
 1

Perfmon2: status update

Stéphane Eranian <eranian@google.com>

22

Agenda

• What changed since last year?

• Status

• Mainline merge challenges

3

what changed?

44

perfmon2 interface changes

•No new features, quite the contrary!

•No struct arg modified by programming syscalls
 used to be for pfarg_setdesc_t (timeout), pfarg_pm*_t (error)

 possible to share parameters between sessions: system-wide

•Set switch timeout must be multiple of clock granularity
 kernel does not round it up anymore

 avoid mistakes later on

 granularity via clock_getres() (I know, it's not in libc!)

55

perfmon2 implementation changes

•Use hrtimers for timeout-based event set switching
 avoid problems with tickless kernel in system-wide mode

 less overhead

•More modular code
 group features by module: rw, intr, sets, pmu, init, sysfs, debugfs, syscalls, smpl,...

 clear separation between kernel and user headers

 make headers_install

•Rewritten x86 support
 all PMUs-specific code embedded into PMU description module (code+data)

•Vastly updated sysfs code

•New optional debugfs interface to report perfmon2 statistics

66

other perfmon2 changes

•Kernel source code managed with GIT on kernel.org
 improves manageability, visibility

 improves tracking of code contributions

 easier to track mainline kernel

•One release for each new mainline kernel
 yes, libpfm, pfmon version numbers are increasing again!

•All user code + mailing list hosted on SourceForge.net

77

perfmon2 experimental code

•Utrace-ready (internal tracing engine)
 automatic support for Roland McGraph's utrace interface

 key advantage: no ptrace() to stop/resume thread, can invoke syscalls directly

 need utrace-enabled kernel

•Intel PEBS/BTS/DS management interface (Markus Metzger, Intel)
 coordinate access to resources via internal API

 provides DS_AREA, IA32_DEBUGCTL context switch support

 simplify PEBS code for perfmon2

 code not yet released, waiting for full ds.h interface in mainline

88

libpfm changes

•IBM Power4, Power5, Power6 support (IBM)

•IBM Cell support (Toshiba)

•Sicortex Nodechip support (Phil Mucci)

•AMD Barcelona support (AMD)
 including full support for Instruction Based Sampling (IBS)

•Sun Sparc support (Ultra*, Niagara*) (Dave Miller)

•documentation cleanups (Cray)

•Python bindings (Google)

•dynamic system call numbers detection (2.6.24 and up)

99

pfmon changes

•Old Pentium II, III, Pro support (Vince Weaver, Cornell U.)

•SUN Sparc support (Ultra*, Niagara*) (Dave Miller)

•IBM Power4, Power5, Power6 support (IBM)

•IBM Cell support (Sony)

•Symbol correlations across dlopen/dlclose (CERN)

•Process attribution in system-wide (Phil Mucci)

•Intel PEBS support on Core 2

•Lots of bug fixes

Google Confidential and Proprietary 10

status

1111

Perfmon2 architecture summary

PMU Hardware

user level

kernel level

default

two-way

PEBS

kernel-call-stack

intr

sets
PMU

description
module OProfile

perfmon
core

sysfs syscalls

smpl
fmt

pmu

res

ctxsw

file

perfmon arch-specific

1212

Supported processors

HW Vendors Model Contributors
AMD AMD64 family 6 Cornell U.
AMD AMD64 family 15
AMD AMD64 family 16 AMD

Intel
Intel Cornell U.
Intel
Intel Core Duo/Core Solo
Intel Intel
Intel Core 2 Duo

MIPS many

IBM Power4, Power5, PPC970 IBM
IBM Power 6 IBM
IBM Cell IBM, Sony, Toshiba

Cray X2, XT Cray

Sun Ultra12,Ultra3*, Ultra4+ David S. Miller
Sun Niagara1, Niagara2 David S. Miller

Hewlett-Packard Laboratories

Itanium (all models) Hewlett-Packard Laboratories
Pentium II, Pentium Pro
Pentium III, Pentium M Hewlett-Packard Laboratories

Hewlett-Packard Laboratories
Pentium 4 (Neburst)

Hewlett-Packard Laboratories

Phil Mucci, SiCortex, Broadcom, Cornell U.

●to come: Intel Nehalem, Intel Tukwila
●still missing: ARM

1313

general status and future work

•up to perfmon v2.8

•soon to be released
 Linux v2.6.26 patch, libpfm-3.5, pfmon-3.5

•future work:
 focus on merge (cleanup, simplify, explain)

 variable width counters

 drop MASKED state

 add PMD -> PMC dependency information for all PMUs

1414

Gpfmon: pfmon GUI front-end

• Python-based, open-source front-end from CERN

15

what's up with the merge?

