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Agenda

• What changed since last year?

• Status

• Mainline merge challenges
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what changed?
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perfmon2 interface changes

•No new features, quite the contrary!

•No struct arg modified by programming syscalls
 used to be for pfarg_setdesc_t (timeout), pfarg_pm*_t (error)

 possible to share parameters between sessions: system-wide

•Set switch timeout must be multiple of clock granularity
 kernel does not round it up anymore

 avoid mistakes later on

 granularity via clock_getres() (I know, it's not in libc!)
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perfmon2 implementation changes

•Use hrtimers for timeout-based event set switching
 avoid problems with tickless kernel in system-wide mode

 less overhead

•More modular code
 group features by module: rw, intr, sets, pmu, init, sysfs, debugfs, syscalls, smpl,...

 clear separation between kernel and user headers

 make headers_install

•Rewritten x86 support
 all PMUs-specific code embedded into PMU description module (code+data)

•Vastly updated sysfs code

•New optional debugfs interface to report perfmon2 statistics
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other perfmon2 changes

•Kernel source code managed with GIT on kernel.org
 improves manageability, visibility

 improves tracking of code contributions

 easier to track mainline kernel

•One release for each new mainline kernel
 yes, libpfm, pfmon version numbers are increasing again!

•All user code + mailing list hosted on SourceForge.net
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perfmon2 experimental code

•Utrace-ready (internal tracing engine)
 automatic support for Roland McGraph's utrace interface

 key advantage: no ptrace() to stop/resume thread, can invoke syscalls directly

 need utrace-enabled kernel

•Intel PEBS/BTS/DS management interface (Markus Metzger, Intel)
 coordinate access to resources via internal API

 provides DS_AREA, IA32_DEBUGCTL context switch support

 simplify PEBS code for perfmon2

 code not yet released, waiting for full ds.h interface in mainline
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libpfm changes

•IBM Power4, Power5, Power6 support (IBM)

•IBM Cell support (Toshiba)

•Sicortex Nodechip support (Phil Mucci)

•AMD Barcelona support (AMD)
 including full support for Instruction Based Sampling (IBS)

•Sun Sparc support (Ultra*, Niagara*) (Dave Miller)

•documentation cleanups (Cray)

•Python bindings (Google)

•dynamic system call numbers detection (2.6.24 and up)
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pfmon changes

•Old Pentium II, III, Pro support (Vince Weaver, Cornell U.)

•SUN Sparc support (Ultra*, Niagara*) (Dave Miller)

•IBM Power4, Power5, Power6 support (IBM)

•IBM Cell support (Sony)

•Symbol correlations across dlopen/dlclose (CERN)

•Process attribution in system-wide (Phil Mucci) 

•Intel PEBS support on Core 2

•Lots of bug fixes
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Perfmon2 architecture summary
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Supported processors

HW Vendors Model Contributors
AMD AMD64 family 6 Cornell U.
AMD AMD64 family 15
AMD AMD64 family 16 AMD

Intel 
Intel Cornell U.  
Intel
Intel Core Duo/Core Solo
Intel Intel
Intel Core 2 Duo

MIPS many

IBM Power4, Power5, PPC970 IBM
IBM Power 6 IBM
IBM Cell IBM, Sony, Toshiba

Cray X2, XT Cray

Sun Ultra12,Ultra3*, Ultra4+ David S. Miller
Sun Niagara1, Niagara2 David S. Miller

Hewlett-Packard Laboratories

Itanium (all models) Hewlett-Packard Laboratories
Pentium II, Pentium Pro
Pentium III, Pentium M Hewlett-Packard Laboratories

Hewlett-Packard Laboratories
Pentium 4 (Neburst)

Hewlett-Packard Laboratories

Phil Mucci, SiCortex, Broadcom, Cornell U.

●to come: Intel Nehalem, Intel Tukwila
●still missing: ARM



1313

general status and future work

•up to perfmon v2.8

•soon to be released
 Linux v2.6.26 patch, libpfm-3.5, pfmon-3.5

•future work:
 focus on merge (cleanup, simplify, explain)

 variable width counters

 drop MASKED state

 add PMD -> PMC dependency information for all PMUs



1414

Gpfmon: pfmon GUI front-end

• Python-based, open-source front-end from CERN
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what's up with the merge?
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introduction

•To have impact, perfmon2 must be in mainline
 available in off-the-shelf distros

•Perfmon2 code base is big:
 spans 5 processor architectures

 touches context switch, syscalls, fork, exit, kernel exit, interrupt

 1.1MB patch, 10,000 lines of C (patch)

