TAU Performance System

Workshop on Petascale Architectures and Performance Strategies

4-5pm, Tuesday, July 24, 2007, Snowbird, UT

Sameer S. Shende

sameer@cs.uoregon.edu http://www.cs.uoregon.edu/research/tau Performance Research Laboratory

University of Oregon

UNIVERSITY OF OREGON

Acknowledgements

- Dr. Allen D. Malony, Professor
- □ Alan Morris, Senior software engineer
- □ Wyatt Spear, Software engineer
- □ Scott Biersdorff, Software engineer
- □ Kevin Huck, Ph.D. student
- Aroon Nataraj, Ph.D. student
- Brad Davidson, Systems administrator

Outline

- □ Overview of features
- □ Instrumentation
- □ Measurement
- Analysis tools
 - Parallel profile analysis (ParaProf)
 - Performance data management (PerfDMF)
 - Performance data mining (PerfExplorer)
- □ Application examples
- □ Kernel monitoring and KTAU

Performance Evaluation

- □ Profiling
 - Presents summary statistics of performance metrics
 - > number of times a routine was invoked
 - > exclusive, inclusive time/hpm counts spent executing it
 - > number of instrumented child routines invoked, etc.
 - > structure of invocations (calltrees/callgraphs)
 - > memory, message communication sizes also tracked
- □ Tracing
 - Presents when and where events took place along a global timeline
 - timestamped log of events
 - > message communication events (sends/receives) are tracked
 - shows when and where messages were sent
 - large volume of performance data generated leads to more perturbation in the program

Definitions – Profiling

□ Profiling

- Recording of summary information during execution
 > inclusive, exclusive time, # calls, hardware statistics, ...
- Reflects performance behavior of program entities
 - ➢ functions, loops, basic blocks
 - > user-defined "semantic" entities
- Very good for low-cost performance assessment
- Helps to expose performance bottlenecks and hotspots
- Implemented through
 - sampling: periodic OS interrupts or hardware counter traps
 - instrumentation: direct insertion of measurement code

Definitions – Tracing

□ Tracing

- Recording of information about significant points (events) during program execution
 - > entering/exiting code region (function, loop, block, ...)
 - > thread/process interactions (e.g., send/receive message)
- Save information in event record
 - ➤ timestamp
 - > CPU identifier, thread identifier
 - > Event type and event-specific information
- Event trace is a time-sequenced stream of event records
- Can be used to reconstruct dynamic program behavior
- Typically requires code instrumentation

Event Tracing: Instrumentation, Monitor, Trace

Event Tracing: "Timeline" Visualization

Steps of Performance Evaluation

- Collect basic routine-level timing profile to determine where most time is being spent
- Collect routine-level hardware counter data to determine types of performance problems
- Collect callpath profiles to determine sequence of events causing performance problems
- Conduct finer-grained profiling and/or tracing to pinpoint performance bottlenecks
 - Loop-level profiling with hardware counters
 - Tracing of communication operations

TAU Performance System

- $\Box \underline{T}$ uning and <u>A</u>nalysis <u>U</u>tilities (15+ year project effort)
- □ Performance system framework for HPC systems
 - O Integrated, scalable, flexible, and parallel
- □ Targets a general complex system computation model
 - Entities: nodes / contexts / threads
 - Multi-level: system / software / parallelism
 - Measurement and analysis abstraction
- □ Integrated toolkit for performance problem solving
 - O Instrumentation, measurement, analysis, and visualization
 - Portable performance profiling and tracing facility
 - Performance data management and data mining
- D Partners: LLNL, ANL, LANL, Research Center Jülich

TAU Parallel Performance System Goals

- Portable (open source) parallel performance system
 - Computer system architectures and operating systems
 - Different programming languages and compilers
- □ Multi-level, multi-language performance instrumentation
- □ Flexible and configurable performance measurement
- Support for multiple parallel programming paradigms
 - Multi-threading, message passing, mixed-mode, hybrid, object oriented (generic), component-based
- □ Support for performance mapping
- □ Integration of leading performance technology
- □ Scalable (very large) parallel performance analysis

TAU Performance System Architecture

Petascale Architectures and Performance Strategies TAU Performance System

TAU Performance System Architecture

Petascale Architectures and Performance Strategies

Program Database Toolkit (PDT)

Petascale Architectures and Performance Strategies

TAU Performance System

TAU Instrumentation Approach

- □ Support for *standard* program events
 - Routines, classes and templates
 - Statement-level blocks
- □ Support for *user-defined* events
 - Begin/End events ("user-defined timers")
 - Atomic events (e.g., size of memory allocated/freed)
 - Selection of event statistics
 - Support for hardware performance counters (PAPI)
- □ Support definition of "semantic" entities for mapping
- □ Support for event groups (aggregation, selection)
- □ Instrumentation optimization
 - Eliminate instrumentation in lightweight routines

PAPI

- □ Performance Application Programming Interface
 - The purpose of the PAPI project is to design, standardize and implement a portable and efficient API to access the hardware performance monitor counters found on most modern microprocessors.
- □ Parallel Tools Consortium project started in 1998
- Developed by University of Tennessee, Knoxville
- □ http://icl.cs.utk.edu/papi/

TAU Instrumentation Mechanisms

□ Source code

- O Manual (TAU API, TAU component API)
- O Automatic (robust)
 - ≻ C, C++, F77/90/95 (Program Database Toolkit (*PDT*))
 - > OpenMP (directive rewriting (Opari), POMP2 spec)

□ Object code

- Pre-instrumented libraries (e.g., MPI using PMPI)
- Statically-linked and dynamically-linked

□ Executable code

- Dynamic instrumentation (pre-execution) (DynInstAPI)
- Virtual machine instrumentation (e.g., Java using JVMPI)
- □ *TAU_COMPILER* to automate instrumentation process

Using TAU: A brief Introduction

- □ To instrument source code using PDT
 - Choose an appropriate TAU stub makefile in <arch>/lib:
 - % setenv TAU_MAKEFILE /usr/tau-2.x/xt3/lib/Makefile.tau-mpi-pdt-pgi

% setenv TAU_OPTIONS '-optVerbose' (see tau_compiler.sh)

- And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:
- % mpif90 foo.f90

changes to

% tau_f90.sh foo.f90

□ Execute application and analyze performance data:

