
HPCToolkit: New Capabilities,
Ongoing Work, & Challenges Ahead

hpctoolkit.org

CScADS Performance Tools for Extreme Scale Computing • August 2011

John Mellor-Crummey, Nathan Tallent, Xu Liu

Laksono Adhianto, Michael Fagan, Mark Krentel

Dept. of Computer Science, Rice University

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/mpi]

presentation
[hpcviewer,

hpctraceviewer]

program
structure

• Compile and link for production
– with full optimization

• For statically-linked executables (e.g. for Cray XT or BG/P)
– use hpclink script to incorporate our monitoring library

database

HPCToolkit Performance Tools

9

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/mpi]

presentation
[hpcviewer,

hpctraceviewer]

program
structure

Measure execution unobtrusively
– launch optimized application binaries
– collect call path profiles of events of interest

database

HPCToolkit Performance Tools

10

12

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/mpi]

presentation
[hpcviewer,

hpctraceviewer]

program
structure

Analyze binary to recover program structure
– analyze machine code, line map, and debugging information
– extract loop nesting information and identify inlined procedures
– map transformed loops and procedures back to source

database

HPCToolkit Performance Tools

13

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/mpi]

presentation
[hpcviewer,

hpctraceviewer]

program
structure

• Combine multiple profiles
– multiple threads; multiple processes; multiple executions

• Correlate measurements to static & dynamic pgm structure

database

HPCToolkit Performance Tools

14

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof/mpi]

presentation
[hpcviewer,

hpctraceviewer]

program
structure

• Explore performance data from multiple perspectives
• Rank order by metrics to focus on what’s important
• Compute derived metrics to gain insight
• Explore call stack traces to understand transient behavior

database

HPCToolkit Performance Tools

Attribution to Static + Dynamic Context

costs for
• inlined procedures
• loops
• function calls in full context

calling context
view

• GPU profiling

• Detecting memory leaks

• Call path tracing

• More work on scaling

• Applying HPCToolkit to FY2011 “Joule Metric” applications

• Data-centric measurement and analysis

• Static analysis of memory access patterns

• Some challenges ahead

8

Outline

Call Path Profiling for GPU-based Systems
• Why call path profiling? Flat context often isn’t enough

— same operations used differently in multiple places

• Many apps experimenting w/ GPU acceleration
— call path of GPU kernel is separated in space

• host stack + GPU kernel
— call path of GPU kernel is separated in time

• kernels may be executed asynchronously
— GPUs contain interesting hardware

performance counters

9

Adapt HPToolkit profiling to CUDA-accelerated executions

k()

g()

f()

main()

Call path

GPU
kernel

Prototype of GPU-Enabled Profiler
• Use PAPI + NVIDIA’s CUPTI profiling interface

• On entering a CUDA “kernel launch”
— cudaThreadSynchronize() // wait for GPU to finish
— start GPU performance counters

• On exiting a CUDA “kernel launch”
— cudaThreadSynchronize() // wait for GPU to finish
— stop GPU performance counters
— gather calling context of kernel (synchronously)
— associate GPU performance with kernel (in context)

• Limitations
— counters are not kernel-specific (hardware limitation)

• must either serialize kernels or work with throughput metrics
— cudaThreadSynchronize() on entry/exit

• destroys CPU/GPU overlap
• shouldn’t affect GPU measurements of individual kernels

— kernel is finest granularity of GPU counter metrics
• no line-level attribution within GPU code

10

GPU-Aware Call Path Profiles

11

attribute GPU metrics to
CUDA kernel source in
its full calling context

profile using CPU
metrics as well

(e.g. WALLCLOCK)

GPU Profiling Support: What Next?
• Look at overall CPU and GPU utilization

• Quantify overlap of
— CPU execution
— data movement to accelerator
— GPU execution

• Look at gap between potential vs. realized performance
— compute derived metrics to understand GPU performance

• degree of multithreaded parallelism utilized
• fraction of compute capability utilized (instructions per cycle)
• fraction of available memory bandwidth consumed
• fraction of memory accesses that hit in cache
• balance of reads and writes across cache and memory slices
• fraction of divergent branches
• ...

