
David Skinner
Snowbird, July 2008

Integrated Performance Monitoring:
Understanding Applications and Workloads

Outline

Feel free to ask questions!

• Overview of IPM
• The needs of production HPC centers wrt. tools
• IPM design and implementation
• Recent R&D work

IPM Overview

• Integrating Performance Monitoring (IPM) is an
easy to use, scalable HPC application profiling
which serves both users and center managers. Its
implemention is portable open source.

• IPM is a profiling layer more than a tool. There is
no GUI, no API to learn, etc.

• IPM is funded by DOE and NSF. It’s also used by at
DOD MSRCs.

Realities at a production HPC center

•Large scale parallelism and data needs of science teams
•Large number of projects, users, and codes
•(105 tasks)(104 users)*(102 codes) performance threads
•Service oriented systems, ease of use in tools and all things
•Centerwide performance assessment for allocations

Luckily many HPC
problems are simple,
boring, unresearch-
worthy in terms of
computer science.

ERCAP Question 19.1

Each application for time at NERSC includes both
 algorithmic and performance assessments

ERCAP Question 19.2

Two core needs of NERSC, SDSC, TACC, etc.
•How are ~400 projects going to generate this information without
distraction from their research goals?

•When there is performance problem or need to tune, what’s the first step?

Motivation: NERSC has many Customers and
an Extremely Diverse Workload

One of
~ 300

Research
Projects

To
ta

l A
nn

ua
l C

P
U

*H
ou

rs
 (a

ll
jo

bs
)

Number of MPI Tasks in each job

A workload, qualitatively described

Science areas Dense linear
algebra

Sparse linear
algebra

Spectral
Methods (FFT)s Particle Methods Structured Grids Unstructured or

AMR Grids

Accelerator
Science X X

IMPACT-T
X

IMPACT-T
X

IMPACT-T X

Astrophysics X X
MAESTRO X X X

MAESTRO
X

MAESTRO

Chemistry X
GAMESS X X X

Climate X
CAM

X
CAM X

Combustion
X

MAESTRO
X

AMR Elliptic

Fusion X X
X

GTC
X

GTC
X

Lattice Gauge X
MILC

X
MILC

X
MILC

X
MILC

Material Science X
PARATEC

X
PARATEC

X
X

PARATEC

How do we study such a workload quantitatively?

How can we spot application performance issues?

Can we just use the vendor performance tools?

First, what is a performance tool?

1. An application that users can run to debug the
performance of their code (is this what the
center wants?)

2. A runtime layer implemented by the center staff
that reports on application performance (is this
what the user wants?)

Can we have both at the same time?

1. Must allow users flexibility in how they debug
performance

2. The carrot works. The stick does not.

Performance Analysis using a Tool

Running a parallel app
w/ performance tool

HPC apps expert

1. Get to know the algorithm and source.
2. Instrument, Run, Analyze, Summarize
3. Iterate on #2

Workload Analysis

1) What is the parallel scaling (in person hours)?

2) Are the analyses comparable?

Whole workload? No problem, this process is embarrassingly parallel.

NERSC has ~300 Projects

Tools
1) Good for getting to know a code
2) Debugging or improving a code
3) Not for workload snapshot or inventory

HPC Resource

P
rofiling Layer…

app1

app1

appN

Layer:
1) Transparent, does not interrupt production computing
2) Simple & Systematic, comparable profiles
3) Focus on data flow, not GUI presentation

XML SQL WWW

stdout

Don’t collect perf data through a GUI.
Well defined performance records.

IPM Motivation

Whether we call it a tool or a profiling layer, we want to :

• Make it easy for both users and the center to generate
comparable workload performance analyses.

• Make it easy to identify the causes performance losses.

• Make it easy to state clearly which HPC resources are most
critical to the center’s workload.

• Make it easy to access performance profiles.

Profiling Tools

• Many tools exist, roughly they vary by

• HPC centers with complex & dynamic workloads
need an easy to use, almost transparent, low
impact profiling layer that provides high level
summaries about job performance.

• More in-depth & detailed tools can be used
subsequently. Use the right tool for the job.

Ease of Use
Scalability
Runtime Impact on Code
Level of Detail
Type of Information

What tool should I use?
There is no “right” tool.

Which tool helps you
 answer Question 19?

Profiling Tools (contd)

• Many performance analysis tools are not scalable.
The volume of data or number of files may
preclude their use. They may write a file per task.

• Does the tool profile the libraries you’re using or
just your own code?

• A code many run differently (or not at all) when
profiled by some tools.