- % pprof (for text based profile display)
- % paraprof (for GUI)

TAU Measurement System Configuration

configure [OPTIONS] {-**c**++=<**CC**>, -**cc**=<**cc**>} -pdt=<dir> -opari=<dir> -papi=<dir> -vampirtrace=<dir> -mpi[inc/lib]=<dir> -dyninst=<dir> -shmem[inc/lib]=<dir> -python[inc/lib]=<dir> -tag=<name> -epilog=<dir> -slog2 -otf=<dir> -arch=<architecture>

{-pthread, -sproc} -openmp -jdk=<dir> -fortran=[vendor] Petascale Architectures and Performance Strategies

Specify C++ and C compilers Specify location of PDT Specify location of Opari OpenMP tool Specify location of PAPI Specify location of VampirTrace Specify MPI library instrumentation Specify location of DynInst Package Specify PSHMEM library instrumentation Specify Python instrumentation Specify a unique configuration name Specify location of EPILOG Build SLOG2/Jumpshot tracing package Specify location of OTF trace package Specify architecture explicitly (bgl, xt3,ibm64,ibm64linux...) Use pthread or SGI sproc threads Use OpenMP threads Specify Java instrumentation (JDK) Specify Fortran compiler **TAU Performance System**

TAU Measurement System Configuration

configure [OPTIONS] -TRACE -PROFILE (default) -PROFILECALLPATH -PROFILEPHASE -PROFILEPARAM -PROFILEMEMORY -PROFILEHEADROOM -MULTIPLECOUNTERS -COMPENSATE -CPUTIME -PAPIWALLCLOCK -PAPIVIRTUAL -SGITIMERS -LINUXTIMERS

Generate binary TAU traces Generate profiles (summary) Generate call path profiles Generate phase based profiles Generate parameter based profiles Track heap memory for each routine Track memory headroom to grow Use hardware counters + time Compensate timer overhead Use usertime+system time Use PAPI's wallclock time Use PAPI's process virtual time Use fast IRIX timers Use fast x86 Linux timers

TAU Measurement Configuration – Examples

- ./configure -pdt=/usr/pkgs/pkgs/pdtoolkit-3.11
 -mpiinc=/usr/pkgs/mpich/include -mpilib=/usr/pkgs/mpich/lib
 -mpilibrary='-lmpich -L/usr/gm/lib64 -lgm -lpthread -ldl'
 - Configure using PDT and MPI for x86_64 Linux
- ./configure -arch=xt3 -papi=/opt/xt-tools/papi/3.2.1 -mpi -MULTIPLECOUNTERS; make clean install
 - Use PAPI counters (one or more) with C/C++/F90 automatic instrumentation for XT3. Also instrument the MPI library. Use PGI compilers.
- **Typically configure multiple measurement libraries**
- □ Each configuration creates a unique <arch>/lib/Makefile.tau<options> stub makefile. It corresponds to the configuration options used. e.g.,
 - o /usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi
 - o /usr/pkgs/tau/x86_64/lib/Makefile.tau-multiplecounters-mpi-papi-pdt-pgi

TAU Measurement Configuration – Examples

% cd /usr/pkgs/tau/x86_64/lib; ls Makefile.*pgi Makefile.tau-pdt-pgi Makefile.tau-mpi-pdt-pgi Makefile.tau-callpath-mpi-pdt-pgi Makefile.tau-mpi-pdt-trace-pgi Makefile.tau-mpi-compensate-pdt-pgi Makefile.tau-multiplecounters-mpi-papi-pdt-pgi Makefile.tau-multiplecounters-mpi-papi-pdt-trace-pgi Makefile.tau-mpi-papi-pdt-epilog-trace-pgi Makefile.tau-pdt-pgi...

□ For an MPI+F90 application, you may want to start with:

Makefile.tau-mpi-pdt-pgi

• Supports MPI instrumentation & PDT for automatic source instrumentation for PGI compilers

Configuration Parameters in Stub Makefiles

- □ Each TAU stub Makefile resides in <tau>/<arch>/lib directory
- □ Variables:
 - O TAU_CXX
 - o TAU_CC, TAU_F90
 - TAU_DEFS
 - TAU_LDFLAGS
 - TAU_INCLUDE
 - TAU_LIBS
 - O TAU_SHLIBS
 - O TAU_MPI_LIBS
 - O TAU_MPI_FLIBS
 - TAU_FORTRANLIBS
 - TAU_CXXLIBS
 - TAU_INCLUDE_MEMORY
 - TAU_DISABLE
 - TAU_COMPILER

- Specify the C++ compiler used by TAU Specify the C, F90 compilers Defines used by TAU. Add to CFLAGS Linker options. Add to LDFLAGS Header files include path. Add to CFLAGS Statically linked TAU library. Add to LIBS Dynamically linked TAU library TAU's MPI wrapper library for C/C++ TAU's MPI wrapper library for F90 Must be linked in with C++ linker for F90 Must be linked in with F90 linker Use TAU's malloc/free wrapper lib TAU's dummy F90 stub library Instrument using tau_compiler.sh script
- **Each** stub makefile encapsulates the parameters that TAU was configured with
- □ It represents a specific instance of the TAU libraries. TAU scripts use stub makefiles to identify what performance measurements are to be performed.

Automatic Instrumentation

□ We now provide compiler wrapper scripts

- Simply replace mpxlf90 with tau_f90.sh
- Automatically instruments Fortran source code, links with TAU MPI Wrapper libraries.
- \square <code>Use tau_cc.sh and tau_cxx.sh for C/C++</code>

```
Before
CXX = mpCC
F90 = mpxlf90_r
CFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o ... fn.o
app: $(OBJS)
    $(CXX) $(LDFLAGS) $(OBJS) -o $@
    $(LIBS)
.cpp.o:
    $(CC) $(CFLAGS) -c $<</pre>
```

```
After
```

```
CXX = tau_cxx.sh
F90 = tau_f90.sh
CFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o ... fn.o
app: $(OBJS)
        $(CXX) $(LDFLAGS) $(OBJS) -o $@
        $(LIBS)
.cpp.o:
        $(CC) $(CFLAGS) -c $
```

TAU_COMPILER Commandline Options

- See <taudir>/<arch>/bin/tau_compiler.sh -help
- **Compilation**:

```
% mpx1f90 -c foo.f90
```

