

... for a brighter future

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

The COLUMBUS Project - General Purpose Ab Initio Quantum Chemistry

I. Background and Overview

Ron Shepard Chemistry Division Argonne National Laboratory

CScADS Workshop, Snowbird, Utah, July 23, 2007

Quantum Chemistry

- Multiple Potential Energy Surfaces (Born-Oppenheimer Approximation)
- Electron Correlation (various approximations and approaches)
- Molecular Structure and Properties (ground and excited states)
- Critical Points of high-dimensional surfaces (transition states, minima, intersections, etc.)

COLUMBUS

Goal: Parallel general-purpose ab initio techniques applicable to ground and excited states for arbitrary points on the PES
Applications: spectroscopy, dynamics, kinetics
History: 1980 first sequential version, 1990 first parallel version
Distribution: Open source and binary (~500K lines of Fortran+C+Perl)
Contributors: I. Shavitt (GUGA), H. Lischka (photodynamics, solvent effects, Analytic Gradients, NAC), R. Shepard (MCSCF, MRCI, Analytic Gradients, NAC, SPAM), R. Pitzer (integrals, spin-orbit CI), P. G. Szalay (Analytic Gradients, MR-AQCC, GDIIS). Th. Mueller (parallel MRCI/MR-AQCC, interoprability, spin-orbit CI) D. R. Yarkony (NAC, Conical Intersections, crossing seams), Granucci (Surface Hopping Dynamics), and many others.

http://www.univie.ac.at/columbus/

Current Support: DOE, USAF, NSF, FWF(Austria), NIC(Juelich)

Real Symmetric Eigenvalue Problem

- Use the iterative Davidson Method for the lowest (or lowest few) eigenpairs
- Direct CI: H is not explicitly constructed, w=Hv are constructed in "operator" form
- Matrix dimensions are 10⁴ to 10⁹
- All floating point calculations are 64-bit

Davidson Method

Generate an initial vector \mathbf{x}_1 MAINLOOP: DO *n*=1, NITER Compute and save $\mathbf{w}_n = \mathbf{H} \mathbf{x}_n$ Compute the n^{th} row and column of $\mathbf{G} = \mathbf{X}^T \mathbf{H} \mathbf{X} = \mathbf{W}^T \mathbf{X}$ Compute the subspace Ritz pair: $(\mathbf{G} - \rho \mathbf{1}) \mathbf{c} = 0$ Compute the residual vector $\mathbf{r} = \mathbf{W} \mathbf{c} - \rho \mathbf{X} \mathbf{c}$ Check for convergence using $|\mathbf{r}|, \mathbf{c}, \rho$, etc. IF (converged) THEN **EXIT MAINLOOP** ELSE Generate a new expansion vector \mathbf{x}_{n+1} from \mathbf{r} , ρ , $\mathbf{v}=\mathbf{X}\mathbf{c}$, etc.

ENDDO MAINLOOP

Matrix Elements

- *H_{mn}* = <*m*| *H*^{op} |*n*>
- $|n\rangle = |\phi(\mathbf{r}_1) \sigma_1 \phi(\mathbf{r}_2) \sigma_2 \dots \phi(\mathbf{r}_n) \sigma_n|$ with $\sigma_j = \alpha, \beta$

Slater Determinant

$$H^{op} = \sum_{j=1}^{n} \frac{-\hbar^{2}}{2m_{e}} \nabla_{j}^{2} + \sum_{j=a}^{n} \sum_{a=1}^{Nuc} \frac{Z_{e}Z_{a}}{|\mathbf{r}_{j} - \mathbf{R}_{a}|} + \sum_{j
$$\left\langle \right\rangle \equiv \int \int \dots \int d\mathbf{r}_{1} d\mathbf{r}_{2} \dots d\mathbf{r}_{n}$$$$

...Matrix Elements

•
$$H_{mn} = \sum_{p,q}^{Norb} h_{pq} \langle m | E_{pq} | n \rangle + \frac{1}{2} \sum_{p,q,r,s}^{Norb} g_{pqrs} \langle m | e_{pqrs} | n \rangle$$

- h_{pq} and g_{pqrs} are computed and stored as arrays (with index symmetry)
- <m|E_{pq}|n> and <m|e_{pqrs}|n> are coupling coefficients; these are sparse and are recomputed as needed

Matrix-Vector Products

•
$$\mathbf{w} = \mathbf{H} \mathbf{x}$$

$$w_{m} = \sum_{n}^{Ncsf} H_{mn} x_{n}$$

=
$$\sum_{n}^{Ncsf} \sum_{p,q}^{Norb} h_{pq} \langle m | E_{pq} | n \rangle x_{n} + \frac{1}{2} \sum_{n}^{Ncsf} \sum_{p,q,r,s}^{Norb} g_{pqrs} \langle m | e_{pqrs} | n \rangle x_{n}$$

• The challenge is to bring together the different factors in order to compute **w** efficiently

Coupling Coefficient Evaluation

- Graphical Unitary Group Approach (GUGA)
- Define a directed graph with nodes and arcs: Shavitt Graph
- Nodes correspond to spin-coupled states consisting of a subset of the total number of orbitals
- Arcs correspond to the (up to) four allowed spin couplings when an orbital is added to the graph
- Coupling coefficients are evaluated as products of "segment values" of interacting segments within the Shavitt Graph.

CSF/Walk order

Integral Types

- 0: *g*_{pqrs}
- 1: *g*_{pqra}
- 2: g_{pqab} , $g_{pa,qb}$
- **3**: **g**_{pabc}
- **4**: **g**_{abcd}

Computational Kernels and Scaling

 Depending on the block (zz, yz, wx, etc., the low-level arithmetic operations are DDOT, DAXPY, DGEMV, or DGEMM with the matrix dimension being N_{orb} or N_{ext}.

Realtive cost for wx 2-external block in terms of groups of valid internal walks

• Total effort is
$$\sim 4^{N_{active}} N_{orb}^6$$

this problem can use an arbitrarily large amount of computer time as the size of the molecule increases

Original Program (1980)

- Need to optimize wave functions for N_{csf} =10⁵ to 10⁶
- Available memory was typically 10⁵ words
- Must segment the vectors, v and w, and partition the matrix H into subblocks, then work with one subblock at a time.

...First Parallel Program (1990)

- Networked workstations using TCGMSG
- Each matrix subblock corresponds to a compute task
- Different tasks require different resources (pay attention to load balancing)
- Same vector segmentation for all g_{pars} types
- *g*_{pqrs}, <*m*| *e*_{pqrs} |*n*>, **w**, and **v** were stored on external shared files (file contention bottlenecks)

Current Parallel Program

- Eliminate shared file I/O by distributing data across the nodes with the GA Library
- Parallel efficiency depends on the vector segmentation and corresponding H subblocking
- Apply different vector segmentation for different g_{pqrs} types
- Treat upper- and lower-triangle parts separately (larger segments per task or less memory per task)
- Tasks are timed each Davidson iteration, then sorted into decreasing order and reassigned for the next iteration in order to optimize load balancing
- Capable of optimizing expansions up to N_{csf} =10⁹

