
Snowbird 2008 Autotuning Workshop

M. Baskaran U. Bondhugula S. Krishnamoorthy
J. RamanujamJ. Ramanujam A. Rountev P. Sadayappan

The Ohio State University
Louisiana State University

Towards automatic parallelization
and auto-tuning of affine kernels

for GPUs

Snowbird 2008 Autotuning Workshop

Introduction

Emergence of many-core architectures
High computation power
e.g. GPUs

Development of high-performance codes for
such architectures – Non-trivial!
CUDA parallel programming model for NVIDIA
GPUs

Good abstraction of the underlying architecture
Not straight-forward to write a high-performance
CUDA code

Snowbird 2008 Autotuning Workshop

Introduction
Optimizations needed to address architectural challenges

Memory access model
Granularity and levels of parallelism in architecture

Solution: TwoSolution: Two--foldfold
Compiler infrastructure to automatically generate Compiler infrastructure to automatically generate
efficient parallel program structures; efficient parallel program structures;
Use modelUse model--driven empirical search for tuningdriven empirical search for tuning

Framework:
PLuTo compiler framework [CC 08, PLDI 08] recently developed
for gen-purpose multicore: Sequential C to OpenMP Parallel Tiled
Code
Develop a framework to automatically generate parallel CUDA
code

Snowbird 2008 Autotuning Workshop

Polyhedral Model

An algebraic framework for representing affine
programs – statement domains, dependences,
array access functions – and affine program
transformations
Regular affine programs
◦ Dense arrays
◦ Loop bounds – affine functions of outer loop

variables, constants and program parameters
◦ Array access functions - affine functions of

surrounding loop variables, constants and program
parameters

Snowbird 2008 Autotuning Workshop

for (i=1; i<=7; i++)
for (j=2; j<=6; j++)

S1: a[i][j] = a[j][i] + a[i][j-1];

i
j

xS1 = .
0 -1 6

IS1 =
i
j
1

≥ 0
-1 0 7
0 1 -2

1 0 -1

₣1a (xS1) = 1 0
0 1

. i
j +

0
0₣2a (xS1) = 0 1

1 0
. i

j +
0
0₣3a (xS1) = 1 0

0 1
. i

j +
0
-1

j

i≥1

i≤7
i

j≥2 j≤6

Polyhedral Model

ΦS (xS) = . xS
n
1

CS

Snowbird 2008 Autotuning Workshop

PLuTo Framework

Available at
http://sourceforge.net/projects/pluto-compiler

Snowbird 2008 Autotuning Workshop

NVIDIA GPU Architecture

Two levels of parallelism
Threads (Processor cores)

Grouped into SIMD warps
Thread blocks
(Multiprocessors)

Various memory units
Different memory access
model
Cache and local store
hierarchy

Partitioning (e.g.
registers) and sharing of
resources (e.g. shared
memory)

OffOff--chip memorychip memory

.P1P1 P2P2 P8P8

Shared MemoryShared Memory

Constant CacheConstant Cache

RegistersRegisters

Texture CacheTexture Cache

SM1SM1

SM16SM16

Snowbird 2008 Autotuning Workshop

Performance Characterization of
NVIDIA GeForce 8800 GTX

Get insights into optimizations to be addressed
by a compiler framework
Characterize key features of the machine
architecture and their impact on different
strategies:

Global memory access
Shared memory (scratchpad) access
Concurrency and register pressure

Snowbird 2008 Autotuning Workshop

Global Memory Access-1
Measured memory read bandwidth for

Different data sizes, N
Blocked and cyclic distribution of data access among
the threads of a single thread block

Snowbird 2008 Autotuning Workshop

Global Memory Access-2
Measured memory read bandwidth for

Different strides (1 .. 64)
Different number of threads per thread block (32 ... 512)

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64

Access Stride

G
lo

ba
l M

em
or

y
ac

ce
ss

 B
W

(G

B
yt

es
/s

)

32 Threads/block 64 Threads/block 128 Threads/block
256 Threads/block 512 Threads/block

Snowbird 2008 Autotuning Workshop

Global Memory Access

Cyclic access has much higher bandwidth
Hardware optimization called global memory
coalescing

Access from consecutive threads of a (half) warp to
consecutive locations are coalesced
Base address of (half) warp aligned to 4, 8 or 16 bytes

Snowbird 2008 Autotuning Workshop

Optimizing Global Memory Access
Determine the extent of reuse of arrays
For arrays with sufficient reuse

Copy from global memory to shared memory
[PPoPP 08]

For arrays with no reuse
Find affine transformations enabling global memory
coalescing
If no suitable affine transformation enabling global
memory coalescing

Copy to shared memory with possible global memory
coalescing

Snowbird 2008 Autotuning Workshop

Optimizing Global Memory Access

To enable global memory coalescing for an array
reference in a statement

Iterations accessing adjacent elements of an array (along the
fastest varying dimension) executed at the same time point