Changes to

- % f95parse foo.f90 \$(OPT1)
- % tau instrumentor foo.pdb foo.f90 -o foo.inst.f90 \$(OPT2)
- % mpxlf90 -c foo.f90 \$(OPT3)
- **D** Linking:
 - % mpxlf90 foo.o bar.o -o app

Changes to

- % mpxlf90 foo.o bar.o -o app \$(OPT4)
- □ Where options OPT[1-4] default values may be overridden by the user:

F90 = \$ (TAU_COMPILER) \$ (MYOPTIONS) mpx1f90

TAU_COMPILER Options

Optional parameters for \$(TAU COMPILER): [tau compiler.sh -help] Turn on verbose debugging messages -optVerbose -optDetectMemoryLeaks Turn on debugging memory allocations/ de-allocations to track leaks -optPdtGnuFortranParser Use gfparse (GNU) instead of f95parse (Cleanscape) for parsing Fortran source code Does not remove intermediate .pdb and .inst.* files -optKeepFiles -optPreProcess Preprocess Fortran sources before instrumentation -optTauSelectFile="" Specify selective instrumentation file for tau instrumentor -optLinking="" Options passed to the linker. Typically \$(TAU MPI FLIBS) \$(TAU LIBS) \$(TAU CXXLIBS) -optCompile="" Options passed to the compiler. Typically \$(TAU MPI INCLUDE) \$(TAU INCLUDE) \$(TAU DEFS) Add options for Fortran parser in PDT (f95parse/gfparse) -optPdtF95Opts="" -optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse) -optPdtCOpts="" Options for C parser in PDT (cparse). Typically \$(TAU_MPI_INCLUDE) \$(TAU_INCLUDE) \$(TAU_DEFS) Options for C++ parser in PDT (cxxparse). Typically -optPdtCxxOpts="" \$(TAU MPI INCLUDE) \$(TAU INCLUDE) \$(TAU DEFS)

Overriding Default Options: TAU_COMPILER

```
% cat Makefile
F90 = tau f90.sh
OBJS = f1.0 f2.0 f3.0 ...
LIBS = -Lappdir -lapplib1 -lapplib2 ...
app: $(OBJS)
    $(F90) $(OBJS) -o app $(LIBS)
.f90.o:
    $(F90) -c $<
% setenv TAU OPTIONS `-optVerbose -optTauSelectFile=select.tau
      -optKeepFiles'
% setenv TAU MAKEFILE <taudir>/x86 64/lib/Makefile.tau-mpi-pdt
```

Optimization of Program Instrumentation

- Need to eliminate instrumentation in frequently executing lightweight routines
- □ Throttling of events at runtime:
 - % setenv TAU_THROTTLE 1
 - Turns off instrumentation in routines that execute over 100000 times (TAU_THROTTLE_NUMCALLS) and take less than 10 microseconds of inclusive time per call (TAU_THROTTLE_PERCALL)
- □ Selective instrumentation file to filter events
 - % tau_instrumentor [options] -f <file> OR
 - % setenv TAU_OPTIONS '-optTauSelectFile=tau.txt'
- □ Compensation of local instrumentation overhead
 - % configure -COMPENSATE

Selective Instrumentation File

- □ Specify a list of routines to exclude or include (case sensitive)
- □ # is a wildcard in a routine name. It cannot appear in the first column.

```
BEGIN_EXCLUDE_LIST
Foo
Bar
D#EMM
END_EXCLUDE_LIST
Specify a list of routines to include for instrumentation
BEGIN_INCLUDE_LIST
int main(int, char **)
F1
```

F3

END_EXCLUDE_LIST

□ Specify either an include list or an exclude list!

Selective Instrumentation File

- □ Optionally specify a list of files to exclude or include (case sensitive)
- \square * and ? may be used as wildcard characters in a file name

BEGIN_FILE_EXCLUDE_LIST

f*.f90

Foo?.cpp

END_FILE_EXCLUDE_LIST

□ Specify a list of routines to include for instrumentation

BEGIN_FILE_INCLUDE_LIST
main.cpp
foo.f90
END FILE INCLUDE LIST

Selective Instrumentation File

- □ User instrumentation commands are placed in INSTRUMENT section
- □ ? and * used as wildcard characters for file name, # for routine name
- \Box \ as escape character for quotes
- □ Routine entry/exit, arbitrary code insertion
- □ Outer-loop level instrumentation

```
BEGIN_INSTRUMENT_SECTION
loops file="foo.f90" routine="matrix#"
memory file="foo.f90" routine="#"
io routine="MATRIX"
file="foo.f90" line = 123 code = " print *, \" In foo\""
exit routine = "int f1()" code = "cout <<\"Out f1\"<<endl;"
END INSTRUMENT SECTION
```

Manual Instrumentation – C/C++ Example

```
#include <TAU.h>
int main(int argc, char **argv)
{
  TAU START ("big-loop")
  for(int i = 0; i < N; i++) {
    work(i);
  }
 TAU STOP ("big-loop");
}
% g++ foo.cpp -I<taudir>/include -c
% g++ foo.o -o foo -L<taudir>/<arch>/lib -lTAU
```

Jumpshot

- http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm
- Developed at Argonne National Laboratory as part of the MPICH project
- Rusty Lusk, PI
 - Also works with other MPI implementations
 - Jumpshot is bundled with the TAU package
- Java-based tracefile visualization tool for postmortem performance analysis of MPI programs
- □ Latest version is Jumpshot-4 for SLOG-2 format
 - Scalable level of detail support
 - Timeline and histogram views
 - Scrolling and zooming
 - Search/scan facility

Jumpshot

Tracing: Using TAU and Jumpshot

□ Configure TAU with -TRACE option:

- % configure -TRACE -otf=<dir>
 -MULTIPLECOUNTERS -papi=<dir> -mpi
 -pdt=dir ...
- □ Set environment variables:
 - % setenv TRACEDIR /p/gm1/<login>/traces
 - % setenv COUNTER1 GET_TIME_OF_DAY (reqd)
 - % setenv COUNTER2 PAPI FP INS
 - % setenv COUNTER3 PAPI_TOT_CYC ...
- □ Execute application and analyze the traces:
 - % mpirun -np 32 ./a.out [args]
 - % tau_treemerge.pl
 - % tau2slog2 tau.trc tau.edf -o app.slog2
 - % jumpshot app.slog2

