HPCToolkit: New Capabilities, Ongoing Work, & Challenges Ahead

John Mellor-Crummey, Nathan Tallent, Xu Liu

Laksono Adhianto, Michael Fagan, Mark Krentel

Dept. of Computer Science, Rice University

CScADS Performance Tools for Extreme Scale Computing • August 2011

hpctoolkit.org

hpctraceviewer]

[hpcprof/mpi]

14

Attribution to Static + Dynamic Context

hpcviewer: MOAB: mbperf_iMesh 200	B (Barcelona 2360 SE) calling context
👻 mbperf_iMesh.cpp 🖾 🞯 TypeSequenceManager.hpp 🖾 🞯 stl_tree.	
22 * Define less-than comparison for EntitySequence po 23 * of the entity handles in the pointed-to EntitySeq 24 */	
<pre>25 class SequenceCompare { 26 public: bool operator()(const EntitySequence* a, 27 { return a->end_handle() < b->start_handle(); } 28 };</pre>	 costs for inlined procedures
Calling Context View Callers View 👫 Flat View	 loops function calls in full context
] 🕆 🐣 🌜 f 🐼 📝	
Scope	PAPI_L1_DCM (I) V PAPI_TOT_CYC (I) P
▼ main	8.63e+08 100 % 1.13e+11 100 %
testB(void*, int, double const*, int const*)	8.35e+08 96.7% 1.10e+11 97.6%
inlined from mbperf_iMesh.cpp: 261	6.81e+08 78.9% 0.98e+11 86.5%
loop at mbperf_iMesh.cpp: 280-313	3.43e+08 39.8% 3.37e+10 29.9%
Imesh_getvtxarrcoords_	3.20e+08 37.1% 2.18e+10 19.3%
MBCore::get_coords(unsigned long const*, in	t, double*) cc 3.20e+08 37.1% 2.16e+10 19.1%
Ioop at MBCore.cpp: 681–693	3.20e+08 37.1% 2.16e+10 19.1%
inlined from stl_tree.h: 472	2.04e+08 23.7% 9.38e+09 8.3%
V loop at stl_tree.h: 1388	2.04e+08 23.6% 9.37e+09 8.3%
inlined from TypeSequenceMan	ager.hpp: 27 1.78e+08 20.6% 8.56e+09 7.6%
TypeSequenceManager.hp	-
)4 ►(

GPU profiling

- Detecting memory leaks
- Call path tracing
- More work on scaling
- Applying HPCToolkit to FY2011 "Joule Metric" applications
- Data-centric measurement and analysis
- Static analysis of memory access patterns
- Some challenges ahead

Call Path Profiling for GPU-based Systems

- Why call path profiling? Flat context often isn't enough — same operations used differently in multiple places
- Many apps experimenting w/ GPU acceleration
 - call path of GPU kernel is separated in space
 - host stack + GPU kernel
 - call path of GPU kernel is separated in time
 - kernels may be executed asynchronously
 - GPUs contain interesting hardware performance counters

Adapt HPToolkit profiling to CUDA-accelerated executions

Prototype of GPU-Enabled Profiler

- Use PAPI + NVIDIA's CUPTI profiling interface
- On entering a CUDA "kernel launch"
 - cudaThreadSynchronize() // wait for GPU to finish
 - start GPU performance counters
- On exiting a CUDA "kernel launch"
 - cudaThreadSynchronize() // wait for GPU to finish
 - stop GPU performance counters
 - gather calling context of kernel (synchronously)
 - associate GPU performance with kernel (in context)
- Limitations
 - counters are not kernel-specific (hardware limitation)
 - must either serialize kernels or work with throughput metrics
 - cudaThreadSynchronize() on entry/exit
 - destroys CPU/GPU overlap
 - shouldn't affect GPU measurements of individual kernels
 - kernel is finest granularity of GPU counter metrics
 - no line-level attribution within GPU code

