
Workshop on Petascale Architectures and Performance Strategies
4-5pm, Tuesday, July 24, 2007, Snowbird, UT

Sameer S. Shende
 sameer@cs.uoregon.edu

http://www.cs.uoregon.edu/research/tau

Performance Research Laboratory
University of Oregon

TAU Performance System

Petascale Architectures and Performance Strategies 2TAU Performance System

Acknowledgements
 Dr. Allen D. Malony, Professor
 Alan Morris, Senior software engineer
 Wyatt Spear, Software engineer
 Scott Biersdorff, Software engineer
 Kevin Huck, Ph.D. student
 Aroon Nataraj, Ph.D. student
 Brad Davidson, Systems administrator

Petascale Architectures and Performance Strategies 3TAU Performance System

Outline
 Overview of features
 Instrumentation
 Measurement
 Analysis tools

 Parallel profile analysis (ParaProf)
 Performance data management (PerfDMF)
 Performance data mining (PerfExplorer)

 Application examples
 Kernel monitoring and KTAU

Petascale Architectures and Performance Strategies 4TAU Performance System

Performance Evaluation
 Profiling

 Presents summary statistics of performance metrics
 number of times a routine was invoked
 exclusive, inclusive time/hpm counts spent executing it
 number of instrumented child routines invoked, etc.
 structure of invocations (calltrees/callgraphs)
 memory, message communication sizes also tracked

 Tracing
 Presents when and where events took place along a global timeline

 timestamped log of events
 message communication events (sends/receives) are tracked

 shows when and where messages were sent
 large volume of performance data generated leads to more

perturbation in the program

Petascale Architectures and Performance Strategies 5TAU Performance System

Definitions – Profiling
 Profiling

 Recording of summary information during execution
 inclusive, exclusive time, # calls, hardware statistics, …

 Reflects performance behavior of program entities
 functions, loops, basic blocks
 user-defined “semantic” entities

 Very good for low-cost performance assessment
 Helps to expose performance bottlenecks and hotspots
 Implemented through

 sampling: periodic OS interrupts or hardware counter traps
 instrumentation: direct insertion of measurement code

Petascale Architectures and Performance Strategies 6TAU Performance System

Definitions – Tracing
 Tracing

 Recording of information about significant points (events)
during program execution
 entering/exiting code region (function, loop, block, …)
 thread/process interactions (e.g., send/receive message)

 Save information in event record
 timestamp
CPU identifier, thread identifier
Event type and event-specific information

 Event trace is a time-sequenced stream of event records
 Can be used to reconstruct dynamic program behavior
 Typically requires code instrumentation

Petascale Architectures and Performance Strategies 7TAU Performance System

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 worker

3 ...

void worker {
 trace(ENTER, 2);
 ...
 recv(A, tag, buf);
 trace(RECV, A);
 ...
 trace(EXIT, 2);
}

void master {
 trace(ENTER, 1);
 ...
 trace(SEND, B);
 send(B, tag, buf);
 ...
 trace(EXIT, 1);
}

MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp

Petascale Architectures and Performance Strategies 8TAU Performance System

Event Tracing: “Timeline” Visualization

1 master
2 worker
3 ...

58 A ENTER 1
60 B ENTER 2
62 A SEND B
64 A EXIT 1
68 B RECV A

...

69 B EXIT 2
...

main
master
worker

58 60 62 64 66 68 70

B

A

Petascale Architectures and Performance Strategies 9TAU Performance System

Steps of Performance Evaluation
 Collect basic routine-level timing profile to determine

where most time is being spent
 Collect routine-level hardware counter data to determine

types of performance problems
 Collect callpath profiles to determine sequence of events

causing performance problems
 Conduct finer-grained profiling and/or tracing to

pinpoint performance bottlenecks
 Loop-level profiling with hardware counters
 Tracing of communication operations

Petascale Architectures and Performance Strategies 10TAU Performance System

TAU Performance System
 Tuning and Analysis Utilities (15+ year project effort)
 Performance system framework for HPC systems

 Integrated, scalable, flexible, and parallel
 Targets a general complex system computation model