Multi-Level Instrumentation and Mapping

TAU Measurement Approach

Portable and scalable parallel profiling solution

- Multiple profiling types and options
- Event selection and control (enabling/disabling, throttling)
- Online profile access and sampling
- Online performance profile overhead compensation
- Portable and scalable parallel tracing solution
 - Trace translation to SLOG2, OTF, EPILOG, and Paraver
 - Trace streams (OTF) and hierarchical trace merging
- □ Robust timing and hardware performance support
- □ Multiple counters (hardware, user-defined, system)
- Performance measurement for CCA component software

TAU Measurement Mechanisms

□ Parallel profiling

- Function-level, block-level, statement-level
- Supports user-defined events and mapping events
- TAU parallel profile stored (dumped) during execution
- Support for flat, callgraph/callpath, phase profiling
- Support for memory profiling (headroom, malloc/leaks)
- Support for tracking I/O (wrappers, Fortran instrumentation of read/write/print calls)

□ Tracing

- All profile-level events
- Inter-process communication events
- Inclusion of multiple counter data in traced events

Types of Parallel Performance Profiling

□ *Flat* profiles

- Metric (e.g., time) spent in an event (callgraph nodes)
- Exclusive/inclusive, # of calls, child calls
- □ *Callpath* profiles (*Calldepth* profiles)
 - Time spent along a calling path (edges in callgraph)
 - \circ "main=> f1 => f2 => MPI_Send" (event name)
 - TAU_CALLPATH_DEPTH environment variable

□ *Phase* profiles

- Flat profiles under a phase (nested phases are allowed)
- Default "main" phase
- Supports static or dynamic (per-iteration) phases

Performance Analysis and Visualization

- □ Analysis of parallel profile and trace measurement
- Parallel profile analysis
 - *ParaProf*: parallel profile analysis and presentation
 - ParaVis: parallel performance visualization package
 - Profile generation from trace data (*tau2profile*)
- □ Performance data management framework (*PerfDMF*)
- Parallel trace analysis
 - Translation to VTF (V3.0), EPILOG, OTF formats
 - Integration with VNG (Technical University of Dresden)
- Online parallel analysis and visualization
- □ Integration with *CUBE* browser (KOJAK, UTK, FZJ)

ParaProf Parallel Performance Profile Analysis

Petascale Architectures and Performance StrategiesTAU Performance System

Petascale Architectures and Performance Strategies TAU

Terminology – Example

- \square For routine "int main()":
- Exclusive time
 - 100-20-50-20=10 secs
- □ Inclusive time
 - 0 100 secs
- □ Calls
 - O 1 call
- Subrs (no. of child routines called)
 - 03
- □ Inclusive time/call
 - O 100secs

```
int main( )
{ /* takes 100 secs */
  f1(); /* takes 20 secs */
  f2(); /* takes 50 secs */
  f1(); /* takes 20 secs */
  /* other work */
}
/*
Time can be replaced by
                          counts
from PAPI e.g., PAPI_FP_OPS. */
```

ParaProf – Stacked View (Miranda)

Petascale Architectures and Performance Strategies

ParaProf – Callpath Profile (Flash)

000

X n,c,t, 0,0,0 - callpath-all/scaling/flash/taudata/disk2/mnt/

File Options Windows Help	
Metric Name: Time	
Value Type: exclusive	
26.474% MODULEHYDROSWEP::HYDROSWEP: 26.474% HOLD FLASH & DOULEHYDROSWEP::HYDROSWEP: 26.474% HOLD FLASH & DOULEHYDROSWEP::HYDROSON (FD-1)// DOULEHYDROS/ 26.474% HOLD FLASH & DOULEHYDROSWEP::HYDROSON (FD-1)// DOULEHYDROSON (FD-1	
24.544% FLASH => EVOLVE => HIDRUCHIDRU_3D => MODULEHIDRUSWEEFCHIDRU_SWEEP	
24.556% FLASH \rightarrow EVOLVE \rightarrow EVOLVE \rightarrow SYDRO+HVDRO 3D \rightarrow MODUL EHVDRO SWEEP-HVDRO SWEEP \rightarrow MODUL EHVDRO 1D-HVDRO 1D	
14 351% MODILIEINTREC'INTREC	
14.351% FLASH => EVOLVE => HYDRO: HYDRO 3D => MODULEHYDRO SWEEP: HYDRO SWEEP => MODULEHYDRO 1D: HYDRO 1D => MOD	DULEINTRFC::INT
4.501% MODULEEOS3D:EOS3D	
4.427% MPLSsendø	
3.678% EASH => EVOLVE => HYDRO_3D => MODULEHYDROSWEEP::HYDRO_SWEEP => MODULEEOS3D::EOS3D	
3.536% MPI_Allreduce¢	
2.727% MPI_Waitallo	
2.242% MODULEUPDATE_SOLN:UPDATE_SOLN	
2.242% FLASH => EVOLVE => HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP => MODULEUPDATE_SOLN::UPDATE_SOLN	
	CDI . AMD
$1.703\% = 1.48M = > EVOLVE = > HYDRU:HYDRU:SU = > MODULEHYDRUSWEEP:HYDRUSWEEP = > MESH_GUARDCELL = > AMR_GUARDCELL = > MODULEHYDRUSWEEP:HYDRUS SWEEP = > MESH_GUARDCELL = > AMR_GUARDCELL = > MODULEHYDRUS SWEEP = > MESH_GUARDCELL = > AMR_GUARDCELL = > MODULEHYDRUS SWEEP = > MESH_GUARDCELL = > AMR_GUARDCELL = > MODULEHYDRUS SWEEP = > MESH_GUARDCELL = > MAR_GUARDCELL = > MODULEHYDRUS SWEEP = > MESH_GUARDCELL = > MAR_GUARDCELL = > MODULEHYDRUS SWEEP = > MESH_GUARDCELL = > MAR_GUARDCELL = > MESH_GUARDCELL =$	$SRL = > AMR_$
1.30% FLASH => EVOLVE => HIDRO_INIDRO_SU => MODULENT L> MESU DEFINIDRO_SWEET => MISH_GUARDCELL => AMAR_GUARDCELL 1.406\% FLASH => EVOLVE => MESU IIDDATE CONTOURS ENTERING DEFINIE DEPENIE => AMAR_GUARDCELL => AMAR_GUARDCELL	
1.361% FLASH => TIMESTEP => TIMESTEP => TIMESTEP => MEATOR ALL INCOMENTATION ALL	N_ORDER =>7
1.319% AMR RESTRICT INK FUN	
1.272% AMR_PROLONG_GEN_UNK_FUN	
1.093% FLASH => EVOLVE => HYDRO::HYDRO_3D => MODULEHYDROSWEEP::HYDRO_SWEEP => MESH_GUARDCELL => AMR_GUARDCELL	_C_TO_F => A
1.077% ABUNDANCE_RESTRICT	
1.077% LASH => EVOLVE => HYDRO::HYDRO_3D => MODULEHYDROSWEEP::HYDRO_SWEEP => ABUNDANCE_RESTRICT	
1.064% DBASETREE:DBASENEIGHBORBLOCKLIST	
Flash 1% Flash => EVOLVE => HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO,SWEEP => MESH_GUARDCELL => AMR_RESTRICT =	= > AMR_RESTRI
0.987% FLASH => EVOLVE => HYDRO:HYDRO:3D => MODULEHYDROSWEEP:HYDRO:SWEEP => MESH_FLUX_CONSERVE => AMR_FLUX_CONSERVE => AMR_FLUX_CO	ONSERVE_UDT
http://www.commonliclear	$_U_1U_F => A$
	RASETREE-DRAS
flashes	J) (JETREE. DD) (J
114311C5 0.735% AMR_DIAGONAL PATCH	
$\square \square $	
TOTUTATI + IVII I 0.699% TELASH => EVOLVE => HYDRO::HYDRO_3D => MODULEHYDROSWEEP::HYDRO_SWEEP => DIFFUSE	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	ONSERVE_UDT
0.657% FLASH => EVOLVE => HYDRO:HYDRO_3D => MODULEHYDROSWEEP:HYDRO_SWEEP => MESH_GUARDCELL => AMR_GUARDCELL	_SRL => AMR_
U.638% FLASH => EVOLVE => MESH_UPDATE_GRID_REFINEMENT => MARK_GRID_REFINEMENT => MPI_BarrierO	
0.51% $1.55%$ $1.5%$	C TO E = > A
0.330% TOT RND	$CC_{1}O_{1}F = > A$
0.454% FLASH => EVOLVE => MESH UPDATE GRID REFINEMENT => MARK GRID REFINEMENT => MODULEEOS3D::EOS3D	-
	► F