GPU-Aware Call Path Profiles

000 hpcviewer: S3D - -🕾 ratx.h 🖾 1 #ifndef RATX_H 2 #define RATX_H 3 #include "S3D.h" attribute GPU metrics to CUDA kernel source in 5// Contains kernels to replace the ratx function, split up to reduce 6// register pressure its full calling context 7 template <class real> 8 ___global___ void 9 LAUNCH_BOUNDS (RATX_THRD, RATX_BLK) 10 ratx_kernel(const real* RESTRICT T, const real* RESTRICT C, real* RESTRICT RF, profile using CPU real* RESTRICT RB, const real* RESTRICT RKLOW, real TCONV) 11 metrics as well 12 { 13 const real TEMP = T[threadIdx.x + (blockIdx.x * blockDim.x)]*TCONV; (e.q. WALLCLOCK) 14 const real ALOGT = LOG((TEMP)); 15 real CTOT = 0.0; register real PR, PCOR, PRLOG, FCENT, FCLOG, XN; 16 4 register real CPRLOG, FLOG, FC; 17 manistan man1 CAD. 10 - -🕆 Calling Context View 🦄 Callers View 👫 Flat View 🕆 🖑 🔥 🕅 🕅 🕅 🗛 🛧 Scope CUDA.inst_executed.[0] (I) v CUDA.sm_cta_launched.[0] (I) WALLCLOCK (us).[0] (I) Experiment Aggregate Metrics 3.02e+03 100 % 1.57e+05 100 % 1.49e+07 100 % ▼main 1.49e+07 100 % 3.02e+03 100 % 1.52e+05 96.4% RunBenchmark(ResultDatabase&, OptionParser&) 1.49e+07 100 % 3.02e+03 100 % 1.52e+05 96.4% void RunTest<float>(std::string, ResultDatabase&, OptionParser& 9.84e+06 66.1% 2.20e+03 72.8% 8.71e+04 55.4% 9.84e+06 66.1% 2,20e+03 72.8% 7.87e+04 50.0% Ioop at S3D.cu: 276 void ratx_kernel<float>(float const*, float const*, float*, 1.57e+02 5.2% 1.26e+06 8.5% ▼ ■ wrapper device stub ratx kernel<float> 1.26e+06 8.5% 1.57e+02 5.24 tmpxft 000005b3 0000000-8 S3D.compute 11.cudaf 1.26e+06 8.5% 1.57e+02 5.2% Imposed with the second sec 1.54e+02 5.19 1.06e+06 7.2% 2.93e+03 1.9 Royoid rdsmh kernel<float>(float const*, float*, float) 8.66e+05 5.8% 7.90e+01 2.6% 2.90e+03

6.56e+05 4.4%

9.40e+01 3.1%

by void ratx4_kernel<float>(float const*, float*, float*)

GPU Profiling Support: What Next?

- Look at overall CPU and GPU utilization
- Quantify overlap of
 - CPU execution
 - data movement to accelerator
 - GPU execution
- Look at gap between potential vs. realized performance
 - compute derived metrics to understand GPU performance
 - degree of multithreaded parallelism utilized
 - fraction of compute capability utilized (instructions per cycle)
 - fraction of available memory bandwidth consumed
 - fraction of memory accesses that hit in cache
 - balance of reads and writes across cache and memory slices
 - fraction of divergent branches
 - ...

- GPU profiling
- Detecting memory leaks
- Call path tracing
- More work on scaling
- Applying HPCToolkit to FY2011 "Joule Metric" applications
- Data-centric measurement and analysis
- Static analysis of memory access patterns
- Some challenges ahead

Correctness Tool: Memory Leak Detector

- Intercept malloc() and free() (and variants)
 - malloc: gather calling context (synchronously)
 - free: note that the corresponding allocation point is freed
- Storing metadata: in-band vs. out-of-band
 - associate malloc calling context with allocated block
 - out-of-band: process-wide splay tree (with locks)
 - advantage: easy to implement
 - disadvantage: overhead
 - in-band: add header or footer to memory block [our approach]
 - prefer headers: constant time lookup, no synchronization
 - use footers as needed
 - advantage: avoids disturbing specified memory block alignment
 - disadvantage: synchronized lookup
- Can trade monitoring overhead for incompleteness