12

• GPU profiling

• Detecting memory leaks

• Call path tracing

• More work on scaling

• Applying HPCToolkit to FY2011 “Joule Metric” applications

• Data-centric measurement and analysis

• Static analysis of memory access patterns

• Some challenges ahead

13

Outline

Correctness Tool: Memory Leak Detector
• Intercept malloc() and free() (and variants)

— malloc: gather calling context (synchronously)
— free: note that the corresponding allocation point is freed

• Storing metadata: in-band vs. out-of-band
— associate malloc calling context with allocated block
— out-of-band: process-wide splay tree (with locks)

• advantage: easy to implement
• disadvantage: overhead

— in-band: add header or footer to memory block [our approach]
• prefer headers: constant time lookup, no synchronization
• use footers as needed

 – advantage: avoids disturbing specified memory block alignment
 – disadvantage: synchronized lookup

• Can trade monitoring overhead for incompleteness
— monitor every nth malloc; monitor all frees

• Detail: getcontext() is surprisingly expensive; write our own
14

Confirming OMEN Has No Leaks

15

0
B

yt
es

 L
ea

ke
d

• GPU profiling

• Detecting memory leaks

• Call path tracing

• More work on scaling

• Applying HPCToolkit to FY2011 “Joule Metric” applications

• Data-centric measurement and analysis

• Static analysis of memory access patterns

• Some challenges ahead

16

Outline

Understanding Temporal Behavior
• Time-dependent behavior is often invisible in profiles

— but tracing is difficult to scale to long or large executions

• What can we do? Trace call path samples:
— on each sample, record call path of each thread
— organize the samples for each thread along a time line
— view how the execution hierarchically evolves

• assign each procedure a color; view a depth slice of an execution
— use sampling to scalably render large-scale traces

17

Time

Processes

Call
stack

slice

“main”

ICS 2011

Exposing Temporal Call Path Patterns

18

PFLOTRAN, 8184 processes, Cray XT5

M
P

I r
an

k

time

Process-time view at selected depth

Depth-time view for selected rankC
al

l p
at

h
 d

ep
th

Presenting Large Traces on Small Displays
• How to render an arbitrary portion of an arbitrarily large trace?

— we have a display window of dimensions h × w
— typically many more processes (or threads) than h
— typically many more samples (trace records) than w

• Solution: sample the samples!

19

Trace with n processes

time

pr
oc

es
s

p1

pi

pn

h

w

process

time
each
sample
defines
a pixel

samples (of samples)

Will Sampling Miss Something Important?

20

• Sampling may miss the precise cause of an anomaly...
— but, important anomalies will have (local/non-local) effects

• Sampling exposes effects of the important anomalies

Using sampling for
both measurement
and presentation

clearly exposed the
problem.

In an unusual execution,
8184 processes took 190 s to

complete MPI_Init!
(FLASH, JaguarPF, Cray XT5)

a lagging process...

• GPU profiling

• Detecting memory leaks

• Call path tracing

• More work on scaling

• Applying HPCToolkit to FY2011 “Joule Metric” applications

• Data-centric measurement and analysis

• Static analysis of memory access patterns

• Some challenges ahead

21

Outline

• Sample processes within SPMD applications
— record data on a process with probability p
— simplification of

Gamblin et al.,
IPDPS ’08

— effective

22

Enabling Larger-Scale Measurements

Loop accounts for 86.4%
of scaling loss — 343%
of the cost of 4K run

This Allreduce accounts for
21.6% of scaling loss —
85.7% of the cost of 4K runPinpoint strong

scaling bottlenecks in
PFLOTRAN, 4K — 32K
cores, running on a
Cray XT5 (JaguarPF).