• Getting a lot of people to use the same tool in the
same way is hard, little comparable performance
data between projects or machines.

• Your tool may give you an information headache

Profiling is Projection

• At a high level performance events occur in a
three dimensional space

• Where is the performance event?
–In time
–In the computer (rank space)
–In the code (source line)

• Profiling requires projections on this space,
flattening some or all of its dimensions

time

concurrencyapplication

What do we want from a profile?

• Informative summary of an application
–A batch job is the outermost context

• Profiles should be comparable across
applications, architectures, and concurrencies

• There is such a thing as too much information
–Tracing should be used when needed, but it’s often not

the first tool to reach for when performance is low.

HPM:
flops, cache, TLB,

MPI :
Call, buffer size,

topology, statistics

OS:
Jobid, getrusage,

executable info
4096 x

Job_1234

IPM: Design Goals

• Provide high level performance profile
• Fixed memory footprint
• Minimal CPU overhead
• Parallel aware
• Easy to use
• Portable

1-2 MB

1-2%

Flip of a switch, no recompilation, no instrumentation

Use MPI, switch, and other resources at hand

IPM: Information Flow

An example w/ user controlled context tagging

How to use IPM : basics

1) Do “module load ipm”, then run normally
2) Upon completion you get

Maybe that’s enough. If so you’re done.
Have a nice day.

##IPMv0.85##
#
command : ../exe/pmemd -O -c inpcrd -o res (completed)
host : s05405 mpi_tasks : 64 on 4 nodes
start : 02/22/05/10:03:55 wallclock : 24.278400 sec
stop : 02/22/05/10:04:17 %comm : 32.43
gbytes : 2.57604e+00 total gflop/sec : 2.04615e+00 total
#
###

Q: How did you do that? A: MP_EUILIBPATH, LD_PRELOAD, XCOFF/ELF

Want more detail? IPM_REPORT=full

##IPMv0.85###
#
command : ../exe/pmemd -O -c inpcrd -o res (completed)
host : s05405 mpi_tasks : 64 on 4 nodes
start : 02/22/05/10:03:55 wallclock : 24.278400 sec
stop : 02/22/05/10:04:17 %comm : 32.43
gbytes : 2.57604e+00 total gflop/sec : 2.04615e+00 total
#
[total] <avg> min max
wallclock 1373.67 21.4636 21.1087 24.2784
user 936.95 14.6398 12.68 20.3
system 227.7 3.55781 1.51 5
mpi 503.853 7.8727 4.2293 9.13725
%comm 32.4268 17.42 41.407
gflop/sec 2.04614 0.0319709 0.02724 0.04041
gbytes 2.57604 0.0402507 0.0399284 0.0408173
gbytes_tx 0.665125 0.0103926 1.09673e-05 0.0368981
gbyte_rx 0.659763 0.0103088 9.83477e-07 0.0417372
#

Want more detail? IPM_REPORT=full

PM_CYC 3.00519e+11 4.69561e+09 4.50223e+09 5.83342e+09
PM_FPU0_CMPL 2.45263e+10 3.83223e+08 3.3396e+08 5.12702e+08
PM_FPU1_CMPL 1.48426e+10 2.31916e+08 1.90704e+08 2.8053e+08
PM_FPU_FMA 1.03083e+10 1.61067e+08 1.36815e+08 1.96841e+08
PM_INST_CMPL 3.33597e+11 5.21245e+09 4.33725e+09 6.44214e+09
PM_LD_CMPL 1.03239e+11 1.61311e+09 1.29033e+09 1.84128e+09
PM_ST_CMPL 7.19365e+10 1.12401e+09 8.77684e+08 1.29017e+09
PM_TLB_MISS 1.67892e+08 2.62332e+06 1.16104e+06 2.36664e+07
#
[time] [calls] <%mpi> <%wall>
MPI_Bcast 352.365 2816 69.93 22.68
MPI_Waitany 81.0002 185729 16.08 5.21
MPI_Allreduce 38.6718 5184 7.68 2.49
MPI_Allgatherv 14.7468 448 2.93 0.95
MPI_Isend 12.9071 185729 2.56 0.83
MPI_Gatherv 2.06443 128 0.41 0.13
MPI_Irecv 1.349 185729 0.27 0.09
MPI_Waitall 0.606749 8064 0.12 0.04
MPI_Gather 0.0942596 192 0.02 0.01
###

Need a more detailed application profile?

You’ll need a web browser.

XML SQL WWW

stdout

Batch

IPM: XML log files

• There’s a lot more information in the logfile than you get to
stdout. A logfile is written that has the hash table, switch
traffic, memory usage, executable information, ...