Comparing Eff	fects of MultiCore Processors
Metric: PAPI_RES_STL Value: Exclusive Units: counts	Ctiter.350x350.4096pes.sn loops.BARRIER.ppk - Mean Ctiter.350x350.2048pes.dc.loops.BARRIER.ppk - Mean
2.8707E12 3.0372E12 (105.799%) 1.483 1.5788E12 (106.462	Loop: QL_MYRA_MOD::QL_MYRA_WRITE [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/ql_myra.f} {354,7}-{696,12}] 3E12
1.66294 1.4277 AORSA2D on 4k cores 2.70564 PAPI resource stalls Blue is single node 3.302 Red is dual core 1.4101 2.1765 1.4111	1.717E11 MPL_Recv() 1.6629E11 (96.853%) MPL_Recv() 1.4459E11 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {4155,2}-{4879,7}] 1.4297E11 (98.881%)
	3.9955E10 (97.746%) MPL_Barrier() 2.633E10 (97.746%) MPL_Type_commit() 2.7056E10 (102.758%) MPL_Type_commit()
	4.302/E9 MPL_Send0 5.1208E9 (104.437%) MPL_Pack0 3.3801E9 MPL_Pack0 2.8833E9 MPL_Altroduce0
	4.8216E9 (167.223%) WFVineudce0 1.3991E9 1.4401E9 (102.929%) Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} (7010,7)-(7103,12)] 1.256E9 MPL_Bcast0 1.2134E9 (96.609%) MPL_Bcast0
	1.1869E9 Loop: AORSA2D_STIX2 [[/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f] {6842,7}-{6940,12}] 2.1765E9 (183.372%) Loop: AORSA2D_STIX2 [[/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f] {6842,7}-{6940,12}] 1.1506E8 Loop: AORSA2D_STIX2 [[/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f] {3732,7}-{3828,12}] 1.4018E9 (121.831%) Loop: AORSA2D_STIX2 [[/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f] {3732,7}-{3828,12}]
	1.1399E9 Loop: AORSA2D_STIX2 [//spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {4963,7}{4977,11}] 9.3263E8 Loop: AORSA2D_STIX2 [//spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {6584,7}-(6704,12)] 1.6718E9 (179.255%)
	9.0937E8 9.1596E8 (100.724%) MPLIsend() 6.6111E8 7.9273E8 (119.909%) Loop: AORSA2D_STIX2 [[/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f] (6942,7}-(6983,12)]
	6.3637E8 Loop: QL_MYRA_MOD::QL_MYRA_WRITE [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/ql_myra.f} {290,7}-{312,12}] 5.1053E8 Loop: QL_MYRA_MOD::QL_MYRA_WRITE [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/ql_myra.f} {784,7}-{821,12}] 6.5037E8 (127.391%)
	4.6463E8 Loop: QL_MYRA_MOD::QL_MYRA_WRITE [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/ql_myra.f} {827,7}-{849,12}] 3.7652E8 MPI_Comm_compare() 3.8816E8 (103.091%) MPI_Comm_compare()
	2.9081E8 Loop: AORSA2D_STIX2 [[/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f] {3410,7}-{3544,12}] 3.0497E8 (18661E8 2.8661E8 qL_MYRA_MOD::qL_MYRA_WRITE 5.2979E8 (184.845%) qL_MYRA_MOD::qL_MYRA_WRITE

Comparing FLOPS: MultiCore Processors

Metric: PAPI_FP_OPS / GET_TIME_OF_DAY C:uter.350x350.2048pes.dc.loops.BARRIER.ppk - Mean Value: Exclusive C:uter.350x350.4096pes.sn.loops.BARRIER.ppk - Mean Units: Derived metric shown in microseconds format

3518 933

3573.148 (101.541%)

