

Describing Performance and Resource Needs of DOE Office of Science Workloads

David Skinner Lawrence Berkeley Lab

in this talk...

- NERSC, Magellan Overview
- Integrated Performance Monitoring
- Magellan Workload

a quick preface on HPC performance...

Performance is Relative

- To your goals
 - Time to solution, $T_{queue} + T_{run}$
 - Efficient use of allocation
 - Do FLOPs even matter?

- To the
 - application code
 - input deck
 - machine type/state

In general the first bottleneck wins.

One Slide about NERSC

- Serving all of DOE Office of Science
 - domain breadth
 - range of scales
- Science driven
 - sustained
 performance

- Lots of users
 - –~4K active
 - -~500 logged in
 - ~300 projects
- Architecture aware
 - procurements driven by workload needs

Magellan Test Bed at NERSC Purpose-built for Science Applications

720 nodes, 5760 cores in 9 Scalable Units (SUs) → 61.9 Teraflops SU = IBM iDataplex rack with 640 Intel Nehalem cores

IPM Overview

- IPM = Integrated Performance Monitoring
- IPM started as POE+ at NERSC
 - "How to profile apps from 400 projects asking for time?"
- Lightweight scalable profiling layer

- What's going on overall in my code?
 - How much comp, comm, I/O?
 - Where to start with optimization?
- Provide high level performance numbers with tiny overhead
 - To get an initial read on application runtimes
 - For allocation/reporting, ERCAP perf data
 - To check the performance weather
- How is my load balance?
 - Domain decomposition vs. concurrency (M work on N tasks)

- One of many: There are lots of good vendor supplied tools, we encourage their use
- Adaptable : If you can't get what you need from those we can adapt IPM based on your feedback
- Performance Portability: IPM provides long-term continuity to performance data between machines, applications, allocations

Using IPM @ NERSC

Do "module load ipm", run normally Upon completion you get

##IPM2v0.xx###################################									
#									
# command	: ./	fish	-n 3	10000					
# start	: Tu	e Feb	08	11:05:21	2011	host	:	nid06027	
# stop	: Tu	e Feb	08	11:08:19	2011	wallclock	:	177.71	
<pre># mpi_tasks</pre>	: 25	on 2	noo	des		%comm	:	1.62	
# mem [GB]	: 0.;	24				gflop/sec	:	5.06	

Maybe that's enough. If so you're done.

Have a nice day ③

...

- 1) We "module load ipm" for users silently
- 2) Upon completion you get normal output (leave no tracks)
- 3) A logfile is written to a shared space
- 4) NERSC then analyzes 300K+ application profiles

IPM Profile Report

IPM profile for 5478299.nid	00003 - Mozilla Firefox					×
<u>File E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> o	ookmarks <u>T</u> ools <u>H</u> elp					
🔇 🔊 - C 🗙 🎸	http://www.nersc.gov/proj	ects/SDS	A/workload/N6ipm/m	ilc_1024/ 🏫 🚺 🔹	😗 - qcd 🔎 🚇	•
📄 Remember Password 📄 Get	YouTube video					
🎵 IPM profile for 5478299.n	nid00003 🗠					~
5478299.nid00003	command: ./su3_rmd_ip	m				-
Load Balance	codename:		unknown	state:	running	
<u>Communication Balance</u> <u>Message Buffer Sizes</u> <u>Communication Topology</u>	username:	username:		group:	unknown	
Switch Traffic Memmory Usage Executable Info Host List	host:	host:		mpi_tasks:	1024 on 512 hosts	
Environment Developer Info	start:	07	/31/08/10:22:15	wallclock:	1.01934e+03 sec	- 1
Powered by	stop:	07	/31/08/10:39:14	%comm:	22.3665512120588	
IPM	total memory:	89.7	124593999995 gbytes	total gflop/sec:	996.231781348717	
	switch(send):		0 gbytes	switch(recv):	0 gbytes	
Co	omputation			Communic	ation	
Event	Count	Pop		% of MPI 7	Time	
PAPI_FP_OPS	101549889526972	7 *				
PAPI_TOT_CYC	250474595238368) *			MPI_Allreduce	
PAPI_TOT_INS	193800845303250	l *			MPI_Wait	
PAPI_VEC_INS	41635201956861	7 *			MPI_Irecv MPI_Isend	
					MPI_Comm_rank	
					MPI_Barrier	
					MPI_Bcast	
					MPI_Comm_size	
-			<u> </u>			_
Done					(🚳 🔀	_//
Office of						~
Science						

nce BERKELEY LAB

Load imbalance is a common bottleneck

Dynamic disorder: What we miss with IPM

Performance Portability

rchite c t u r е

on to workloads...

- We have collected over 300k IPM profiles
 - Jobs running longer than 20min (400k otherwise)
 - Covers a period of 6 years
 - Covers 5 HPC architectures
- This may pave the way for using IPM by default on all NERSC production systems

300K IPM Application Profiles

Generalities in Scalability and Performance

Load Balance : cartoon

Unbalanced:

Balanced:

Time saved by load balance

Load (Im)balance

Communication Time: 64 tasks show 200s, 960 tasks show 230s

Some specific examples From Magellan

Workload Analysis on Magellan

- Most HPC profiling is done on an opt-in basis.
 Users deploy tools to understand their code.
- Magellan profiling is system wide, passive, and automatic, a workload approach.
- October 4-27 2010 :
 - 1053 batch jobs
 - 37 users
 - 18 applications
 - 4K cores
 - Preliminary results(*)

(*) does not yet include non-MPI jobs

Workload Coverage: which jobs use which resources

Job Index (1053 jobs)

Examining 22K Magellan Jobs

size=core-hours 207 user-concurrency pairs color=user label=cores **\$**

Years of World-Class Science 1931-2006

- How to proceed making workload level statements about resource needs?
- How to find bottlenecks?
- Each run is potentially distinct: Changes in code, inputs, compilation, runtime, system of study, etc.
- Let revisit the familiar case of load imbalance

Inferences on workloads

- What changes between runs?
- What stays the same?

code input configs batch script runtime machine switch traffic

User D runs code A 13 times

User F runs Code V 220 times

Last two were easy: discontinuities/structure

Longitudinal Load Balance Analysis user=C N=80

We can do this with IO too.

Longitudinal Load Balance Analysis IO Writes N=128

Ever seen this IO strategy?

Longitudinal Load Balance Analysis IO:bytes W N=100

Conclusions

- "Always on" profiling looks doable/ promising.
- Performance in practice vs. performance in principle.
- Comparison across jobs can allow some confidence in which bottlenecks are worth attention
- If you have ideas about/for IPM, I am interested in collaborations.

Thank you

Contact Info: David Skinner deskinner@lbl.gov http://ipm-hpc.sf.net