— monitor every *n*th malloc; monitor all frees

• Detail: getcontext() is surprisingly expensive; write our own

Confirming OMEN Has No Leaks

hpcviewer: OMEN_Jaguar-pgi64-XT5.hpclink.memleak									
😪 Calling Context View 👯 Callers View 👯 Flat View	- 6								
] 🕆 🐣 🔥 🕅 🕅 🐷 A* 👦									
Scope	Bytes Allocated:Sum (I) v Bytes Freed:Sum (I) Bytes Leaked: Sum (I)								
Experiment Aggregate Metrics	8.27e+11 100 % 8.27e+11 100 %								
▼main	8.27e+11 100 % 8.27e+11 100 %								
Transport <std::complex<double>>::execute_task(char const *, char const *)</std::complex<double>	8.20e+11 99.3% 8.20e+11 99.3%								
▼ B Transport <std::complex <double="">>::wire_transmission(char const *, int)</std::complex>	8.20e+11 99.3% 8.20e+11 99.3%								
CPR250_calc_transmission43Transport_tm26_Q2_3std16complex_tm2_	8.11e+11 98.1% 8.11e+11 98.1%								
Participation CPR108_solve_46WaveFunction_tm_26_Q2_3std16complex_tm_2_dFP38	7.83e+11 94.8% 7.83e+11 94.8%								
WireCompression <std::complex<double>>::prepare(int *, int *, int, int, int *,</std::complex<double>	7.65e+11 92.5% 7.65e+11 92.5%								
WireCompression <std::complex<double>>::SecondStageRen(int *, int *, i</std::complex<double>	4.29e+11 51.9% 4.29e+11 51.9% 7.17e+10 8.7% 7.17e+10 8.7% 7.17e+10 8.7% 7.17e+10 8.7%								
▼ Bp_array_new	7.17e+10 8.7% 7.17e+10 8.7%								
# array_new_general(void *, long, unsigned long, unsigned long, void *	7.17e+10 8.7% 7.17e+10 8.7%								
# alloc_array(unsigned long, unsigned long, void *(*)(unsigned long	7.17e+10 8.7% 7.17e+10 8.7%								
Thenwa(unsigned long)	7.17e+10 8.7% 7.17e+10 8.7% 7.17e+10 8.7% 7.17e+10 8.7% 7.17e+10 8.7% 7.17e+10 8.7%								
V By operator new(unsigned long)	7.17e+10 8.7% 7.17e+10 8.7%								
> memory provide the second	7.17e+10 8.7% 7.17e+10 8.7%								
Participation Provide American Structure Control	7.17e+10 8.7% 7.17e+10 8.7%								
sample_event.h: 74	7.17e+10 8.7% 7.17e+10 8.7% 7.17e+10 8.7% 7.17e+10 8.7%								
▼ B>_array_new	7.17e+10 8.7% 7.17e+10 8.7%								
# marray_new_general(void *, long, unsigned long, unsigned long, void *	7.17e+10 8.7% 7.17e+10 8.7%								
# alloc_array(unsigned long, unsigned long, void *(*)(unsigned long	7.17e+10 8.7% 7.17e+10 8.7%								
▼ mya(unsigned long)									
V B operator new(unsigned long)	7.17e+10 8.7% 7.17e+10 8.7%								
Implementation	7.17e+10 8.7% 7.17e+10 8.7%								
Participation Provide American Structure St	7.17e+10 8.7% 7.17e+10 8.7%								
sample_event.h: 74	7.17e+10 8.7% 7.17e+10 8.7%								
▶ B>array_new	7.17e+10 8.7% 7.17e+10 8.7%								
▶ ➡array_new	7.17e+10 8.7% 7.17e+10 8.7%								
▶ B>array_new	7.17e+10 8.7% 7.17e+10 8.7%								
Umfpack <std::complex<double>>::prepare(void)</std::complex<double>	3.69e+10 4.5% 3.69e+10 4.5%								
Umfpack <std::complex<double>>::ct(TCSR<> *, int)</std::complex<double>	6.43e+09 0.8% 6.43e+09 0.8%								
▶ ➡_array_new	2.24e+09 0.3% 2.24e+09 0.3%								
▶ B>array_new	2.24e+09 0.3% 2.24e+09 0.3%								
▶ B>array_new	2.24e+09 0.3% 2.24e+09 0.3%								
▶ B>array_new	2.24e+09 0.3% 2.24e+09 0.3% 15								