Enforced by the time schedule adjacency constraint

)()()(
1
...
0

)(s.t. , ' sssssszrsszrssss yxyFxFDyDx rrrr θθ ==
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+∈∀∈∀

Snowbird 2008 Autotuning Workshop

Optimizing Global Memory Access

To enable global memory coalescing for an array
reference in a statement

Iterations accessing adjacent data elements of an array
executed by adjacent threads

Enforced by the space partition adjacency constraint

1)()()(
1
...
0

)(s.t. , ' +==
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+∈∀∈∀ sssssszrsszrssss yxyFxFDyDx rrrr ππ

Snowbird 2008 Autotuning Workshop

Optimizing Global Memory Access

)()()(
1
...
0

)(s.t. , ' sssssszrsszrssss yxyFxFDyDx rrrr θθ ==
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+∈∀∈∀

j

i
a y x

mv kernel:
for (i=0;i<n;i++) {
P: x [i]=0;

for (j=0;j<n;j++)
Q: x[i]+=a[i][j] * y[j];

}

tmv kernel:
for (i=0;i<n;i++) {
S: x[i]=0;

for (j=0;j<n;j++)
T: x[i]+=a[j][i] * y[j];

}

1)()()(
1
...
0

)(s.t. , ' +==
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+∈∀∈∀ sssssszrsszrssss yxyFxFDyDx rrrr ππ

Snowbird 2008 Autotuning Workshop

Experimental Evaluation

N Direct
Global

Copied to
Shared

4K 0.43 5.61

5K 0.48 5.79

6K 0.35 6.04

7K 0.30 5.78

8K 0.24 5.52

Performance comparison (in GFLOPS) of mv kernel

Snowbird 2008 Autotuning Workshop

Shared Memory Access
Shared memory organized into banks

16 banks in NVIDIA 8800 GTX
Successive 32-bit words in successive banks

Bank conflicts in shared memory
n threads access different address in same bank –
n sequential requests (n-way conflict)
Bandwidth of shared memory access inversely
proportional to the degree of bank conflicts

Goal: To minimize shared memory bank
conflicts

Snowbird 2008 Autotuning Workshop

Optimizing Shared Memory Access

Strategy to minimize bank conflicts during
shared memory access

Pad the arrays copied into shared memory
Degree of bank conflicts =

gcd (stride of array access across threads of a
half warp, number of bank modules)

Cost of accessing a word in shared memory
Linear function of degree of bank conflicts

Find padding factor that minimizes the cost
considering all references to the array

Snowbird 2008 Autotuning Workshop

Shared Memory Access

Snowbird 2008 Autotuning Workshop

Scratchpad: Challenges

Effective management of on-chip scratchpads in
multi-core architectures

Utilize limited capacity of scratchpad
Optimize data movement

Effective computation mapping in many-core
architectures with multiple levels of parallelism

Exploit available parallelism
Account for scratchpad capacity constraints

Snowbird 2008 Autotuning Workshop

Orchestration of data movement between off-
chip global and on-chip scratchpad memory

Need to make decisions on
What data elements to move in and out of scratchpad
When to move data
How to move data
How to access the data elements copied to
scratchpad

Data Management Issues

Snowbird 2008 Autotuning Workshop

1. Allocation of storage space (as arrays) in the
scratchpad memory for local copies

2. Determination of access functions of arrays in
scratchpad memories

3. Generation of code for moving data between
scratchpad (local) and off-chip (global)
memories

Data Management Approach

Snowbird 2008 Autotuning Workshop

Targeted at affine programs
Dense arrays
Loop bounds – affine functions of outer loop variables,
constants and program parameters
Array access functions - affine functions of
surrounding loop variables, constants and program
parameters

Developed using polyhedral model

Overview: Data Management Approach

Snowbird 2008 Autotuning Workshop

Given a program block, identify the storage
space needed for each non-overlapping
accessed region of all arrays

Access functions of array references may be non-
uniformly generated

For some architectures (such as the NVIDIA
GeForce GPU) supporting direct data access
from off-chip memory

Estimate extent of reuse of data to determine whether
or not to copy to scratchpad

Automatic Data Allocation

Snowbird 2008 Autotuning Workshop

Data Movement Code Generation

Generation of loop structure
Scanning of polytopes (using CLooG - a tool for code
generation) corresponding to data spaces of

read references: for moving data into scratchpad
write references: for moving data out of scratchpad

Generation of loop body (data movement
statement)

Copy from a location in scratchpad buffer to off-chip
memory location or vice-versa

Snowbird 2008 Autotuning Workshop

Experimental Evaluation

N Non optimized
Shared

Optimized
Shared

4K 5.61 13.18

5K 5.79 13.87

6K 6.04 14.37

7K 5.78 13.86

8K 5.52 13.63

Performance comparison (in GFLOPS) of mv kernel

Snowbird 2008 Autotuning Workshop

Parallelism vs Register Pressure

Performance enhancing approaches
Reduction of number of loads/stores
Increase in ILP
Reduce dynamic instructions