• Parallelism in writing of the log (when possible)

• The IPM logs are durable performance profiles serving

–HPC center production needs:
https://www.nersc.gov/nusers/status/llsum/

 http://www.sdsc.edu/user_services/top/ipm/

–HPC research: ipm_parse renders txt and html
 http://www.nersc.gov/projects/ipm/ex3/

–your own XML consuming entity, feed, or process

Message Sizes : CAM 336 way

per MPI call per MPI call & buffer size

Scalability: Required

32K tasks AMR code

What does this mean?

More than a pretty picture

Discontinuities in performance are often key to 1st order improvements

But still, what does this really mean? How the !@#!& do I fix it?

Scalability: Insight

•Domain decomp

•Task placement

•Switch topology

Aha.

Portability: Profoundly Interesting

A high level description of the
performance of a well known cosmology code on four well known architectures.

IPM: Design Goals

• Provide high level performance profile 
• Fixed memory footprint 
• Minimal CPU overhead 
• Parallel aware 
• Easy to use 
• Portable 

Now at version 0.947

What about the workload?

What sort of interconnect
does your workload need?

1024 way MILC

1024 way MADCAP

336 way CAM

This is an active
HPC research topic

which goes on largely
outside the space of
center user concerns

Workload: How much memory
does your workload need?

Weak vs. Strong Scaling

Recent work on I/O extensions

Simple Profile : 63% time in I/O Detailed Trace: An inventory of each I/O

read
write
compute

A POSIX I/O call looks a lot like an MPI call

Write(fd,buff, buffsize) ~ MPI_Send(buff, rank, size)

We extended IPM to include I/O profiling

Current Status & Futures

• IPM is in production use at NERSC & SDSC (bassi, datastar,
franklin). In research use on BG, X1, ES, and other
architectures.

• We interoperate with the PERI Perf Schema
• Now have thousands of cross-architecture application

profiles. These have provided users with performance
perspective and centers & vendors with architectural
resource assessments and projected requirements.

• If there are things that you think should be in IPM but are
not, let us know. If you want to help the development of IPM,
that’s even better,

http://ipm-hpc.sf.net

IPM: Upcoming Activities

Here is what we are working on.

• XT4 shared library support in CNL OS version 2.1 (release in
Q2 2008)

• Finish LDRD funded I/O profiling work (Jan 09)
–What should an I/O profile look like?

• Continuing NSF funded SDCI work
–Deploying IPM on all major NSF machines (TACC’s

Ranger completed in Feb 08)
–Exporting NERSC’s web/database workload infrastructure

to NSF
– Extending IPM to PGAS languages (UPC)

• HPC research directions…

From Profiles to Models

Q: What is an application model?
A: A method of calculating wall time for an application given

problem input, concurrency and a detailed computer system
description. Preferably the method is in a functional form and
free from heuristics.

wall seconds = model (input, NP, arch)
 = comm_model (I,N,A) + compute_model(I,N,A)

 = Sum_i (model_i(I,N,A))

What does an HPC app look like?

Time 

M
P

I
R

a
n

k
 

If you increase the
resolution or extent of the
data do you get a better
picture?

Reduce DGEMM Exchange1 Exchange2

Modeling: Application complexity

Q: What is the
complexity of the
application graph
for this parallel
code?

A: Not large

Q: How modelable
are the nodes?

A: Communication
is easier than
compute

Time 
M

P
I

R
a

n
k

 

Application Sketching

• Application sketching sometimes means the
creation of applications from high level ideas
about what the code should do.

• We’re overloading the term to include the reverse
process. Based on a profile can we make a
cartoon model of the application?

• Models are the best profiles
• Hopefully this will be useful to

–understand a code you’re unfamiliar with
–provide a concurrency-free picture of the code
–provide a canvas to paint perf data on

Directed Graph of Application Performance

outer
loop

Application graph + Modelable nodes = Application Model

allreduce
c s

exchange
c s

dgemm
c s

daxpy
c s

ddot
c s

Application Shape and Symmetry :
ex1 from the IPM website

Application Shape and Symmetry

Key Points

• Building ease-of-use into performance analysis
• Building a quantitative basis for workload and

procurement understanding
• Encouraging development of clear, portable, easy-

to-use, failover tolerant, unintrusive, production
quality APIs

• Implementing those APIs and layers in HPC
resources and HPC frameworks

• The tools space is big. IPM is not a swiss army
knife, we need a hierarchy of interoperable tools.

