Argonne
 national
 laboratory
 .. for a brighter future

The COLUMBUS Project - General Purpose Ab Initio Quantum Chemistry

I. Background and Overview

Ron Shepard
Chemistry Division
Argonne National Laboratory

UChicago Argonne $_{\text {uc }}$

Quantum Chemistry

- Multiple Potential Energy Surfaces (Born-Oppenheimer Approximation)
- Electron Correlation (various approximations and approaches)
- Molecular Structure and Properties (ground and excited states)
- Critical Points of high-dimensional surfaces (transition states, minima, intersections, etc.)

VR vibrational relaxation Ph phosphorescence Fl fluorescence PA photoabsorption
\longleftrightarrow conical intersection \longleftrightarrow avoided crossings \longleftrightarrow intersystem crossings

COLUMBUS

Goal: Parallel general-purpose ab initio techniques applicable to ground and excited states for arbitrary points on the PES
Applications: spectroscopy, dynamics, kinetics
History: 1980 first sequential version, 1990 first parallel version
Distribution: Open source and binary ($\sim 500 \mathrm{~K}$ lines of Fortran+C+Perl)
Contributors: I. Shavitt (GUGA), H. Lischka (photodynamics, solvent effects, Analytic Gradients, NAC), R. Shepard (MCSCF, MRCI, Analytic Gradients, NAC, SPAM), R. Pitzer (integrals, spin-orbit CI), P. G. Szalay (Analytic Gradients, MR-AQCC, GDIIS). Th. Mueller (parallel MRCI/MRAQCC, interoprability, spin-orbit CI) D. R. Yarkony (NAC, Conical Intersections, crossing seams), Granucci (Surface Hopping Dynamics), and many others.

http://www.univie.ac.at/columbus/

Current Support: DOE, USAF, NSF, FWF(Austria), NIC(Juelich)

Real Symmetric Eigenvalue Problem

- Use the iterative Davidson Method for the lowest (or lowest few) eigenpairs
- Direct $\mathrm{Cl}: \mathbf{H}$ is not explicitly constructed, $\mathbf{w}=\mathrm{Hv}$ are constructed in "operator" form
- Matrix dimensions are 10^{4} to 10^{9}
- All floating point calculations are 64-bit

Davidson Method

Generate an initial vector \mathbf{x}_{1}
MAINLOOP: DO $n=1$, NITER
Compute and save $\mathbf{w}_{n}=\mathbf{H} \mathbf{x}_{n}$
Compute the $n^{\text {th }}$ row and column of $\mathbf{G}=\mathbf{X}^{T} \mathbf{H X}=\mathbf{W}^{T} \mathbf{X}$
Compute the subspace Ritz pair: $(\mathbf{G}-\rho \mathbf{1}) \mathbf{c}=0$
Compute the residual vector $\mathbf{r}=\mathbf{W} \mathbf{c}-\rho \mathbf{X} \mathbf{c}$
Check for convergence using $|\mathbf{r}|, \mathbf{c}, \rho$, etc.
IF (converged) THEN EXIT MAINLOOP
ELSE
Generate a new expansion vector \mathbf{x}_{n+1} from $\mathbf{r}, \rho, \mathbf{v}=\mathbf{X c}$, etc. ENDIF
ENDDO MAINLOOP

Matrix Elements

- $H_{m n}=<m\left|H^{\circ p}\right| n>$
- $\left|n>=\left|\phi\left(\mathbf{r}_{1}\right) \sigma_{1} \phi\left(\mathbf{r}_{2}\right) \sigma_{2} \ldots \phi\left(\mathbf{r}_{\mathrm{n}}\right) \sigma_{\mathrm{n}}\right|\right.$

Slater Determinant with $\sigma_{j}=\alpha, \beta$

$$
\begin{aligned}
H^{o p} & =\sum_{j}^{n} \frac{-\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}+\sum_{j}^{n} \sum_{a}^{N_{u} c} \frac{Z_{e} Z_{a}}{\left|\mathbf{r}_{j}-\mathbf{R}_{a}\right|}+\sum_{j<k}^{n} \frac{Z_{e}^{2}}{\left|\mathbf{r}_{j}-\mathbf{r}_{k}\right|} \\
\rangle & \equiv \iint \ldots \int d \mathbf{r}_{1} d \mathbf{r}_{2} \ldots d \mathbf{r}_{n}
\end{aligned}
$$

