coalescing

Copy to shared memory with possible global memory 
coalescing
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Optimizing Global Memory Access

To enable global memory coalescing for an array 
reference in a statement

Iterations accessing adjacent elements of an array (along the 
fastest varying dimension) executed at the same time point

Enforced by the time schedule adjacency constraint
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Optimizing Global Memory Access

To enable global memory coalescing for an array 
reference in a statement

Iterations accessing adjacent data elements of an array 
executed by adjacent threads

Enforced by the space partition adjacency constraint
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Optimizing Global Memory Access
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mv kernel:
for (i=0;i<n;i++) {
P: x [i]=0; 

for (j=0;j<n;j++) 
Q: x[i]+=a[i][j] * y[j]; 

}

tmv kernel:
for (i=0;i<n;i++) {
S: x[i]=0; 

for (j=0;j<n;j++) 
T: x[i]+=a[j][i] * y[j]; 

}
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Experimental Evaluation

N Direct 
Global

Copied to 
Shared

4K 0.43 5.61

5K 0.48 5.79

6K 0.35 6.04

7K 0.30 5.78

8K 0.24 5.52

Performance comparison (in GFLOPS) of mv kernel
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Shared Memory Access
Shared memory organized into banks 

16 banks in NVIDIA 8800 GTX
Successive 32-bit words in successive banks

Bank conflicts in shared memory
n threads access different address in same bank –
n sequential requests (n-way conflict)
Bandwidth of shared memory access inversely 
proportional to the degree of bank conflicts

Goal: To minimize shared memory bank 
conflicts
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Optimizing Shared Memory Access

Strategy to minimize bank conflicts during 
shared memory access 

Pad the arrays copied into shared memory
Degree of bank conflicts =

gcd (stride of array access across threads of a 
half warp, number of bank modules)

Cost of accessing a word in shared memory
Linear function of degree of bank conflicts

Find padding factor that minimizes the cost 
considering all references to the array



Snowbird 2008 Autotuning Workshop

Shared Memory Access
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Scratchpad: Challenges

Effective management of on-chip scratchpads in 
multi-core architectures

Utilize limited capacity of scratchpad
Optimize data movement

Effective computation mapping in many-core 
architectures with multiple levels of parallelism

Exploit available parallelism
Account for scratchpad capacity constraints
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Orchestration of data movement between off-
chip global and on-chip scratchpad memory

Need to make decisions on
What data elements to move in and out of scratchpad
When to move data
How to move data
How to access the data elements copied to 
scratchpad

Data Management Issues
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1. Allocation of storage space (as arrays) in the 
scratchpad memory for local copies

2. Determination of access functions of arrays in 
scratchpad memories

3. Generation of code for moving data between 
scratchpad (local) and off-chip (global) 
memories

Data Management Approach
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Targeted at affine programs
Dense arrays
Loop bounds – affine functions of outer loop variables, 
constants and program parameters
Array access functions - affine functions of 
surrounding loop variables, constants and program 
parameters

Developed using polyhedral model 

Overview: Data Management Approach
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Given a program block, identify the storage 
space needed for each non-overlapping 
accessed region of all arrays

Access functions of array references may be non-
uniformly generated

For some architectures (such as the NVIDIA 
GeForce GPU) supporting direct data access 
from off-chip memory

Estimate extent of reuse of data to determine whether 
or not to copy to scratchpad

Automatic Data Allocation
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Data Movement Code Generation

Generation of loop structure
Scanning of polytopes (using CLooG - a tool for code 
generation) corresponding to data spaces of

read references: for moving data into scratchpad
write references: for moving data out of scratchpad

Generation of loop body   (data movement 
statement)

Copy from a location in scratchpad buffer to off-chip 
memory location or vice-versa
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Experimental Evaluation

N Non optimized 
Shared

Optimized 
Shared

4K 5.61 13.18

5K 5.79 13.87

6K 6.04 14.37

7K 5.78 13.86

8K 5.52 13.63

Performance comparison (in GFLOPS) of mv kernel
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Parallelism vs Register Pressure

Performance enhancing approaches
Reduction of number of loads/stores
Increase in ILP
Reduce dynamic instructions

Loop overhead reduction

Well-known optimization: Loop unrolling
Issues 

Increased register pressure
Might reduce number of concurrent threads

Registers are partitioned among thread blocks
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Parallelism vs. Register Pressure

Higher thread-level parallelism needed to mask global 
memory access latency

Threads scheduled in an interleaved manner to mask 
global memory access latency

Trade-off between 
number of active concurrent threads 
number of registers available for a thread in a thread 
block

Problem: Register allocation cannot be managed by 
any external compilation framework
Solution: Empirical evaluation
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Model-driven Empirical Search
Need for empirical search

Tight coupling
Program parameters – tile sizes, unroll factors
System parameters – threads, thread blocks
Resources - Number of registers, shared memory

Lack of control on registers (usage and allocation)
Model to estimate number of loads/stores

Analytically in polyhedral model
Empirically using ptx code

Register usage instrumentation
Empirically using cubin object code
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Empirical search: MM kernel

Problem size: 4K x 4K (just fits in GPU DRAM)
Number of thread blocks: 16, 32, 64
Threads per thread block: 128, 256, 512
For different load balanced versions that do not 
exceed shared memory limit, the global memory 
loads vary from (4K)3/27 to (4K)3/24. 
We considered versions with global memory 
loads from (4K)3/27 to (4K)3/26 and used different 
combinations loop unroll factors and register 
tiling
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Empirical search: MM kernel



Snowbird 2008 Autotuning Workshop

Experimental Evaluation
Performance of Matrix Kernels

Transpose Matrix-vector (tmv) multiply kernel
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Experimental Evaluation
Performance of Matrix Kernels

Matrix-vector (mv) multiply kernel
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Experimental Evaluation

Matrix-matrix (mm) multiply kernel
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Experimental Evaluation
Performance of Matrix Kernels

MVT kernel
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Earlier GPU works
Automatic generation of pixel shader operations from a high-
level data-parallel language – Tarditi et al. [ASPLOS’06]
Stream processing – Brook, RapidMind, PeakStream

Considerable work on developing specific optimized 
algorithms and libraries for GPUs

e.g. CUDPP – CUDA Data Parallel Primitives

Very little work on general compiler optimization 
strategies for GPUs

Performance metrics to prune the optimization search space on 
a pareto-optimality basis - by Ryoo et al. [CGO’08]
Optimize data communication between CPU and co-processor –
by Gelado et al. [ICS’08]

Related Work
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So far …

Developed compiler optimizations to address 
key performance-influencing factors on NVIDIA 
GPUs

Enable global memory coalescing in the polyhedral 
model for regular programs
Reduce shared memory bank conflicts
Determine optimized program parameters (unroll 
factors, tile sizes) through a model-driven empirical 
search
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Ongoing Work
Automatic thread-centric CUDA Code 
Generation in Polyhedral Model
Data layout reordering to enhance memory 
accesses at various levels
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Thank You!
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