 Entities: nodes / contexts / threads
 Multi-level: system / software / parallelism
 Measurement and analysis abstraction

 Integrated toolkit for performance problem solving
 Instrumentation, measurement, analysis, and visualization
 Portable performance profiling and tracing facility
 Performance data management and data mining

 Partners: LLNL, ANL, LANL, Research Center Jülich

Petascale Architectures and Performance Strategies 11TAU Performance System

TAU Parallel Performance System Goals
 Portable (open source) parallel performance system

 Computer system architectures and operating systems
 Different programming languages and compilers

 Multi-level, multi-language performance instrumentation
 Flexible and configurable performance measurement
 Support for multiple parallel programming paradigms

 Multi-threading, message passing, mixed-mode, hybrid,
object oriented (generic), component-based

 Support for performance mapping
 Integration of leading performance technology
 Scalable (very large) parallel performance analysis

Petascale Architectures and Performance Strategies 12TAU Performance System

TAU Performance System Architecture

Petascale Architectures and Performance Strategies 13TAU Performance System

TAU Performance System Architecture

Petascale Architectures and Performance Strategies 14TAU Performance System

Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

Automatic source
instrumentation

Petascale Architectures and Performance Strategies 15TAU Performance System

Building Bridges to Other Tools: TAU

Petascale Architectures and Performance Strategies 16TAU Performance System

TAU Instrumentation Approach
 Support for standard program events

 Routines, classes and templates
 Statement-level blocks

 Support for user-defined events
 Begin/End events (“user-defined timers”)
 Atomic events (e.g., size of memory allocated/freed)
 Selection of event statistics
 Support for hardware performance counters (PAPI)

 Support definition of “semantic” entities for mapping
 Support for event groups (aggregation, selection)
 Instrumentation optimization

 Eliminate instrumentation in lightweight routines

Petascale Architectures and Performance Strategies 17TAU Performance System

PAPI

 Performance Application Programming Interface
 The purpose of the PAPI project is to design,

standardize and implement a portable and efficient
API to access the hardware performance monitor
counters found on most modern microprocessors.

 Parallel Tools Consortium project started in 1998
 Developed by University of Tennessee, Knoxville
 http://icl.cs.utk.edu/papi/

Petascale Architectures and Performance Strategies 18TAU Performance System

TAU Instrumentation Mechanisms
 Source code

 Manual (TAU API, TAU component API)
 Automatic (robust)

C, C++, F77/90/95 (Program Database Toolkit (PDT))
OpenMP (directive rewriting (Opari), POMP2 spec)

 Object code
 Pre-instrumented libraries (e.g., MPI using PMPI)
 Statically-linked and dynamically-linked

 Executable code
 Dynamic instrumentation (pre-execution) (DynInstAPI)
 Virtual machine instrumentation (e.g., Java using JVMPI)

 TAU_COMPILER to automate instrumentation process

Petascale Architectures and Performance Strategies 19TAU Performance System

Using TAU: A brief Introduction
 To instrument source code using PDT

 Choose an appropriate TAU stub makefile in <arch>/lib:
% setenv TAU_MAKEFILE

/usr/tau-2.x/xt3/lib/Makefile.tau-mpi-pdt-pgi
% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C

compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90

 Execute application and analyze performance data:
% pprof (for text based profile display)
% paraprof (for GUI)

Petascale Architectures and Performance Strategies 20TAU Performance System

TAU Measurement System Configuration
 configure [OPTIONS]

{-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
-pdt=<dir> Specify location of PDT
-opari=<dir> Specify location of Opari OpenMP tool
-papi=<dir> Specify location of PAPI
-vampirtrace=<dir> Specify location of VampirTrace
-mpi[inc/lib]=<dir> Specify MPI library instrumentation
-dyninst=<dir> Specify location of DynInst Package
-shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
-python[inc/lib]=<dir> Specify Python instrumentation
-tag=<name> Specify a unique configuration name
-epilog=<dir> Specify location of EPILOG
-slog2 Build SLOG2/Jumpshot tracing package
-otf=<dir> Specify location of OTF trace package
-arch=<architecture> Specify architecture explicitly