1616

introduction

•To have impact, perfmon2 must be in mainline
 available in off-the-shelf distros

•Perfmon2 code base is big:
 spans 5 processor architectures

 touches context switch, syscalls, fork, exit, kernel exit, interrupt

 1.1MB patch, 10,000 lines of C (patch)

•LKML review: cannot be merged as is
 too big, over-engineered

 concerns about extensibility (syscalls never disappear)

 feedback can be constructive: debugfs, sysfs, Kbuild,

•Must start from scratch: perfmon3

1717

Our solution: minimal perfmon

•Start from scratch: perfmon3
 concentrate first on basic value-add: per-thread counting

 don't be afraid to break backward compatibility with perfmon2

 use their tool: quilt

•Quilt: what's that?
 collection of scripts to manage patches as a stack: push, pop

 force features (code) to be attributed to a specific patch

 easy to mail patch stack to LKML

•Minimal perfmon2 quilt series:
 track linux-next and mainline GIT trees

 import ONLY code to support per-thread counting

 drop everything else: sampling, event-sets, PMU descriptions, sampling formats

 only supports: Intel architectural, AMD AMD64 PMUs

 200KB, 2000 lines of C (patch)

1818

Minimal perfmon2 architecture summary

PMU Hardware

user level

kernel level

perfmon
core

sysfs syscalls

intr

pmu

res

ctxsw

perfmon arch-specific

intel x86
arch

AMD64

1919

system calls and extensibility

•How to extend a syscall-based interface?
1. add new system calls

2. make the syscall parameters extensible

•Parameter extensibility:
 add new flag for new parameter, then kernel checks:

•Struct extensibility:
 add new flags for each new feature, reserved no need to be zero

• pfm_func(int fd, int flags, pfarg_p_t *p);
• pfm_func(int fd, int flags, pfarg_p_t *p, pfarg_q_t *q);

• pfm_func(fd, XTRA_FEATURE, &p, &q)

• struct pfarg_p_t { int flags; uint64_t reserved[8]; }
• struct pfarg_p_t { int flags; uint64_t new; uint64_t reserved[7]; }
• struct pfarg_p_t p = { NEW_P, 0xf0, };

2020

syscall interface proposal

•Use flags for extensibility

•Merge pfm_start() and pfm_restart()

•Do we need pfm_delete_evtsets()?

•Drop pmd/pmc distinction? pfm_read_reg(), pfm_write_reg()

 (* , * , * ,)int pfm_create_context pfarg_ctx_t c char s void a size_t s ()int pfm_stop int fd
 (, * ,)int pfm_write_pmcs int fd pfarg_pmc_t pmcs int n ()int pfm_restart int fd
 (, * ,)int pfm_write_pmds int fd pfarg_pmd_t pmcs int n (, * ,)int pfm_create_evtsets int fd pfarg_setdesc_t s int n
 (, * ,)int pfm_read_pmds int fd pfarg_pmd_t pmcs int n (, * ,)int pfm_delete_evtsets int fd pfarg_setdesc_t s int n
 (, *)int pfm_load_context int fd pfarg_load_t ld (, * ,)int pfm_getinfo_evtsets int fd pfarg_setinfo_t i int n
 (, *)int pfm_start int fd pfarg_start_t st () ;int pfm_unload_context int fd

 int pfm_create_context(int flags, * , * , char s void a)size_t s (,int pfm_stop int fd int flags)
 (, * , int pfm_write_pmcs int fd pfarg_pmc_t pmcs size_t s)
 (, * , int pfm_write_pmds int fd pfarg_pmd_t pmcs size_t s) (, , * , int pfm_create_evtsets int fd int flags pfarg_setdesc_t s size_t s)
 (, * ,int pfm_read_pmds int fd pfarg_pmd_t pmcs size_t s) (, * , int pfm_delete_evtsets int fd pfarg_setdesc_t s size_t s) ???

 (, int pfm_load_context int fd , int flags int target) (, * , int pfm_getinfo_evtsets int fd pfarg_setinfo_t i size_t s)
 (, int pfm_start int fd int flags) () ;int pfm_unload_context int fd

2121

summary

•All major processors supported now!

•Feature set is complete

•Merging with minimal patch series

•Strong community of users and contributors, thanks!

22

Thank You!

Q&A

2323

How we got there?

●incremental work over several years

●most features were requested by advanced users (like you guys!)
● huge gap between casual and advanced users

●over-engineered to provide maximum flexibility:
● no need for yet another interface to support new HW

● successful so far: IBM Power 6, Intel PEBS, AMD IBS, Itanium

●not a big fan of pushing complexity down to kernel
● no event knowledge

● system-wide is per-cpu

●development remained outside mainline too long
● needed to validate interface on all major processors

● difficult to change APIs once integrated