Interview of the second second

□ Red is single node

AORSA2D STIX2 1121.584 Loop: SIGMAD_CQL3D [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/sigma.ft {256.10}-{291.15}] 1132.286 (100.954%) 1063.058 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {3712,7}{3717,12}] 801.834 Loop: AORSA2D_STIX2 [//spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {3719.7}{3724.12}] 815.554 (101.711%) 786.544 Loop: AORSA2D_STIX2 [//spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {3102.7}-{3267.12} 792.095 (100.706%) 664.02 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {2970,7}{2975,12}] 664.878 (100.129%) 659 748 Loop: AORSA2D_STIX2 [//spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.fl {3008.71-{3013.12}} 660.727 (100.148%) 655.014 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f] {5572,7} {5583,12}] 702.5 (107.25%) 615 564 Loop: QL_MYRA_MOD::QL_MYRA_WRITE [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/gl_myra:ft{354.7}{696.12}] 644.334 (104.674%) 546.969 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {5556,7} {5567,12}] 568.389 (103.916%) 535,918 Loop: AORSA2D_STIX2 [//spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {3059,7}{3096,12}] 546.272 (101.932%) 521.226 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {2435,7}-{2444,12}] 524.947 (100.714%) 448 838 Loop: AORSA2D_STIX2 [//spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {5173,7}{5181,12}] 460.548 (102.609%) 444.461 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {7656,7}-{7677,12}] 466.422 (104.941%) 426 282 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {2373,7}-{2382,12}] 447.228 (104.914%) 408.792 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {7633,7}-{7641,12}] 465.508 (113.874%) 408.783 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {2405,7}-{2410,12}] 432.47 (105.794%) 386.623 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {4963,7}-{4977,11}] 406.157 (105.052%) 366.037 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {2413,7}-{2417,12}] 386.585 (105.614%) 358.951 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {2945,7}{2949,12}] 376.144 (104.79%) 358.305 Loop: AORSA2D_STIX2 [[/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f] {4155,2}-{4879,7} 353.306 (98.605%) 342.08 Loop: AORSA2D_STIX2 [/spin/home/rbarrett/AORSA_PROJ/WORK/AORSA2D/src/aorsa2dMain.f} {2384,7}{2389,12}] 368.317 (107.67%)

Petascale Architectures and Performance Strategies

ParaProf – 3D Full Profile (Miranda)

• 🗆 🗙 X ParaProf Visualizer File Options Windows Help Triangle Mesh 🔘 Bar Plot Scatter Plot **Height Metric** 1.6734EL Time Exclusive T. Ŧ 255168 Color Metric .6734E8 Exclusive -Time Ŧ 673488 MPI_Barrier() Function 255168 Þ • 10 367287 16:0:0 Thread 3 1836E7 • Þ 0 S 0 HI-COST Height value 1.2229E8 microseconds 1.2229E8 microseconds Color value Mesh Plot Axes ColorScale Render Orientation NW 🔘 👘 🔘 NE 16k processors Show Axes 075 SE 🔘 🔘 SW

ParaProf – 3D Scatterplot (S3D – XT4 only)

- Each pointis a "thread"of execution
- A total of
 four metrics
 shown in
 relation
- ParaVis 3D
 profile
 visualization
 library
 O JOGL

Events (exclusive time metric)
 MPI_Barrier(), two loops
 write operation

Petascale Architectures and Performance Strategies

S3D Scatter Plot: Visualizing Hybrid XT3+XT4

□ Red nodes are XT4, blue are XT3

Petascale Architectures and Performance Strategies

□ Gap represents XT3 nodes

Petascale Architectures and Performance Strategies

Visualizing S3D Profiles in ParaProf

Gap represents XT3 nodes MPI_Wait takes less time, other routines take more time

Petascale Architectures and Performance Strategies TAU Performance System

Profile snapshots are parallel profiles recorded at runtime
 Used to highlight profile changes during execution

□ Filter snapshots (only show main loop iterations)

□ Breakdown as a percentage

Snapshot replay in ParaProf

Petascale Architectures and Performance Strategies

Follow progression of various displays through time
3D scatter plot shown below

New automated metadata collection

🔨 TAU: ParaProf Manager	
File Options Help	
 Applications Standard Applications Default App Default Exp 190/pdt_mpi/examples/tau2/amorris/home/ PAPI_FP_OPS GET_TIME_OF_DAY Default (jdbc:postgresql://spaceghost.cs.uoregon.edu:543 spaceghost2 (jdbc:postgresql://spaceghost.cs.uoregon.edu:543 spaceghost_peri_milc (jdbc:postgresql://spaceghost.cs.uoregon.edu:543 spaceghost_peri_milc (jdbc:postgresql://spaceghost.cs.uoregon.edu:543 spaceghost_peri_milc (jdbc:postgresql://spaceghost.cs.uoregon.edu:543 proton_mysql (jdbc:mysql://192.168.1.1:3306/perfdm spaceghost_peri_milc (jdbc:postgresql://spaceghost.cs.uoregon.edu:543 utonium_oracle (jdbc:oracle:thin:@//utonium.cs.uoregon.edu:543 perigtc (jdbc:postgresql://spaceghost.cs.uoregon.edu:55 Multiple PerfDMF DBs 	TrialField Name Application ID Experiment ID Trial ID CPU Cores CPU MHz CPU Type CPU Vendor CWD Cache Size Executable Hostname Local Time MPI Processor N Memory Size Node Name OS Machine OS Machine OS Name OS Release OS Version Starting Timesta TAU Architecture TAU Config Timestamp UTC Time pid username

TrialField	Value
Name	foo/odt_mpi/examples/tau2/amorris/home/
Application ID	o
Application to	0
Experiment ID	0
ThanD CRU Correc	
CPU Cores	2
CPU MHZ	2992.505
CPU Type	Intel(R) Xeon(R) CPU 5160 @ 3.00GHZ
CPU Vendor	GenuineIntel
CWD	/home/amorris/tau2/examples/pdt_mpi/190
Cache Size	4096 KB
Executable	/home/amorris/tau2/examples/pdt_mpi/f
Hostname	demon.nic.uoregon.edu
Local Time	2007-07-04T04:21:14-07:00
MPI Processor Name	demon.nic.uoregon.edu
Memory Size	8161240 kB
Node Name	demon.nic.uoregon.edu
OS Machine	x86_64
OS Name	Linux
OS Release	2.6.9-42.0.3.EL.perfctrsmp
OS Version	#1 SMP Fri Nov 3 07:34:13 PST 2006
Starting Timestamp	1183548072220996
TAU Architecture	x86_64
TAU Config	-papi=/usr/local/packages/papi-3.5.0 -M
Timestamp	1183548074317538
UTC Time	2007-07-04T11:21:14Z
pid	11395
username	amorris
username	amorris