Loop overhead reduction

Well-known optimization: Loop unrolling
Issues

Increased register pressure
Might reduce number of concurrent threads

Registers are partitioned among thread blocks

Snowbird 2008 Autotuning Workshop

Parallelism vs. Register Pressure

Higher thread-level parallelism needed to mask global
memory access latency

Threads scheduled in an interleaved manner to mask
global memory access latency

Trade-off between
number of active concurrent threads
number of registers available for a thread in a thread
block

Problem: Register allocation cannot be managed by
any external compilation framework
Solution: Empirical evaluation

Snowbird 2008 Autotuning Workshop

Model-driven Empirical Search
Need for empirical search

Tight coupling
Program parameters – tile sizes, unroll factors
System parameters – threads, thread blocks
Resources - Number of registers, shared memory

Lack of control on registers (usage and allocation)
Model to estimate number of loads/stores

Analytically in polyhedral model
Empirically using ptx code

Register usage instrumentation
Empirically using cubin object code

Snowbird 2008 Autotuning Workshop

Empirical search: MM kernel

Problem size: 4K x 4K (just fits in GPU DRAM)
Number of thread blocks: 16, 32, 64
Threads per thread block: 128, 256, 512
For different load balanced versions that do not
exceed shared memory limit, the global memory
loads vary from (4K)3/27 to (4K)3/24.
We considered versions with global memory
loads from (4K)3/27 to (4K)3/26 and used different
combinations loop unroll factors and register
tiling

Snowbird 2008 Autotuning Workshop

Empirical search: MM kernel

Snowbird 2008 Autotuning Workshop

Experimental Evaluation
Performance of Matrix Kernels

Transpose Matrix-vector (tmv) multiply kernel

0
5

10
15
20
25
30
35
40

4096 5120 6144 7168 8192

Problem Size

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

Ours
CUBLAS

Snowbird 2008 Autotuning Workshop

Experimental Evaluation
Performance of Matrix Kernels

Matrix-vector (mv) multiply kernel

0
2
4
6
8

10
12
14
16

4096 5120 6144 7168 8192

Problem Size

Pe
rf

or
m

an
ce

 (G
FL

O
P

S)

Ours
CUBLAS

Snowbird 2008 Autotuning Workshop

Experimental Evaluation

Matrix-matrix (mm) multiply kernel

0

20

40

60

80

100

120

256 512 1024 2048 4096

Problem Size

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

Ours
CUBLAS

Performance of Matrix Kernels

Snowbird 2008 Autotuning Workshop

Experimental Evaluation
Performance of Matrix Kernels

MVT kernel

0
2
4
6
8

10
12
14
16

4096 5120 6144 7168 8192

Problem Size

P
er

fo
rm

an
ce

 (G
FL

O
PS

)

Ours
CUBLAS

Snowbird 2008 Autotuning Workshop

Earlier GPU works
Automatic generation of pixel shader operations from a high-
level data-parallel language – Tarditi et al. [ASPLOS’06]
Stream processing – Brook, RapidMind, PeakStream

Considerable work on developing specific optimized
algorithms and libraries for GPUs

e.g. CUDPP – CUDA Data Parallel Primitives

Very little work on general compiler optimization
strategies for GPUs

Performance metrics to prune the optimization search space on
a pareto-optimality basis - by Ryoo et al. [CGO’08]
Optimize data communication between CPU and co-processor –
by Gelado et al. [ICS’08]

Related Work

Snowbird 2008 Autotuning Workshop

So far …

Developed compiler optimizations to address
key performance-influencing factors on NVIDIA
GPUs

Enable global memory coalescing in the polyhedral
model for regular programs
Reduce shared memory bank conflicts
Determine optimized program parameters (unroll
factors, tile sizes) through a model-driven empirical
search

Snowbird 2008 Autotuning Workshop

Ongoing Work
Automatic thread-centric CUDA Code
Generation in Polyhedral Model
Data layout reordering to enhance memory
accesses at various levels

Snowbird 2008 Autotuning Workshop

Thank You!

	Introduction
	Introduction
	Polyhedral Model
	PLuTo Framework
	NVIDIA GPU Architecture
	Performance Characterization of �NVIDIA GeForce 8800 GTX
	Global Memory Access-1
	Global Memory Access-2
	Global Memory Access
	Optimizing Global Memory Access
	Optimizing Global Memory Access
	Optimizing Global Memory Access
	Optimizing Global Memory Access
	Experimental Evaluation
	Shared Memory Access
	Optimizing Shared Memory Access
	Shared Memory Access
	Scratchpad: Challenges
	Data Management Issues
	Data Management Approach
	Overview: Data Management Approach
	Automatic Data Allocation
	Data Movement Code Generation
	Experimental Evaluation
	Parallelism vs Register Pressure
	Parallelism vs. Register Pressure
	Model-driven Empirical Search
	Empirical search: MM kernel
	Empirical search: MM kernel
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	So far …
	Ongoing Work