- GPU profiling
- Detecting memory leaks
- Call path tracing
- More work on scaling
- Applying HPCToolkit to FY2011 "Joule Metric" applications
- Data-centric measurement and analysis
- Static analysis of memory access patterns
- Some challenges ahead

Understanding Temporal Behavior

- Time-dependent behavior is often invisible in profiles

 but tracing is difficult to scale to long or large executions
- What can we do? Trace call path samples:
 - on each sample, record call path of each thread
 - organize the samples for each thread along a time line
 - view how the execution hierarchically evolves
 - assign each procedure a color; view a depth slice of an execution
 - use <u>sampling</u> to scalably render large-scale traces

Exposing Temporal Call Path Patterns

Presenting Large Traces on Small Displays

- How to render an arbitrary portion of an arbitrarily large trace?
 - we have a display window of dimensions $h \times w$
 - typically many more processes (or threads) than *h*
 - typically many more samples (trace records) than *w*
- Solution: sample the samples!

Will Sampling Miss Something Important?

- Sampling may miss the precise cause of an anomaly... — but, important anomalies will have (local/non-local) effects
- Sampling exposes effects of the important anomalies

- GPU profiling
- Detecting memory leaks
- Call path tracing
- More work on scaling
- Applying HPCToolkit to FY2011 "Joule Metric" applications
- Data-centric measurement and analysis
- Static analysis of memory access patterns
- Some challenges ahead

Enabling Larger-Scale Measurements

- Sample processes within SPMD applications
 - record data on a process with probability p
 - simplification of Gamblin et al., IPDPS '08
 - effective

Pinpoint strong scaling bottlenecks in PFLOTRAN, 4K — 32K cores, running on a Cray XT5 (JaguarPF).

Real Tools Must Address the 'D' in R&D

- First version of tracer used one trace file per process
- Problem: File systems don't handle 1000s of files per directory
 - FSs optimize for data integrity rather than for fast file lookup
 - typical: store files in order of creation and use linear search instead of data structure optimized for lookup
- Bleeding-edge version of tracer
 - fast and scalable trace record lookup
 - merge all trace files into one file
 - index + trace files
 - resolve several inefficiencies
 - e.g.: eliminate unnecessary duplication of call path data
 - one can only expect so much from high school seniors
- TODO: use SionLib or PLFS to write profile and trace data

Refining Analysis and Presentation

- Current scalable database requires O(1 CCT) space
 - non-distributed data structure \rightarrow per-process requirement
- Many opportunities for refining database

CCT = Calling Context Tree

- never, ever use XML
 - replacing with Google Protocol Buffers
 - expect 1–2 orders of magnitude in space savings
- use appropriate (sub) data structures
 - use dense vectors for dense data (e.g., inclusive metric values)
 - use sparse vectors for sparse data (e.g., exclusive metric values)
- post-process data to accelerate performance of user interface
 - scatter plots: better to have per-thread metric values for CCT node instead of all CCT-node metric values for a thread
- incrementally prune irrelevant profile data
 - reduce the high-water space requirement for building a CCT
- possibly another order of magnitude (on top of XML change)

- GPU profiling
- Detecting memory leaks
- Call path tracing
- More work on scaling
- Applying HPCToolkit to FY2011 "Joule Metric" applications
- Data-centric measurement and analysis
- Static analysis of memory access patterns
- Some challenges ahead

Work on FY2011 'Joule Metric' Codes

Identified load imbalance:

K. Roche: Given OMEN, a highly tuned app, can you find anything?

- using tracing of call path samples
 - found early/late arrivers at an MPI_Allreduce
- using differential profiling & load imbalance analysis
 - compare early/late arrivers
 - confirm that exposed idleness is fully offset by FP computation
- simple case of load imbalance
 - mismatch between input data and # of processors