(bgl, xt3,ibm64,ibm64linux…)
{-pthread, -sproc} Use pthread or SGI sproc threads
-openmp Use OpenMP threads
-jdk=<dir> Specify Java instrumentation (JDK)
-fortran=[vendor] Specify Fortran compiler

Petascale Architectures and Performance Strategies 21TAU Performance System

TAU Measurement System Configuration
 configure [OPTIONS]

-TRACE Generate binary TAU traces
-PROFILE (default) Generate profiles (summary)
-PROFILECALLPATH Generate call path profiles
-PROFILEPHASE Generate phase based profiles
-PROFILEPARAM Generate parameter based profiles
-PROFILEMEMORY Track heap memory for each routine
-PROFILEHEADROOM Track memory headroom to grow
-MULTIPLECOUNTERS Use hardware counters + time
-COMPENSATE Compensate timer overhead
-CPUTIME Use usertime+system time
-PAPIWALLCLOCK Use PAPI’s wallclock time
-PAPIVIRTUAL Use PAPI’s process virtual time
-SGITIMERS Use fast IRIX timers
-LINUXTIMERS Use fast x86 Linux timers

Petascale Architectures and Performance Strategies 22TAU Performance System

Performance Evaluation Alternatives

Flat profile

Depthlimit
profile

Parameter
profile

Callpath/
callgraph profile

Phase
profile

Trace

Volume of performance data
Each alternative has:
- one metric/counter
- multiple counters

Petascale Architectures and Performance Strategies 23TAU Performance System

TAU Measurement Configuration – Examples

 ./configure –pdt=/usr/pkgs/pkgs/pdtoolkit-3.11
-mpiinc=/usr/pkgs/mpich/include -mpilib=/usr/pkgs/mpich/lib
-mpilibrary=‘-lmpich -L/usr/gm/lib64 -lgm -lpthread -ldl’
 Configure using PDT and MPI for x86_64 Linux

 ./configure -arch=xt3 -papi=/opt/xt-tools/papi/3.2.1 -mpi -
MULTIPLECOUNTERS; make clean install
 Use PAPI counters (one or more) with C/C++/F90 automatic

instrumentation for XT3. Also instrument the MPI library. Use PGI
compilers.

 Typically configure multiple measurement libraries
 Each configuration creates a unique <arch>/lib/Makefile.tau<options>

stub makefile. It corresponds to the configuration options used. e.g.,
 /usr/pkgs/tau/x86_64/lib/Makefile.tau-mpi-pdt-pgi
 /usr/pkgs/tau/x86_64/lib/Makefile.tau-multiplecounters-mpi-papi-pdt-pgi

Petascale Architectures and Performance Strategies 24TAU Performance System

TAU Measurement Configuration – Examples

% cd /usr/pkgs/tau/x86_64/lib; ls Makefile.*pgi
Makefile.tau-pdt-pgi
Makefile.tau-mpi-pdt-pgi
Makefile.tau-callpath-mpi-pdt-pgi
Makefile.tau-mpi-pdt-trace-pgi
Makefile.tau-mpi-compensate-pdt-pgi
Makefile.tau-multiplecounters-mpi-papi-pdt-pgi
Makefile.tau-multiplecounters-mpi-papi-pdt-trace-pgi
Makefile.tau-mpi-papi-pdt-epilog-trace-pgi
Makefile.tau-pdt-pgi…
 For an MPI+F90 application, you may want to start with:
Makefile.tau-mpi-pdt-pgi

 Supports MPI instrumentation & PDT for automatic source instrumentation for PGI
compilers

Petascale Architectures and Performance Strategies 25TAU Performance System

Configuration Parameters in Stub Makefiles
 Each TAU stub Makefile resides in <tau>/<arch>/lib directory
 Variables:

 TAU_CXX Specify the C++ compiler used by TAU
 TAU_CC, TAU_F90 Specify the C, F90 compilers
 TAU_DEFS Defines used by TAU. Add to CFLAGS
 TAU_LDFLAGS Linker options. Add to LDFLAGS
 TAU_INCLUDE Header files include path. Add to CFLAGS
 TAU_LIBS Statically linked TAU library. Add to LIBS
 TAU_SHLIBS Dynamically linked TAU library
 TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
 TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
 TAU_FORTRANLIBS Must be linked in with C++ linker for F90
 TAU_CXXLIBS Must be linked in with F90 linker
 TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
 TAU_DISABLE TAU’s dummy F90 stub library
 TAU_COMPILER Instrument using tau_compiler.sh script

 Each stub makefile encapsulates the parameters that TAU was configured with
 It represents a specific instance of the TAU libraries. TAU scripts use stub makefiles to

identify what performance measurements are to be performed.

Petascale Architectures and Performance Strategies 26TAU Performance System

Automatic Instrumentation

 We now provide compiler wrapper scripts
 Simply replace mpxlf90 with tau_f90.sh
 Automatically instruments Fortran source code,

links with TAU MPI Wrapper libraries.
 Use tau_cc.sh and tau_cxx.sh for C/C++

Before
CXX = mpCC
F90 = mpxlf90_r
CFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:
$(CC) $(CFLAGS) -c $<

After
CXX = tau_cxx.sh
F90 = tau_f90.sh
CFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:
$(CC) $(CFLAGS) -c $<

Petascale Architectures and Performance Strategies 27TAU Performance System

TAU_COMPILER Commandline Options

 See <taudir>/<arch>/bin/tau_compiler.sh –help
 Compilation:

% mpxlf90 -c foo.f90
Changes to
% f95parse foo.f90 $(OPT1)
% tau_instrumentor foo.pdb foo.f90 –o foo.inst.f90 $(OPT2)
% mpxlf90 –c foo.f90 $(OPT3)

 Linking:
% mpxlf90 foo.o bar.o –o app
Changes to
% mpxlf90 foo.o bar.o –o app $(OPT4)

 Where options OPT[1-4] default values may be overridden by the user:
F90 = $(TAU_COMPILER) $(MYOPTIONS) mpxlf90

Petascale Architectures and Performance Strategies 28TAU Performance System

TAU_COMPILER Options
 Optional parameters for $(TAU_COMPILER): [tau_compiler.sh –help]

-optVerbose Turn on verbose debugging messages
-optDetectMemoryLeaks Turn on debugging memory allocations/

de-allocations to track leaks
-optPdtGnuFortranParser Use gfparse (GNU) instead of f95parse

(Cleanscape) for parsing Fortran source code
-optKeepFiles Does not remove intermediate .pdb and .inst.* files
-optPreProcess Preprocess Fortran sources before instrumentation
-optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor
-optLinking="" Options passed to the linker. Typically

$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile="" Options passed to the compiler. Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse)
-optPdtF95Reset="" Reset options for Fortran parser in PDT (f95parse/gfparse)
-optPdtCOpts="" Options for C parser in PDT (cparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
...

Petascale Architectures and Performance Strategies 29TAU Performance System

Overriding Default Options:TAU_COMPILER

% cat Makefile
F90 = tau_f90.sh
OBJS = f1.o f2.o f3.o …
LIBS = -Lappdir –lapplib1 –lapplib2 …

app: $(OBJS)
$(F90) $(OBJS) –o app $(LIBS)

.f90.o:
$(F90) –c $<

% setenv TAU_OPTIONS ‘-optVerbose -optTauSelectFile=select.tau
-optKeepFiles’

% setenv TAU_MAKEFILE <taudir>/x86_64/lib/Makefile.tau-mpi-pdt

Petascale Architectures and Performance Strategies 30TAU Performance System

Optimization of Program Instrumentation

 Need to eliminate instrumentation in frequently executing
lightweight routines

 Throttling of events at runtime:
% setenv TAU_THROTTLE 1
Turns off instrumentation in routines that execute over 100000 times

(TAU_THROTTLE_NUMCALLS) and take less than 10
microseconds of inclusive time per call
(TAU_THROTTLE_PERCALL)

 Selective instrumentation file to filter events
% tau_instrumentor [options] –f <file> OR
% setenv TAU_OPTIONS ’-optTauSelectFile=tau.txt’

 Compensation of local instrumentation overhead
% configure -COMPENSATE

Petascale Architectures and Performance Strategies 31TAU Performance System

Selective Instrumentation File

 Specify a list of routines to exclude or include (case sensitive)
 # is a wildcard in a routine name. It cannot appear in the first column.