• First version of tracer used one trace file per process

• Problem: File systems don’t handle 1000s of files per directory
— FSs optimize for data integrity rather than for fast file lookup

• typical: store files in order of creation and use linear search instead
of data structure optimized for lookup

• Bleeding-edge version of tracer
— fast and scalable trace record lookup

• merge all trace files into one file
 – index + trace files

— resolve several inefficiencies
• e.g.: eliminate unnecessary duplication of call path data
• one can only expect so much from high school seniors

• TODO: use SionLib or PLFS to write profile and trace data

23

Real Tools Must Address the ‘D’ in R&D

• Current scalable database requires O(1 CCT) space
— non-distributed data structure → per-process requirement

• Many opportunities for refining database
— never, ever use XML

• replacing with Google Protocol Buffers
• expect 1–2 orders of magnitude in space savings

— use appropriate (sub) data structures
• use dense vectors for dense data (e.g., inclusive metric values)
• use sparse vectors for sparse data (e.g., exclusive metric values)

— post-process data to accelerate performance of user interface
• scatter plots: better to have per-thread metric values for CCT node

instead of all CCT-node metric values for a thread
— incrementally prune irrelevant profile data

• reduce the high-water space requirement for building a CCT
— possibly another order of magnitude (on top of XML change)

24

Refining Analysis and Presentation

CCT = Calling
Context Tree

• GPU profiling

• Detecting memory leaks

• Call path tracing

• More work on scaling

• Applying HPCToolkit to FY2011 “Joule Metric” applications

• Data-centric measurement and analysis

• Static analysis of memory access patterns

• Some challenges ahead

25

Outline

Work on FY2011 ‘Joule Metric’ Codes
• Identified load imbalance:

— using tracing of call path samples
• found early/late arrivers at an MPI_Allreduce

— using differential profiling & load imbalance analysis
• compare early/late arrivers
• confirm that exposed idleness is fully offset by FP computation

— simple case of load imbalance
• mismatch between input data and # of processors

26

K. Roche: Given OMEN, a highly
tuned app, can you find anything?

Work on FY2011 ‘Joule Metric’ Codes
• Improved performance of array copies:

— most inefficiency was in Goto BLAS xcopy wrappers
• 5% of execution time; 18% of resource stalls
• xcopy: assembly — no unwind information!

— specialized calls to xcopy to use memcopy when possible
• Goto BLAS copy didn’t exploit memory parallelism, prefetching

— improved cost of copies by 25% (1.3% overall)

27

• GPU profiling

• Detecting memory leaks

• Call path tracing

• More work on scaling

• Applying HPCToolkit to FY2011 “Joule Metric” applications

• Data-centric measurement and analysis

• Static analysis of memory access patterns

• Some challenges ahead

28

Outline

Data-centric View

29

source code pane

navigation pane metrics pane

Root of all uses

Allocation point

Data structures

Linux Kernel Support for AMD’s IBS

• Why perfmon2 & libpfm3 vs. perf_events?
— perfmon2 supports per-thread mode for IBS
— HPCToolkit monitors threads separately

• Problem in perfmon2 driver for Linux 2.6.30
— runaway kernel process (kondemand/12)

• causes system crash
— occurs very few times when run sequentially
— always occurs when monitoring parallel programs

• Patches (from Oprofile kernel and already known workarounds)
— erratum 420: set IbsOpMaxCnt & IbsOpEn bits in two steps
— UBTS 227027: enable/disable LBR
— UBTS 299030: Read IP immediately after setting the IBS OP

30

No errors, no crashes

• GPU profiling

• Detecting memory leaks

• Call path tracing

• More work on scaling

• Applying HPCToolkit to FY2011 “Joule Metric” applications

• Data-centric measurement and analysis

• Static analysis of memory access patterns

• Some challenges ahead

31

Outline

Memory Access Patterns Matter

• Understand cache usage
— non-unit stride → poor spatial locality
— data access = non-unit stride% + unit stride%

• combine data-centric analysis: whether to transpose an array’s layout

• Understand memory access patterns at the loop level
— e.g. memory footprint of an access
— recording all memory accesses has large overhead

• instrument all loads/stores and collect them in a buffer
• compute the reuse distance for each element in the buffer
• more than 100x slow down

— use combination of static analysis + dynamic information instead
• use stride analysis to reduce instrumentation necessary

32

Goal and Approach

• Goal: feed pattern information to HPCToolkit (future work)
— data-centric measurement and analysis
— memory footprint analysis

• Approach: analyze memory access stride in loops
— perform static analysis of an application binary

• only analyze indexed accesses
— use Dyninst

• parseAPI & instructionAPI
 – extract loop information and memory access instructions