Work on FY2011 'Joule Metric' Codes

- Improved performance of array copies:
 - most inefficiency was in Goto BLAS *x*copy wrappers
 - 5% of execution time; 18% of resource stalls –
 - xcopy: assembly no unwind information!
 - specialized calls to *x*copy to use memcopy when possible
 - Goto BLAS copy didn't exploit memory parallelism, prefetching
 - improved cost of copies by 25% (1.3% overall)

-	At A-	(=)		(=)		((=)
Scope	PAPI_TOT_CYC:Su		PAPI_RES_STL:Su	im (E) 🔻	PAPI_FPU_IDL:Su	im (E)	PAPI_STL_ICY:Su	um (E)
Experiment Aggregate Metrics	5.30e+13	100 %				100 %	4.91e+11	100 %
zcopy_k	2.53e+12	4.8%	2.37e+12	17.7%	7.18e+09	0.1%	2.32e+09	0.5%
MPIDI_CRAY_smpdev_progress	3.44e+12	6.5%	1.22e+12	9.1%	3.45e+12	48.6%	1.07e+11	21.9%
▶zaxpy_k	3.42e+12	6.5%	1.15e+12	8.6%	2.15e+10	0.3%	1.18e+10	2.4%
▶zhemv_U	3.21e+12	6.1%	9.15e+11	6.8%	1.21e+10	0.2%	1.19e+10	2.4%
▶zgemv_n	1.63e+12	3.1%	8.90e+11	6.6%	6.60e+09	0.1%	5.98e+09	1.2%
zgemm_otcopy	9.02e+11	1.7%	8.15e+11	6.1%	2.72e+09	0.0%	2.13e+09	0.4%
▶zgemm_kernel_n	1.62e+13	30.5%	5.84e+11	4.4%	8.33e+09	0.1%	6.60e+09	1.3%
▶zlaqr5_	6.75e+11	1.3%	4.51e+11	3.4%	2.29e+09	0.0%	1.66e+09	0.3%
zgemm_oncopy	4.14e+11	0.8%	3.65e+11	2.7%	1.05e+09	0.0%	7.98e+08	0.2%
umfzl_usolve	9.25e+11	1.7%	3.52e+11	2.6%	8.57e+09	0.1%	3.56e+10	7.3%
sparse_mat_mat_mult49WireCo	9.16e+11	1.7%	3.30e+11	2.5%	4.08e+11	5.8%	6.73e+10	13.7%
▶zgemm_beta	2.59e+11	0.5%	2.43e+11	1.8%	1.21e+09	0.0%	5.70e+08	0.1%
<pre>binit_vartm26_Q2_3std16comp</pre>	3.30e+11	0.6%	2.28e+11	1.7%	4.19e+10	0.6%	3.11e+09	0.6%
▶zgemm_kernel_r	5.45e+12	10.3%	2.26e+11	1.7%	3.39e+09	0.0%	2.11e+09	0.4%

- GPU profiling
- Detecting memory leaks
- Call path tracing
- More work on scaling
- Applying HPCToolkit to FY2011 "Joule Metric" applications
- Data-centric measurement and analysis
- Static analysis of memory access patterns
- Some challenges ahead

Data-centric View

Linux Kernel Support for AMD's IBS

- Why perfmon2 & libpfm3 vs. perf_events?
 - perfmon2 supports per-thread mode for IBS
 - HPCToolkit monitors threads separately
- Problem in perfmon2 driver for Linux 2.6.30
 - runaway kernel process (kondemand/12)
 - causes system crash
 - occurs very few times when run sequentially
 - always occurs when monitoring parallel programs

Patches (from Oprofile kernel and already known workarounds)

- erratum 420: set IbsOpMaxCnt & IbsOpEn bits in two steps
- UBTS 227027: enable/disable LBR
- UBTS 299030: Read IP immediately after setting the IBS OP

