A Scalable Tools Communication Infrastructure

Richard L. Graham
Motivation

• Not many tools exist for HPC application developers
 – Standalone
 – Domain-, application-, problem- and/or site-specific
 – Not scalable
 – Not interoperable with other tools

• Tool infrastructure is reinvented each time
 – Process launch
 – Process management
 – Communication

• Upcoming ultrascale systems have greater demands
 – Scalability
 – Robustness

• Common, portable infrastructure services will be essential to enable
 – More extensive tool capabilities
 – New types of analysis tools
Scalable Tool Communications Infrastructure (STCI)

- STCI collaboration was formed to address tool *infrastructure* needs at the ultrascale
 - System architecture independent API
 - Implementation design guided by ultrascale and multi-tool requirements

- Current Active Collaborators
 - George Bosilca (MPI)
 - Darius Buntinas (MPI)
 - Rich Graham (MPI)
 - Geoffroy Vallee (Sysem R&D)
 - Greg Watson (IDE, Debugging)
Scalable Tool Communications Infrastructure (STCI)

- STCI capabilities
 - Multicast/reduction-style network
 - Scalable communication between tool UI and data sources/sinks
 - Aggregate and point-to-point communication
 - Scalable system resource management
 - Tool lifecycle management

- Tool use cases
 - Interactive tool
 - Instrumented code
Use Cases: Interactive Tool

Front End

Compute Resource
Use Cases: Interactive Tool

Front End

Compute Resource
Use Cases: Instrumented Code

Compute Resource

Front End
Use Cases: Instrumented Code
STCI Tool Model

- Monolithic tools are no longer feasible
 - Scalable tools comprise cooperating parts
- Tool model
 - Tool front-end
 - Typically interacts with the user, e.g., GUI
 - Tool agent(s)
 - Interact with application processes, e.g., debugger, profiler
 - Tool junction(s)
 - Aggregate, filter, modify, transform data sent between FE and agents
- Tool developer will implement these parts
- STCI will manage interaction between them
Architecture: Operation

- **SCTI component**
- **User supplied component**
 - Agent
 - PI Plug-in
- **Streams**
- **Physical node**
 - IN Infrastructure node
 - CN Compute node
Services Provided by STCI

- STCI provides services related to
 - Execution contexts
 - Sessions
 - Communication
 - Persistence
 - Security
Execution Contexts

- Bootstrapping
 - Managing infrastructure lifecycle
 - Installation and deployment of STCI
 - Managing tool lifecycle
- Execution context management
 - Starting/killing processes
 - Monitoring
 - Reacting to changes (e.g., process dies)
- Resource management
 - E.g., allocate locations (aka nodes)
Sessions

• All tool activities are performed within a *session*

• A session consists of
 – Resource allocation (e.g., CPUs, networks adapters)
 – Set of tool agents and junctions
 – Description of how agents and junctions are mapped onto resources
 – One or more *streams*
Streams

- A stream connects the FE to one or more Agents
 - Possibly through junctions
- Depending on the junctions, a stream can
 - Broadcast, gather, scatter, reduce, etc.
 - Modify, filter messages
 - Route messages
- Streams can be expanded/contracted
 - Minimize effect on communication
 - Don’t require stop and flush
Streams (cont’ed)

• Formed by mapping topology onto resources

• Topology
 – Predefined e.g., binary tree
 – Tool defined

• Mapping
 – Automatic
 – Tool defined
 • Specific resource
 – e.g., put junction “X” on node “c562”
 • Class
 – e.g., put junction “X” on any “I/O node” and an agent “Y” on any “compute node”
Communications

- All communication is performed over a stream
- Active messages
- Stream parameters
 - Message ordering
 - Reliability
- Flow control
 - Pause and buffer
 - Pause and drop
 - Flush or quiesce a stream
- Group communication: Bcast, reduce, etc.
 - Can be implemented by tool using junctions
 - STCI provides built-in group communication streams
- Datatypes
 - Describe data layout and basic datatypes
 - Non-contiguous data
- Heterogeneous system support
Persistence

- Persistent state is maintained by STCI
 - State of the infrastructure
 - Location of infrastructure components
 - Active sessions
 - Allocated resources
 - Policy & security
- Facilities for front-end disconnect and reconnect
 - Where to reconnect
- Cleanup when sessions exit or abort
Security

• Security services manage and control interaction between entities
 – Users, tools, applications, system resources
 – According to policies of a single security domain

• Services
 – Session authentication
 • Tool provides credentials to create or reconnect to a session
 – Service authorization
 • Tool will not have access to any greater privilege than the user would be allowed

• Keep as simple as possible
 – avoid conflicting with existing security mechanisms
Conclusion

• Developing efficient scalable tools has always been a challenge
 – Exascale systems make this even harder

• Existing tools are often
 – Architecture specific
 – Problem domain specific
 – Application specific

• Tools often have to re-invent the wheel

• STCI provides a standard HPC tool infrastructure
 – Scalability
 – Efficiency
 – Portability
 – Interoperability
For More Information

- STCI website
 - http://www.scalable-tools.org

- Email me
 - rlgraham@ornl.gov