• dataflowAPI
 – perform data flow analysis using program slicing

33

Precursor to Stride Analysis: Loop Analysis

• parseAPI: analyze the control flow, build CFG

• Return all basic blocks in the loop exclusively or inclusively

• Find loop headers

34

Stride Analysis Algorithm

• Analyze each memory access instruction in the loop
— filter out the scalar instructions

• access the memory using the unchanged register as the index (bp)
— get the multiplier for indexed operations: (%rbp,%rax,4) is 4

• Find the instruction, compute the index
— backward slice from the memory access instruction in the loop

• backward slice on the index register (rax is definitely the index)
 – movss 0x602080(,%rax,4),%xmm0
 – movss (%rbp,%rax,4),%xmm0
 – movss (%rax),%xmm0

• backward slice on both index registers (rax, rbx are possible indexes)
 – movss (%rbx,%rax,1),%xmm0

— symbolic evaluation
• compute the symbolic expression using slicing
• find how the index register changes in the loop body
• return an AST

35

Simplify Results of Stride Analysis

• Raw AST data using ROSE symbols
— <extract:32>(<add>(<extMSB>(<V([S

[_Z19initialize_matricesv,-24,0]]:80487c8)>,<33:32>,),<add>
(<extMSB>(<4:32>,<33:32>,),<0:1>,),),<0:33>,<32:33>,)

• Simply the AST
— remove unnecessary operators
— handle the value from the memory

• index
 – if the value comes from an LHS of an instruction in the loop

• constant
 – if the value comes from an LHS of an instruction outside the loop
 – if the value is not an LHS → it does not change in the loop

• indirect
 – if the value is from an unknown location which is an indirect

reference
— simplified version of above expression: (index+(0x4+0x0))

36

Eliminate Extraneous Details

• Inner loop details are irrelevant when analyzing outer loop
— slicing in the inner loop generates extraneous detail
— for example: ((constant*0x3e8)+((index+(0x1+0x0))+0x0))

37

• Prune the AST to eliminate the extraneous detail
– keep a sub-AST only if it is related to the index

outer loop: ins1
ins2
...
ins3
...
index computation
memory access
...
branch innerloop
...
branch outerloop

inner loop:

Preliminary Experimental Results

• Kernel of matrix multiplication

38

 for (i = 0 ; i < ROWS ; i++)
 for (j = 0 ; j < COLUMNS ; j++)
 float sum = 0.0 ;
 for (k = 0 ; k < COLUMNS ; k++)
 sum = sum + matrix_a[i][k] * matrix_b[k][j] ;

 matrix_r[i][j] = sum ;

(0x8048660, 0x8048678)
8048660(0x4): ((index+(0x4+0x0))+(0x4+0x0)) multiplier: 1
8048668(0xfa0): ((index+(0xfa0+0x0))+(0xfa0+0x0)) multiplier: 1

(0x8048648, 0x8048688)
8048660(0x0): constant multiplier: 1
8048668(0x4): (((0x8419a80+((index+(0x1+0x0))*0x4))+(0xfa0+0x0))+(0xfa0+0x0)) multiplier: 1
804867d(0x4): ((index+(0x4+0x0))+(0x4+0x0)) multiplier: 1

(0x804863a, 0x8048693)
8048660(0xfa0): (((index+(0x1+0x0))*0xfa0)+(0x8049180+0x0)) multiplier: 1
8048668(0x0): constant multiplier: 1
804867d(0xfa0): ((((index+(0x1+0x0))*0xfa0)+0x87ea380)+(0x4+0x0)) multiplier: 1

• GPU profiling

• Detecting memory leaks

• Call path tracing

• More work on scaling

• Applying HPCToolkit to FY2011 “Joule Metric” applications

• Data-centric measurement and analysis

• Static analysis of memory access patterns

• Some challenges ahead

39

Outline

Some Challenges Ahead
• Scale measurement and analysis to > 1M cores
• Handle requirements for asymmetric measurement
• Understand usage of shared resources

— examples
• shared cores (SMT)
• shared cache
• memory bandwidth
• network

— quantify utilization
— quantify impact of contention

• aggregate
• over time

— attribute metrics to code
• Complete analysis of hybrid programs
• From metrics to bottleneck diagnosis

— work with PerfExpert team at UT and Texas State
40