BEGIN_EXCLUDE_LIST
Foo
Bar
D#EMM
END_EXCLUDE_LIST

 Specify a list of routines to include for instrumentation
BEGIN_INCLUDE_LIST
int main(int, char **)
F1
F3
END_EXCLUDE_LIST

 Specify either an include list or an exclude list!

Petascale Architectures and Performance Strategies 32TAU Performance System

Selective Instrumentation File

 Optionally specify a list of files to exclude or include (case sensitive)
 * and ? may be used as wildcard characters in a file name

BEGIN_FILE_EXCLUDE_LIST
f*.f90
Foo?.cpp
END_FILE_EXCLUDE_LIST

 Specify a list of routines to include for instrumentation
BEGIN_FILE_INCLUDE_LIST
main.cpp
foo.f90
END_FILE_INCLUDE_LIST

Petascale Architectures and Performance Strategies 33TAU Performance System

Selective Instrumentation File

 User instrumentation commands are placed in INSTRUMENT section
 ? and * used as wildcard characters for file name, # for routine name
 \ as escape character for quotes
 Routine entry/exit, arbitrary code insertion
 Outer-loop level instrumentation

BEGIN_INSTRUMENT_SECTION
loops file=“foo.f90” routine=“matrix#”
memory file=“foo.f90” routine=“#”
io routine=“MATRIX”
file=“foo.f90” line = 123 code = " print *, \" In foo\""
exit routine = “int f1()” code = "cout <<\“Out f1\"<<endl;"
END_INSTRUMENT_SECTION

Petascale Architectures and Performance Strategies 34TAU Performance System

Manual Instrumentation – C/C++ Example
#include <TAU.h>
int main(int argc, char **argv)
{
 TAU_START (“big-loop”)

 for(int i = 0; i < N ; i++){
 work(i);
 }

 TAU_STOP (“big-loop”);

}

% g++ foo.cpp –I<taudir>/include –c
% g++ foo.o –o foo –L<taudir>/<arch>/lib –lTAU

Petascale Architectures and Performance Strategies 35TAU Performance System

Jumpshot
 http://www-unix.mcs.anl.gov/perfvis/software/viewers/index.htm
 Developed at Argonne National Laboratory as part of the MPICH

project
 Rusty Lusk, PI

 Also works with other MPI implementations
 Jumpshot is bundled with the TAU package

 Java-based tracefile visualization tool for postmortem
performance analysis of MPI programs

 Latest version is Jumpshot-4 for SLOG-2 format
 Scalable level of detail support
 Timeline and histogram views
 Scrolling and zooming
 Search/scan facility

Petascale Architectures and Performance Strategies 36TAU Performance System

Jumpshot

Petascale Architectures and Performance Strategies 37TAU Performance System

Tracing: Using TAU and Jumpshot
 Configure TAU with -TRACE option:

% configure –TRACE –otf=<dir>
-MULTIPLECOUNTERS –papi=<dir> -mpi
–pdt=dir …

 Set environment variables:
% setenv TRACEDIR /p/gm1/<login>/traces
% setenv COUNTER1 GET_TIME_OF_DAY (reqd)
% setenv COUNTER2 PAPI_FP_INS
% setenv COUNTER3 PAPI_TOT_CYC …

 Execute application and analyze the traces:
% mpirun -np 32 ./a.out [args]

% tau_treemerge.pl
% tau2slog2 tau.trc tau.edf –o app.slog2
% jumpshot app.slog2

Petascale Architectures and Performance Strategies 38TAU Performance System

 User-level abstractions
 problem domain

source code

source code

object code libraries

instrumentation

instrumentation

executable

runtime image

compiler

linker

OS

VM

instrumentation

instrumentation

instrumentation

instrumentation

instrumentation

instrumentationperformance
data run

preprocessor

Multi-Level Instrumentation and Mapping
 Multiple interfaces
 Information sharing

