PerfmonZ2: status update

Google

Stéphane Eranian <eranian@google.com>

Agenda Google

» What changed since last year?
» Status

* Mainline merge challenges

what changed?

perfmon2 interface changes Google

*No new features, quite the contrary!

*No struct arg modified by programming syscalls
= used to be for pfarg_setdesc _t (timeout), pfarg_pm?* _t (error)

= possible to share parameters between sessions: system-wide

*Set switch timeout must be multiple of clock granularity
= kernel does not round it up anymore
= avoid mistakes later on
= granularity via clock_getres() (I know, it's not in libc!)

perfmon2 implementation changes Google

*Use hrtimers for timeout-based event set switching
= avoid problems with tickless kernel in system-wide mode

= |ess overhead

More modular code
= group features by module: rw, intr, sets, pmu, init, sysfs, debugfs, syscalls, smpl,...
= clear separation between kernel and user headers
= make headers_install

*Rewritten x86 support
= all PMUs-specific code embedded into PMU description module (code+data)

*Vastly updated sysfs code

*New optional debugfs interface to report perfmon2 statistics

other perfmon2 changes Google

*Kernel source code managed with GIT on kernel.org
= improves manageability, visibility
= improves tracking of code contributions

= easier to track mainline kernel

*One release for each new mainline kernel

= yes, libpfm, pfmon version numbers are increasing again!

All user code + mailing list hosted on SourceForge.net

perfmon2 experimental code Google

-Utrace-ready (internal tracing engine)
= automatic support for Roland McGraph's utrace interface
= key advantage: no ptrace() to stop/resume thread, can invoke syscalls directly
= need utrace-enabled kernel

Intel PEBS/BTS/DS management interface (Markus Metzger, Intel)
= coordinate access to resources via internal AP
= provides DS_AREA, IA32_DEBUGCTL context switch support
= simplify PEBS code for perfmon2
= code not yet released, waiting for full ds.h interface in mainline

libpfm changes Google

IBM Power4, Power5, Power6 support (IBM)
*IBM Cell support (Toshiba)
*Sicortex Nodechip support (Phil Mucci)

*AMD Barcelona support (AMD)
= including full support for Instruction Based Sampling (IBS)

Sun Sparc support (Ultra, Niagara®) (Dave Miller)
documentation cleanups (Cray)
*Python bindings (Google)

*dynamic system call numbers detection (2.6.24 and up)

pfmon changes

*Old Pentium I, lll, Pro support (Vince Weaver, Cornell U.)
SUN Sparc support (Ultra, Niagara®) (Dave Miller)

IBM Power4, Power5, Power6 support (IBM)

*IBM Cell support (Sony)

*Symbol correlations across dlopen/diclose (CERN)
*Process attribution in system-wide (Phil Mucci)

Intel PEBS support on Core 2

Lots of bug fixes

Google

Perfmon2 architecture summary Google

user level

kernel level

PMU Hardware

Supported processors Google

HW Vendors Model Contributors

AMD AMDG64 family 6 Cornell U.

AMD AMDG4 family 15 Hewlett-Packard Laboratories
AMD AMDG64 family 16 AMD

Intel ltanium (all models) Hewlett-Packard Laboratories
Intel Pentium Il, Pentium Pro Cornell U.

Intel Pentium lll, Pentium M Hewlett-Packard Laboratories
Intel Core Duo/Core Solo Hewlett-Packard Laboratories
Intel Pentium 4 (Neburst) Intel

Intel Core 2 Duo Hewlett-Packard Laboratories
MIPS many Phil Mucci, SiCortex, Broadcom, Cornell U.
IBM Power4, Power5, PPC970 IBM

IBM Power 6 IBM

IBM Cell IBM, Sony, Toshiba

Cray X2, XT Cray

Sun Ultra12,Ultra3*, Ultra4+ David S. Miller

Sun Niagara1, Niagara2 David S. Miller

o come: Intel Nehalem, Intel Tukwila
estill missing: ARM

general status and future work

*up to perfmon v2.8

*soon to be released

Linux v2.6.26 patch, libpfm-3.5, pfmon-3.5

future work:

focus on merge (cleanup, simplify, explain)

variable width counters

drop MASKED state

add PMD -> PMC dependency information for all PMUs

Google

13

Gpfmon: pfmon GUI front-end

Google

* Python-based, open-source front-end from CERN

Eile Edit Help
] | il] | %@ $
Quit Local Rermote Connect Disconnect Attach Execute Abort
. Ewvents é»ﬂ Options | Output | Results |f) Analysis | @ Graphs |"'s Scenarios
Monitor | Event name | Event parameters:
UNHALTED CORE CYCLES Narme: LAST LEVEL CACHE_MISSES
INSTRUCTIONS_RETIRED Code: 0x412e
[0 UNHALTED REFERENCE CYCLES Counters: Set([0, 1])
] LAST_LEWVEL CACHE_REFEREMNCES Description: ¢ Details...
= - = Eile Edit Help
LAST_LEVEL_CACHE_MISSES =
LI [BRANCH mio gt el el [= [ot &
- - = aelp Quit Local Remote Connect Disconnect Attach Execute Abort
MISPRED 1
< faet Ci =] e | =20 - =
RS UOPS - [) ; [“, Ewvents | ~.. Options | Output | Results |,<5} Analysis Scenariosl
U S Quit Local Remote Connect Disconnect Attach _ iz _
] RS_UOPS . . .
- o O Events Output | Results | SV | My G) Pie graph O Stacked graph O Bar araph @ Line graph [Alternative label layout Expor‘t...l
[| sB_DRAl Execution: (Visualisation: Process: jwork/dmlfdmimem/dmimem 10 MIN_STRIDE=54 MAX_STRI
[] [STOREE path: I'mrdmlmem 10 MIN_STRIDE=64 MAX_STRIDE=64 Time format (L 40.0M
BUS_TRAMS_MEM:SELF
] SEGMEN Execution mode: i LAET LEVEL CARME MEEES
] 'SSE PRE O single run e 35.0M < = & _
e ® sampling Event to use fc
- DTLA_M UMNHALTED_C !
fil - 30.0 M~ : L
M MEMORY O Profile E—— :
- i Long sampling
n: 4 :
Filter: All le buff o :
_— [system-wide Sample buffe .
I [Follow all Profile: 2000M—
O Fellow ferk() Short sarmpling 1somd
[Follow wvfork{) Long sarmpling
Follow pthreads 4
U B Mumber of if oM
[Follow exec
Sample buffe somd
Privilege level: User level (3, default)[vl
Output: 0.0 —f— 1 T i T T T !
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
[pisable command output Relative time (seconds); reference event: UNHALTED _CORE_CYCLES gpfman generated graph