• 🗆 🗙

Performance Data Management: Motivation

- Need for robust processing and storage of multiple profile performance data sets
- □ Avoid developing independent data management solutions
 - Waste of resources
 - Incompatibility among analysis tools
- □ Goals:
 - Foster multi-experiment performance evaluation
 - Develop a common, reusable foundation of performance data storage, access and sharing
 - A core module in an analysis system, and/or as a central repository of performance data

PerfDMF Approach

- <u>Performance Data Management Framework</u>
- □ Originally designed to address critical TAU requirements
- Broader goal is to provide an open, flexible framework to support common data management tasks
- Extensible toolkit to promote integration and reuse across available performance tools
 - Supported profile formats: TAU, CUBE, Dynaprof, HPC Toolkit, HPM Toolkit, gprof, mpiP, psrun (PerfSuite), others in development
 - Supported DBMS: PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape

PerfDMF Architecture

Recent PerfDMF Development

- □ Integration of XML metadata for each profile
 - Common Profile Attributes
 - Thread/process specific Profile Attributes
 - Automatic collection of runtime information
 - Any other data the user wants to collect can be added
 - Build information
 - > Job submission information
 - Two methods for acquiring metadata:
 - > TAU_METADATA() call from application
 - > Optional XML file added when saving profile to PerfDMF
 - TAU Metadata XML schema is simple, easy to generate from scripting tools (no XML libraries required)

Performance Data Mining (Objectives)

- □ Conduct parallel performance analysis process
 - In a systematic, collaborative and reusable manner
 - Manage performance complexity
 - Discover performance relationship and properties
 - O Automate process
- Multi-experiment performance analysis
- □ Large-scale performance data reduction
 - Summarize characteristics of large processor runs
- □ Implement extensible analysis framework
 - Abstraction / automation of data mining operations
 - Interface to existing analysis and data mining tools

Performance Data Mining (PerfExplorer)

- □ Performance knowledge discovery framework
 - O Data mining analysis applied to parallel performance data
 ▷ comparative, clustering, correlation, dimension reduction, ...
 - Use the existing TAU infrastructure
 - > TAU performance profiles, PerfDMF
 - Client-server based system architecture
- □ Technology integration
 - Java API and toolkit for portability
 - PerfDMF
 - R-project/Omegahat, Octave/Matlab statistical analysis
 - WEKA data mining package
 - O JFreeChart for visualization, vector output (EPS, SVG)

Performance Data Mining (PerfExplorer)

K. Huck and A. Malony, "PerfExplorer: A Performance Data Mining Framework For Large-Scale Parallel Computing," SC 2005.

PerfExplorer Analysis Methods

- Data summaries, distributions, scatterplots
- □ Clustering
 - 0 k-means
 - O Hierarchical
- □ Correlation analysis
- Dimension reduction
 - O PCA
 - Random linear projection
 - O Thresholds
- □ Comparative analysis
- Data management views

PerfDMF and the TAU Portal

- □ Development of the TAU portal
 - Common repository for collaborative data sharing
 - O Profile uploading, downloading, user management
 - Paraprof, PerfExplorer can be launched from the portal using Java Web Start (no TAU installation required)
- □ Portal URL

http://tau.nic.uoregon.edu

PerfExplorer: Cross Experiment Analysis for S3D

000

File Help

Relative Speedup - S3D (Jaguar, ORNL):Harness Scaling Study: GET_TIME_OF_DAY

Petascale Architectures and Performance Strategies

Petascale Architectures and Performance Strategies TAU Performance System
TAU Plug-Ins for Eclipse: Motivation

- High performance software development environments
 Tools may be complicated to use
 - Interfaces and mechanisms differ between platforms / OS
- □ Integrated development environments
 - Consistent development environment
 - Numerous enhancements to development process
 - Standard in industrial software development
- □ Integrated performance analysis
 - Tools limited to single platform or programming language
 - Rarely compatible with 3rd party analysis tools
 - Little or no support for parallel projects

Adding TAU to Eclipse

- Provide an interface for configuring TAU's automatic instrumentation within Eclipse's build system
- Manage runtime configuration settings and environment variables for execution of TAU instrumented programs

Petascale Architectures and Performance Strategies

TAU Performance System

TAU Eclipse Plug-In Features

- Performance data collection
 - Graphical selection of TAU stub makefiles and compiler options
 - Automatic instrumentation, compilation and execution of target C, C++ or Fortran projects
 - \circ Selective instrumentation via source editor and source outline views
 - Full integration with the Parallel Tools Platform (PTP) parallel launch system for performance data collection from parallel jobs launched within Eclipse
- □ Performance data management
 - Automatically place profile output in a PerfDMF database or upload to TAU-Portal
 - Launch ParaProf on profile data collected in Eclipse, with performance counters linked back to the Eclipse source editor