No errors, no crashes

- GPU profiling
- Detecting memory leaks
- Call path tracing
- More work on scaling
- Applying HPCToolkit to FY2011 "Joule Metric" applications
- Data-centric measurement and analysis
- Static analysis of memory access patterns
- Some challenges ahead

Memory Access Patterns Matter

- Understand cache usage
 - non-unit stride \rightarrow poor spatial locality
 - data access = non-unit stride% + unit stride%
 - combine data-centric analysis: whether to transpose an array's layout
- Understand memory access patterns at the loop level
 - e.g. memory footprint of an access
 - recording all memory accesses has large overhead
 - instrument all loads/stores and collect them in a buffer
 - compute the reuse distance for each element in the buffer
 - more than 100x slow down
 - use combination of static analysis + dynamic information instead
 - use stride analysis to reduce instrumentation necessary

Goal and Approach

- Goal: feed pattern information to HPCToolkit (future work)
 - data-centric measurement and analysis
 - memory footprint analysis
- Approach: analyze memory access stride in loops
 - perform static analysis of an application binary
 - only analyze indexed accesses
 - use Dyninst
 - parseAPI & instructionAPI
 - extract loop information and memory access instructions
 - dataflowAPI
 - perform data flow analysis using program slicing

Precursor to Stride Analysis: Loop Analysis

- parseAPI: analyze the control flow, build CFG
- Return all basic blocks in the loop exclusively or inclusively
- Find loop headers

Stride Analysis Algorithm

- Analyze each memory access instruction in the loop
 - filter out the scalar instructions
 - access the memory using the unchanged register as the index (bp)
 - get the multiplier for indexed operations: (%rbp,%rax,4) is 4
- Find the instruction, compute the index
 - backward slice from the memory access instruction in the loop
 - backward slice on the index register (rax is definitely the index)
 - movss 0x602080(,%rax,4),%xmm0
 - movss (%rbp,%rax,4),%xmm0
 - movss (%rax),%xmm0
 - backward slice on both index registers (rax, rbx are possible indexes)
 - movss (%rbx,%rax,1),%xmm0
 - symbolic evaluation
 - compute the symbolic expression using slicing
 - find how the index register changes in the loop body
 - return an AST

Simplify Results of Stride Analysis

- Raw AST data using ROSE symbols
 - <extract:32>(<add>(<extMSB>(<V([S
 [_Z19initialize_matricesv,-24,0]]:80487c8)>,<33:32>,),<add>
 (<extMSB>(<4:32>,<33:32>,),<0:1>,),),<0:33>,<32:33>,)
- Simply the AST
 - remove unnecessary operators
 - handle the value from the memory
 - index
 - if the value comes from an LHS of an instruction in the loop
 - constant
 - if the value comes from an LHS of an instruction outside the loop
 - if the value is not an LHS \rightarrow it does not change in the loop
 - indirect
 - if the value is from an unknown location which is an indirect reference
 - simplified version of above expression: (index+(0x4+0x0))

Eliminate Extraneous Details

- Inner loop details are irrelevant when analyzing outer loop
 - slicing in the inner loop generates extraneous detail
 - for example: ((constant*0x3e8)+((index+(0x1+0x0))+0x0))

- Prune the AST to eliminate the extraneous detail
 - keep a sub-AST only if it is related to the index

Preliminary Experimental Results

Kernel of matrix multiplication

- GPU profiling
- Detecting memory leaks
- Call path tracing
- More work on scaling
- Applying HPCToolkit to FY2011 "Joule Metric" applications
- Data-centric measurement and analysis
- Static analysis of memory access patterns
- Some challenges ahead

Some Challenges Ahead

- Scale measurement and analysis to > 1M cores
- Handle requirements for asymmetric measurement
- Understand usage of shared resources
 - examples
 - shared cores (SMT)
 - shared cache
 - memory bandwidth
 - network
 - quantify utilization
 - quantify impact of contention
 - aggregate
 - over time
 - attribute metrics to code
- Complete analysis of hybrid programs
- From metrics to bottleneck diagnosis

— work with PerfExpert team at UT and Texas State