[] werbose output
[1 Debug output

i

what's up with the merge?

15

introduction

*To have impact, perfmon2 must be in mainline

= available in off-the-shelf distros

*Perfmon2 code base is big:
= spans 5 processor architectures

= touches context switch, syscalls, fork, exit, kernel exit, interrupt
= 1.1MB patch, 10,000 lines of C (patch)

L KML review: cannot be merged as is
= too big, over-engineered
= concerns about extensibility (syscalls never disappear)
= feedback can be constructive: debugfs, sysfs, Kbuild,

*Must start from scratch: perfmon3

Google

16

Our solution: minimal perfmon Google

«Start from scratch: perfmon3
= concentrate first on basic value-add: per-thread counting
= don't be afraid to break backward compatibility with perfmon2
= use their tool: quilt

*Quilt; what's that?

= collection of scripts to manage patches as a stack: push, pop
= force features (code) to be attributed to a specific patch
= easy to mail patch stack to LKML

*Minimal perfmon2 quilt series:

= track linux-next and mainline GIT trees

import ONLY code to support per-thread counting

= drop everything else: sampling, event-sets, PMU descriptions, sampling formats
only supports: Intel architectural, AMD AMD64 PMUs

200KB, 2000 lines of C (patch)

17

Minimal perfmon2 architecture summary Google

user level

kernel level syscalls

PMU Hardware

system calls and extensibility Google

*How to extend a syscall-based interface?

1. add new system calls
2. make the syscall parameters extensible

*Parameter extensibility:
= add new flag for new parameter, then kernel checks:
« pfm_func(int fd, int flags, pfarg_p _t *p);
« pfm_func(int fd, int flags, pfarg_p_t *p, pfarg_q_t *q);
« pfm_func(fd, XTRA FEATURE, &p, &q)
*Struct extensibility:

= add new flags for each new feature, reserved no need to be zero
 struct pfarg_p_t{int flags; uint64 _t reserved[8]; }

 struct pfarg_p_t{int flags; uint64_t new; uint64 _t reserved[7]; }
» struct pfarg p tp ={ NEW_P, 0xf0, };

19

syscall interface proposal

Google

int pfm_create_context(pfarg_ctx_t +c, char *s, void +a, size_t s)
int pfm_write_pmcs(int fd, pfarg_pmc_t *pmcs, int n)

int pfm_write_pmds(int fd, pfarg_pmd_t pmcs, int n)

int pfm_read_pmds(int fd, pfarg_pmd_t *pmcs, int n)

int pfm_load_context(int fd, pfarg_load_t *Id)

int pfm_start(int fd, pfarg_start_t «st)

int pfm_stop(int fd)

int pfm_restart(int fd)

int pfm_create_evtsets(int fd, pfarg_setdesc_t s, int n)
int pfm_delete_evtsets(int fd, pfarg_setdesc_t *s, int n)
int pfm_getinfo_evtsets(int fd, pfarg_setinfo_t «i, int n)
int pfm_unload_context(int fd);

*Use flags for extensibility

*Merge pfm_start() and pfm_restart()

Do we need pfm_delete evtsets()?

*Drop pmd/pmc distinction? pfm_read_reg(), pfm_write_reg()

int pfm_create_context(int flags, char *s, void =a, size_t s)
int pfm_write_pmcs(int fd, pfarg_pmc_t *pmcs, size_t s)
int pfm_write_pmds(int fd, pfarg_pmd_t «pmcs, size_t s)
int pfm_read_pmds(int fd, pfarg_pmd_t pmcs, size_t s)
int pfm_load_context(int fd, int flags, int target)

int pfm_start(int fd, int flags)

int pfm_stop(int fd, int flags)

int pfm_create_evitsets(int fd, int flags, pfarg_setdesc_t *s, size_t s)
int pfm_delete_evtsets(int fd, pfarg_setdesc_t *s, size_t s) 717

int pfm_getinfo_evtsets(int fd, pfarg_setinfo_t «i, size_t s)

int pfm_unload_context(int fd);

summary

*All major processors supported now!
*Feature set is complete
*Merging with minimal patch series

*Strong community of users and contributors, thanks!

Google

21

Thank You!

22

How we got there? Google

sincremental work over several years

*most features were requested by advanced users (like you guys!)

* huge gap between casual and advanced users

sover-engineered to provide maximum flexibility:
* no need for yet another interface to support new HW
« successful so far: IBM Power 6, Intel PEBS, AMD IBS, Itanium

*not a big fan of pushing complexity down to kernel
* no event knowledge
- system-wide is per-cpu

«development remained outside mainline too long
» needed to validate interface on all major processors
- difficult to change APIs once integrated

23