...Matrix Elements

$H_{m n}=\sum_{p, q}^{N o r b} h_{p q}\langle m| E_{p q}|n\rangle+\frac{1}{2} \sum_{p, q, r, s}^{N o r b} g_{p q r s}\langle m| e_{p q r s}|n\rangle$

- $h_{p q}$ and $g_{p q r s}$ are computed and stored as arrays (with index symmetry)
- $<m\left|E_{p q}\right| n>$ and $<m\left|e_{p q r s}\right| n>$ are coupling coefficients; these are sparse and are recomputed as needed

Matrix-Vector Products

- $w=\mathbf{H x}$

$$
\begin{aligned}
w_{m} & =\sum_{n}^{N c s f} H_{m n} x_{n} \\
& =\sum_{n}^{N c s f} \sum_{p, q}^{N o r b} h_{p q}\langle m| E_{p q}|n\rangle x_{n}+\frac{1}{2} \sum_{n}^{N c s f} \sum_{p, q, r, s}^{N o r b} g_{p q r s}\langle m| e_{p q r s}|n\rangle x_{n}
\end{aligned}
$$

- The challenge is to bring together the different factors in order to compute w efficiently

Coupling Coefficient Evaluation

- Graphical Unitary Group Approach (GUGA)
- Define a directed graph with nodes and arcs: Shavitt Graph
- Nodes correspond to spin-coupled states consisting of a subset of the total number of orbitals
- Arcs correspond to the (up to) four allowed spin couplings when an orbital is added to the graph
- Coupling coefficients are evaluated as products of "segment values" of interacting segments within the Shavitt Graph.

CSF/Walk order

Integral Types

$$
\begin{array}{ccccc}
& \underline{z} & \underline{y} & \underline{x} & \underline{w} \\
\underline{z} & 0 & 1 & 2 & 2 \\
\underline{y} & 1 & 0,2 & 1,3 & 1,3 \\
\underline{x} & 2 & 1,3 & 0,2,4 & 2 \\
\underline{w} & 2 & 1,3 & 2 & 0,2,4
\end{array}
$$

Computational Kernels and Scaling

- Depending on the block (zz, yz, wx, etc., the low-level arithmetic operations are DDOT, DAXPY, DGEMV, or DGEMM with the matrix dimension being $\mathrm{N}_{\text {orb }}$ or $\mathrm{N}_{\text {ext }}$.

Realtive cost for wx 2-external block in terms of groups of valid internal walks

- Total effort is $\sim 4^{N_{\text {active }}} N_{\text {orb }}^{6}$
this problem can use an arbitrarily large amount of computer time as the size of the molecule increases

Original Program (1980)

- Need to optimize wave functions for $N_{c s f}=10^{5}$ to 10^{6}
- Available memory was typically 10^{5} words
- Must segment the vectors, \mathbf{v} and \mathbf{w}, and partition the matrix \mathbf{H} into subblocks, then work with one subblock at a time.

...First Parallel Program (1990)

- Networked workstations using TCGMSG
- Each matrix subblock corresponds to a compute task
- Different tasks require different resources (pay attention to load balancing)
- Same vector segmentation for all $g_{\text {pqrs }}$ types
- $g_{\text {pqrs }},<m\left|e_{p q r s}\right| n>, \mathbf{w}$, and \mathbf{v} were stored on external shared files (file contention bottlenecks)

Current Parallel Program

- Eliminate shared file I/O by distributing data across the nodes with the GA Library
- Parallel efficiency depends on the vector segmentation and corresponding \mathbf{H} subblocking
- Apply different vector segmentation for different $g_{p q r s}$ types
- Treat upper- and lower-triangle parts separately (larger segments per task or less memory per task)
- Tasks are timed each Davidson iteration, then sorted into decreasing order and reassigned for the next iteration in order to optimize load balancing
- Capable of optimizing expansions up to $N_{c s f}=10^{9}$