TAU Eclipse Plug-In Features

Petascale Architectures and Performance Strategies TAU Performance System

Choosing PAPI Counters with TAU's in Eclipse

		Profile		×		-	×
Create, manage, and run configurations				Counter	Definition	1	
Create a configuration to launch a program to be instrumented and profiled by TAU.				PAPI_L1_DCM	Level 1 data cache misses		
					PAPI_L1_ICM	Level 1 instruction cache misses	
					PAPI_L2_DCM	Level 2 data cache misses	
	<u>Mame:</u> Iammps-10Nov05withTAU			-	PAPI_L2_ICM	Level 2 instruction cache misses	
type filter text	🖹 Main ⋈= Arguments 🖾 Environment 😫 Parallel 🐼 Analysis 🔭				PAPI_L1_TCM	Level 1 cache misses	
C/C++ Local Applic	(DA DL Countars	5		PAPI_L2_TCM	Level 2 cache misses	
	MPI	PAPI Counters	<u> </u>		PAPI_FPU_IDL	Cycles floating point units are idle	
i ilammps-10Nov0	Callpath Pro	Select the PAPI counters to use with TAU			PAPI_TLB_DM	Data translation lookaside buffer misses	
	D Phase Base	PAPI L1 DCM			PAPI_TLB_IM	Instruction translation lookaside buffer misses	
	- Mamaru Bro				PAPI_TLB_TL	Total translation lookaside buffer misses	
	Memory Pro	PAPI L2 DCM			PAPI_L1_LDM	Level 1 load misses	
	D OPARI	PAPI L2 ICM			PAPI_L1_STM	Level 1 store misses	
	OpenMP	PAPI L1 TCM			PAPI_L2_LDM	Level 2 load misses	
	Epilog	PAPI L2 TCM			PAPI_L2_STM	Level 2 store misses	
	🗹 PAPI	PAPI_FPU_IDL	nters		PAPI_STL_ICY	Cycles with no instruction issue	
	Porflib	PAPI_TLB_DM			PAPI_HW_INT	Hardware interrupts	
					PAPI_BR_TKN	Conditional branch instructions taken	
	I race				PAPI_BR_MSP	Conditional branch instructions mispredicted	
	Select Makefile	PAPI_L1_LDM			PAPI_TOT_INS	Instructions completed	
		PAPI L1 STM			PAPI_FP_INS	Floating point instructions	
	Selective Instru	Select All Deselect All Counter Descriptions			PAPI_BR_INS	Branch instructions	
	None				PAPI_VEC_INS	Vector/SIMD instructions	
	○ Internal				PAPI_RES_STL	Cycles stalled on any resource	
	○ User Define	OK Cancel			PAPI_TOT_CYC	Total cycles	
		OK	50	1	PAPI_L1_DCH	Level 1 data cache hits	
	Apply Revert			4	PAPI_L2_DCH	Level 2 data cache hits	
< /// >					PAPI_L1_DCA	Level 1 data cache accesses	
					PAPI_L2_DCA	Level 2 data cache accesses	
? Profile Close				PAPI_L2_DCR	Level 2 data cache reads		
				PAPI_L2_DCW	Level 2 data cache writes	¥	

Future Plug-In Development

- □ Integration of additional TAU components
 - Automatic selective instrumentation based on previous experimental results
 - Trace format conversion from within Eclipse
- □ Trace and profile visualization within Eclipse
- □ Scalability testing interface
- Additional user interface enhancements

KTAU Project

- □ Trend toward Extremely Large Scales
 - System-level influences are increasingly dominant performance bottleneck contributors
 - Application sensitivity at scale to the system (e.g., OS noise)
 - Complex I/O path and subsystems another example
 - Isolating system-level factors non-trivial
- OS Kernel instrumentation and measurement is important to understanding system-level influences
- But can we closely correlate observed application and OS performance?
- □ KTAU / TAU (Part of the ANL/UO ZeptoOS Project)
 - Integrated methodology and framework to measure whole-system performance

Applying KTAU+TAU

- □ How does *real* OS-noise affect *real* applications on target platforms?
 - Requires a tightly coupled performance measurement & analysis approach provided by KTAU+TAU
 - Provides an estimate of application slowdown due to Noise (and in particular, different noise-components IRQ, scheduling, etc)
 - Can empower both application and the middleware and OS communities.
 - A. Nataraj, A. Morris, A. Malony, M. Sottile, P. Beckman, "The Ghost in the Machine : Observing the Effects of Kernel Operation on Parallel Application Performance", SC'07.
- Measuring and analyzing complex, multi-component I/O subsystems in systems like BG(L/P) (work in progress).

KTAU System Architecture

A. Nataraj, A. Malony, S. Shende, and A. Morris, "Kernel-level Measurement for Integrated Performance Views: the KTAU Project," *Cluster 2006*, distinguished paper.

TAU Transport Substrate - Motivations

- □ Transport Substrate
 - Enables movement of measurement-related data
 - TAU, in the past, has relied on shared file-system
- Some Modes of Performance Observation
 - Offline / Post-mortem observation and analysis
 - > least requirements for a specialized transport
 - Online observation
 - > long running applications, especially at scale
 - > dumping to file-system can be suboptimal
 - $\boldsymbol{\circ}$ Online observation with feedback into application
 - > in addition, requires that the transport is bi-directional
- Performance observation problems and requirements are a function of the mode

Requirements

- □ Improve performance of transport
 - NFS can be slow and variable
 - Specialization and remoting of FS-operations to front-end
- Data Reduction
 - At scale, cost of moving data too high
 - Sample in different domain (node-wise, event-wise)
- □ Control
 - Selection of events, measurement technique, target nodes
 - \circ What data to output, how often and in what form?
 - Feedback into the measurement system, feedback into application
- □ Online, distributed processing of generated performance data
 - Use compute resource of transport nodes
 - Global performance analyses within the topology
 - Distribute statistical analyses
- □ Scalability, most important All of above at very large scales

Approach and Prototypes

- Measurement and measured data transport de-coupled
 Earlier, no such clear distinction in TAU
- Created abstraction to separate and hide transport
 TauOutput
- Did not create a custom transport for TAU(as yet)
 O Use existing monitoring/transport capabilities
- TAUover: Supermon (Sottile and Minnich, LANL) and MRNET (Arnold and Miller, UWisc)
- A. Nataraj, M.Sottile, A. Morris, A. Malony, S. Shende "TAUoverSupermon: Low-overhead Online Parallel Performance Monitoring", Europar'07.

Rationale

- □ Moved away from NFS
- □ Separation of concerns
 - O Scalability, portability, robustness
 - O Addressed independent of TAU
- □ Re-use existing technologies where appropriate
- Multiple bindings
 - Use different solutions best suited to particular platform
- Implementation speed
 - Easy, fast to create adapter that binds to existing transport

Substrate Architecture - Back-End

- □ Application calls into TAU
 - Per-Iteration explicit call to output routine
 - Periodic calls using alarm
- □ TauOutput object invoked
 - Configuration specific: compile or runtime
 - One per thread
- TauOutput mimics subset of FS-style operations
 - Avoids changes to TAU code
 - If required rest of TAU can be made aware of output type
- □ Non-blocking *recv* for control
- □ Back-end pushes, Sink pulls

