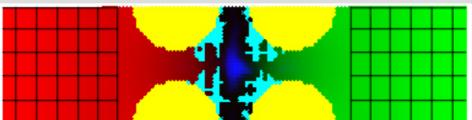
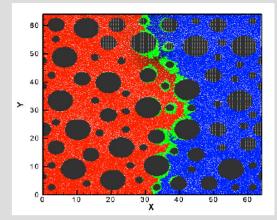
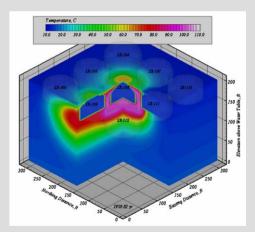
A. Project Overview

- Project Name: Hybrid Numerical Methods for Multiscale Simulations of Subsurface Biogeochemical Processes (<u>http://subsurface.pnl.gov/</u>)
- Sponsor: SciDAC-2 Science Application; BER / Environmental Remediation Sciences (New in SciDAC-2)
- Science goals: Develop an integrated multiscale modeling framework with the capability of directly linking different process models at continuum, pore, and sub-pore scales.
- Principal Investigator: Tim Scheibe (PNNL)
- Co-Investigators:
 - Alexander Tartakovsky, Phil Long (PNNL)
 - Daniel Tartakovksy (UC San Diego)
 - Paul Meakin, George Redden (INL)
 - Scott Brooks (ORNL)
- Project History: Started FY07 Four year project
- Science Application Partnerships:
 - Process integration, data management, and visualization framework for subsurface sciences (Karen Schuchardt, PNNL)
 - Component-based framework for subsurface simulations (Bruce Palmer, PNNL)

Pacific Northwest National Laboratory U.S. Department of Energy

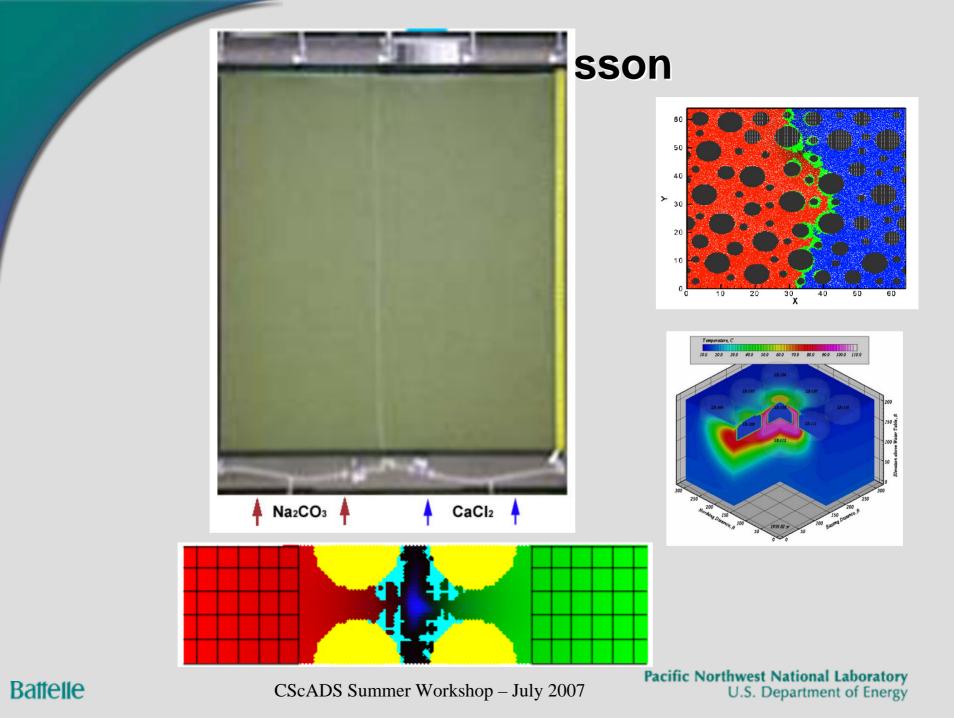

Battelle


CScADS Summer Workshop – July 2007


B. Science Lesson

Pore scale: Smoothed Particle Hydrodynamics (SPH).