 Between interfaces
 Event selection

 Within/between
levels

 Mapping
 Associate

performance data
with high-level
semantic abstractions

Petascale Architectures and Performance Strategies 39TAU Performance System

TAU Measurement Approach
 Portable and scalable parallel profiling solution

 Multiple profiling types and options
 Event selection and control (enabling/disabling, throttling)
 Online profile access and sampling
 Online performance profile overhead compensation

 Portable and scalable parallel tracing solution
 Trace translation to SLOG2, OTF, EPILOG, and Paraver
 Trace streams (OTF) and hierarchical trace merging

 Robust timing and hardware performance support
 Multiple counters (hardware, user-defined, system)
 Performance measurement for CCA component software

Petascale Architectures and Performance Strategies 40TAU Performance System

TAU Measurement Mechanisms
 Parallel profiling

 Function-level, block-level, statement-level
 Supports user-defined events and mapping events
 TAU parallel profile stored (dumped) during execution
 Support for flat, callgraph/callpath, phase profiling
 Support for memory profiling (headroom, malloc/leaks)
 Support for tracking I/O (wrappers, Fortran

instrumentation of read/write/print calls)
 Tracing

 All profile-level events
 Inter-process communication events
 Inclusion of multiple counter data in traced events

Petascale Architectures and Performance Strategies 41TAU Performance System

Types of Parallel Performance Profiling
 Flat profiles

 Metric (e.g., time) spent in an event (callgraph nodes)
 Exclusive/inclusive, # of calls, child calls

 Callpath profiles (Calldepth profiles)
 Time spent along a calling path (edges in callgraph)
 “main=> f1 => f2 => MPI_Send” (event name)
 TAU_CALLPATH_DEPTH environment variable

 Phase profiles
 Flat profiles under a phase (nested phases are allowed)
 Default “main” phase
 Supports static or dynamic (per-iteration) phases

Petascale Architectures and Performance Strategies 42TAU Performance System

Performance Analysis and Visualization
 Analysis of parallel profile and trace measurement
 Parallel profile analysis

 ParaProf: parallel profile analysis and presentation
 ParaVis: parallel performance visualization package
 Profile generation from trace data (tau2profile)

 Performance data management framework (PerfDMF)
 Parallel trace analysis

 Translation to VTF (V3.0), EPILOG, OTF formats
 Integration with VNG (Technical University of Dresden)

 Online parallel analysis and visualization
 Integration with CUBE browser (KOJAK, UTK, FZJ)

Petascale Architectures and Performance Strategies 43TAU Performance System

ParaProf Parallel Performance Profile Analysis

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial

Petascale Architectures and Performance Strategies 44TAU Performance System

ParaProf – Flat Profile (Miranda, BG/L)

8K processorsnode, context, thread

Miranda
 hydrodynamics
 Fortran + MPI
 LLNL

Run to 64K

Petascale Architectures and Performance Strategies 45TAU Performance System

Terminology – Example

 For routine “int main()”:
 Exclusive time

 100-20-50-20=10 secs
 Inclusive time

 100 secs
 Calls

 1 call
 Subrs (no. of child routines

called)
 3

 Inclusive time/call
 100secs

int main()
{ /* takes 100 secs */

 f1(); /* takes 20 secs */
 f2(); /* takes 50 secs */
 f1(); /* takes 20 secs */

 /* other work */
}

/*
Time can be replaced by counts
from PAPI e.g., PAPI_FP_OPS. */

Petascale Architectures and Performance Strategies 46TAU Performance System

ParaProf – Stacked View (Miranda)

Petascale Architectures and Performance Strategies 47TAU Performance System

ParaProf – Callpath Profile (Flash)