•LKML review: cannot be merged as is
 too big, over-engineered

 concerns about extensibility (syscalls never disappear)

 feedback can be constructive: debugfs, sysfs, Kbuild,

•Must start from scratch: perfmon3
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Our solution: minimal perfmon

•Start from scratch: perfmon3
 concentrate first on basic value-add: per-thread counting

 don't be afraid to break backward compatibility with perfmon2

 use their tool: quilt

•Quilt: what's that?
 collection of scripts to manage patches as a stack: push, pop

 force features (code) to be attributed to a specific patch

 easy to mail patch stack to LKML

•Minimal perfmon2 quilt series:
 track linux-next and mainline GIT trees

 import ONLY code to support per-thread counting

 drop everything else: sampling, event-sets, PMU descriptions, sampling formats

 only supports: Intel architectural, AMD AMD64 PMUs

 200KB, 2000 lines of C (patch)
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Minimal perfmon2 architecture summary
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system calls and extensibility

•How to extend a syscall-based interface?
1. add new system calls

2. make the syscall parameters extensible

•Parameter extensibility:
 add new flag for new parameter, then kernel checks:

•Struct extensibility:
 add new flags for each new feature, reserved no need to be zero

• pfm_func(int fd, int flags, pfarg_p_t *p);
• pfm_func(int fd, int flags, pfarg_p_t *p, pfarg_q_t *q);

• pfm_func(fd, XTRA_FEATURE, &p, &q)

• struct pfarg_p_t { int flags; uint64_t reserved[8]; }
• struct pfarg_p_t { int flags; uint64_t new; uint64_t reserved[7]; }
• struct pfarg_p_t p = { NEW_P, 0xf0, };
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syscall interface proposal

•Use flags for extensibility

•Merge pfm_start() and pfm_restart()

•Do we need pfm_delete_evtsets()?

•Drop pmd/pmc distinction? pfm_read_reg(), pfm_write_reg()

 (  * ,  * ,  * ,  )int pfm_create_context pfarg_ctx_t c char s void a size_t s  (  )int pfm_stop int fd
 (  ,  * ,  )int pfm_write_pmcs int fd pfarg_pmc_t pmcs int n  (  )int pfm_restart int fd
 (  ,  * ,  )int pfm_write_pmds int fd pfarg_pmd_t pmcs int n  (  ,  * ,  )int pfm_create_evtsets int fd pfarg_setdesc_t s int n
 (  ,  * ,  )int pfm_read_pmds int fd pfarg_pmd_t pmcs int n  (  ,  * ,  )int pfm_delete_evtsets int fd pfarg_setdesc_t s int n
 (  ,  * )int pfm_load_context int fd pfarg_load_t ld  (  ,  * ,  )int pfm_getinfo_evtsets int fd pfarg_setinfo_t i int n
 (  ,  * )int pfm_start int fd pfarg_start_t st  (  ) ;int pfm_unload_context int fd

 

 int pfm_create_context(  int flags,  * ,  * , char s void a  )size_t s  (  ,int pfm_stop int fd   int flags)
 (  ,  * , int pfm_write_pmcs int fd pfarg_pmc_t pmcs  size_t s)
 (  ,  * , int pfm_write_pmds int fd pfarg_pmd_t pmcs  size_t s)  (  ,  ,  * , int pfm_create_evtsets int fd int flags pfarg_setdesc_t s  size_t s)
 (  ,  * ,int pfm_read_pmds int fd pfarg_pmd_t pmcs   size_t s)  (  ,  * , int pfm_delete_evtsets int fd pfarg_setdesc_t s  size_t s) ???

 (  , int pfm_load_context int fd  ,  int flags int target)  (  ,  * , int pfm_getinfo_evtsets int fd pfarg_setinfo_t i  size_t s)
 (  , int pfm_start int fd  int flags)  (  ) ;int pfm_unload_context int fd
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summary

•All major processors supported now!

•Feature set is complete

•Merging with minimal patch series

•Strong community of users and contributors, thanks!
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Thank  You!

Q&A
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How we got there?

●incremental work over several years

●most features were requested by advanced users (like you guys!)
● huge gap between casual and advanced users

●over-engineered to provide maximum flexibility:
● no need for yet another interface to support new HW

● successful so far: IBM Power 6, Intel PEBS, AMD IBS, Itanium 

●not a big fan of pushing complexity down to kernel
● no event knowledge

● system-wide is per-cpu

●development remained outside mainline too long
● needed to validate interface on all major processors

● difficult to change APIs once integrated