- Solves Navier-Stokes equations using discrete particle method (grid-free)
- Porous medium scale: STOMP Finite Volume model.
 - Finite-difference PDE approximation solved using PETSc (linear and non-linear iteration)
- Coupled pore- and continuum-scale models
 - Pore-scale only where mixing and reaction are occurring.



Battelle

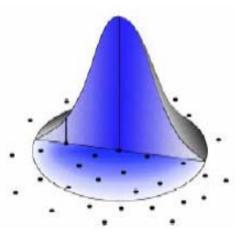
CScADS Summer Workshop – July 2007

Pacific Northwest National Laboratory U.S. Department of Energy

C. Parallel Programming Model

- STOMP (standalone): Preprocessor applied to directives in F90 code (joint serial/parallel code)
- STOMP (in framework): CCA components integrated with SciDAC technologies (solvers, grids)
- SPH (in framework): CCA components. Domain decomposition in space. Particles can move across domain boundaries and share information across boundaries.
- Other infrastructure: Kepler workflow environment with python scripting; linked visualization tools (SciDAC Visit) and data management ("Organizer" built on Alfresco).

Current status:


- Run on MPP2 at PNNL (EMSL Science Theme allocation)
- STOMP was previously parallelized except reaction module (currently being verified)
- CCA components being developed
- Prototype workflow for single-scale simulation has been developed
- Future plans: Apply to benchmark problems

D. Computational Methods

- STOMP: Uses PETSc libraries for PDE numerical solution. Structured orthogonal grids, backward Euler in time with N-R iteration for nonlinearity.
- SPH: Particle method (no PDE or matrix solution). Algorithms similar to molecular dynamics. Averaging requires information from multiple nearby particles.

Current status and future plans:

- STOMP code recently used for 150-million element problem on 512 processors on MPP2 (20% peak flops).
- Stretch goal: Isolate solver and grid modules from rest of the code in CCA framework
- TOPS researchers are looking at solver issues and performance using some example problems
- SPH code is being verified
- Exploring collaboration with PERI to profile codes and identify bottlenecks

E. I/O Patterns and Strategy

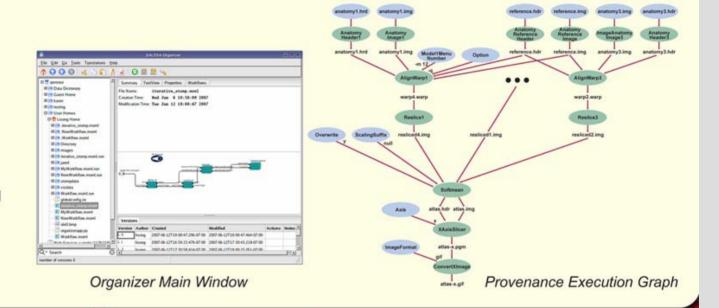
I/O patterns: ?

Approximate sizes of I/O:

- SPH: 10⁶-10⁹ particles with location and state variables, output at selected time planes
- STOMP: 10⁶-10⁹ grid elements with parameters and state variables, output at selected time planes
- Checkpoint / restart: Restart from last saved time plane
- Current status and future plans: ?

Data to be explored within Kepler workflow environment

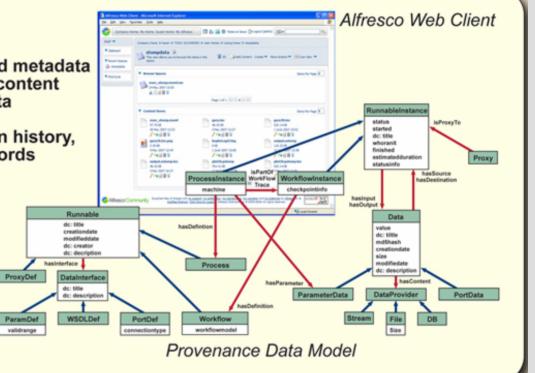
Organizer


User's view and access point to their information stored on data server:

- Workflows
- Visualizations
- Versions
- Provenance

Central interface to shared knowledge base of:

- Tools
- Workflow processes
- Workflow components
- Reference data

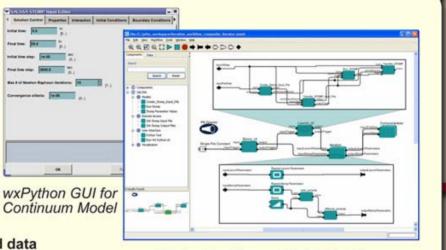


Battelle

Data to be explored within Kepler workflow environment

Data Services

- Storage of raw data in native formats and metadata including ownership, user annotations, content type, and ability to add arbitrary metadata
- Support for data versioning, modification history, and workflow provenance/execution records
- Support for collaborative research as well as protecting content through authentication/authorization
- Developed using Alfresco content management system
- Sesame RDF for storing provenance
- SPARQL for querying provenance

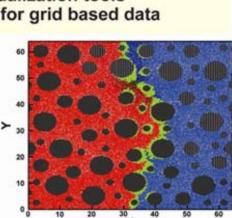

Battelle

CScADS Summer Workshop – July 2007

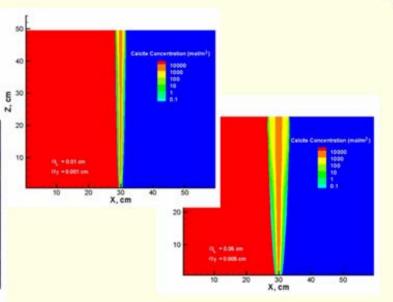
Data to be explored within Kepler workflow environment

Workflow

- Based on Kepler
- Formally captures the steps in a process with dependencies between steps including order of execution and flow of data
- Interactive designer for creating workflow descriptions
- · Save, execute, and bring back existing workflows
- Pre-defined tasks for common computational operations
- · Organizer integration for saving workflows to data server
- · Provenance capture for saving workflow execution steps and data
- Support for Common Component Architecture networks in workflows


Kepler Continuum Model Workflow Showing Nested Iteration

Battelle


Data to be explored within Kepler workflow environment

Visualization

- Support for a variety of visualization tools including Vislt and Tecplot for grid based data
- Organizer integration to automate multi-step data translations and visualizations
- Plan to support new hybrid visualization techniques

Pore-scale Visualization of Benchmark Problem

Continuum Model Visualizations of Benchmark Problem

Battelle

CScADS Summer Workshop – July 2007

Pacific Northwest National Laboratory U.S. Department of Energy

Data to be explored within Kepler workflow environment

Current status and future plans:

- Initial workflow developed for single-scale STOMP simulation by end of August. To be used by INL collaborator for a suite of experimental design simulations. Integrate with visualization.
- Future:
 - Integrate automated iteration capabilities (e.g., systematic parameter variation studies)
 - Incorporate ability to execute CCA component framework and address issues on large-scale computational platforms (e.g., queuing, etc.)

CScADS Summer Workshop – July 2007

G. Performance

Tools:

- Simple profiling and scalability tests
- Current bottleneck:
 - STOMP: Code options / logicals (need to strip down to get to 150-million). Better profiling and analysis needed.
 - SPH: Unknown
- Current status and future plans:
 - Collaboration with PERI to utilize formal performance analysis tools

H. Tools

Debugging:

• ?

- Visualization, comparison to analytical solutions and/or alternative methods
- ► Other tools:
 - STOMP: Parallel preprocessor
 - SPH:
- Current status and future plans:

I. Status and Scalability

How does your application scale now?

- Poorly understood
- Where do you want to be in a year?
 - Complete performance analysis, identify bottlenecks and strategies for addressing
 - Operable CCA components for STOMP and SPH
 - Ready to submit INCITE proposal?
- ► Top five pains?

What did you change to achieve scalability?

- See previous slides
- Current status and future plans:
 - See previous slides

J. Roadmap

Where will your science take you over the next 2 years?

- Algorithms developed for model hybridization and adaptivity
- Very large datasets becoming available

What improvements will you need to make?

- Particle and multi-scale visualization
- Understand and improve scalability of STOMP
- Address solver performance

What are your plans?

- "Divide and conquer"
- Use simple to complex benchmark problems
- SAP 1: Workflow development (as before)
- SAP 2: CCA componentization (as before)
- Science App: Model hybridization / adaptivity approach
- Rely heavily on SciDAC collaborations (TOPS, ITAPS, PERI, VACET/Ultra-Scale Vis, SDM, CCA).