Flash
 thermonuclear
 flashes
 Fortran + MPI
 Argonne

Petascale Architectures and Performance Strategies 48TAU Performance System

Comparing Effects of MultiCore Processors

 AORSA2D on 4k cores
 PAPI resource stalls
 Blue is single node
 Red is dual core

Petascale Architectures and Performance Strategies 49TAU Performance System

Comparing FLOPS: MultiCore Processors

 AORSA2D on 4k cores
 Floating pt ins/second
 Blue is dual core
 Red is single node

Petascale Architectures and Performance Strategies 50TAU Performance System

ParaProf – Scalable Histogram View (Miranda)

8k processors

16k processors

Petascale Architectures and Performance Strategies 51TAU Performance System

ParaProf – 3D Full Profile (Miranda)

16k processors

Petascale Architectures and Performance Strategies 52TAU Performance System

ParaProf – 3D Scatterplot (S3D – XT4 only)
 Each point

is a “thread”
of execution

 A total of
four metrics
shown in
relation

 ParaVis 3D
profile
visualization
library
 JOGL

6400 cores

I/O takes less time on
one node (rank 0)

 Events (exclusive time metric)
 MPI_Barrier(), two loops
 write operation

Petascale Architectures and Performance Strategies 53TAU Performance System

6400 cores

S3D Scatter Plot: Visualizing Hybrid XT3+XT4

 Red nodes are XT4, blue are XT3

Petascale Architectures and Performance Strategies 54TAU Performance System

S3D: 6400 cores on XT3+XT4 System (Jaguar)

 Gap represents XT3 nodes

Petascale Architectures and Performance Strategies 55TAU Performance System

Visualizing S3D Profiles in ParaProf

 Gap represents XT3 nodes
 MPI_Wait takes less time, other routines take more time

Petascale Architectures and Performance Strategies 56TAU Performance System

Profile Snapshots in ParaProf

Initialization

Checkpointing

Finalization

 Profile snapshots are parallel profiles recorded at runtime
 Used to highlight profile changes during execution

Petascale Architectures and Performance Strategies 57TAU Performance System

Profile Snapshots in ParaProf
 Filter snapshots (only show main loop iterations)

Petascale Architectures and Performance Strategies 58TAU Performance System

Profile Snapshots in ParaProf
 Breakdown as a percentage

Petascale Architectures and Performance Strategies 59TAU Performance System

Snapshot replay in ParaProf

All windows dynamically update

Petascale Architectures and Performance Strategies 60TAU Performance System

Profile Snapshots in ParaProf
 Follow progression of various displays through time
 3D scatter plot shown below

T = 0s T = 11s

Petascale Architectures and Performance Strategies 61TAU Performance System

New automated metadata collection

Multiple PerfDMF DBs

Petascale Architectures and Performance Strategies 62TAU Performance System

Performance Data Management: Motivation
 Need for robust processing and storage of multiple profile

performance data sets
 Avoid developing independent data management solutions

 Waste of resources
 Incompatibility among analysis tools

 Goals:
 Foster multi-experiment performance evaluation
 Develop a common, reusable foundation of performance

data storage, access and sharing
 A core module in an analysis system, and/or as a central

repository of performance data

Petascale Architectures and Performance Strategies 63TAU Performance System

PerfDMF Approach
 Performance Data Management Framework
 Originally designed to address critical TAU requirements
 Broader goal is to provide an open, flexible framework to

support common data management tasks
 Extensible toolkit to promote integration and reuse across

available performance tools
 Supported profile formats:

TAU, CUBE, Dynaprof, HPC Toolkit, HPM Toolkit,
gprof, mpiP, psrun (PerfSuite), others in development

 Supported DBMS:
PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape

Petascale Architectures and Performance Strategies 64TAU Performance System

PerfDMF Architecture

K. Huck, A. Malony, R. Bell, A. Morris, “Design and Implementation of
a Parallel Performance Data Management Framework,” ICPP 2005.

Petascale Architectures and Performance Strategies 65TAU Performance System

Recent PerfDMF Development
 Integration of XML metadata for each profile

 Common Profile Attributes
 Thread/process specific Profile Attributes
 Automatic collection of runtime information
 Any other data the user wants to collect can be added

Build information
 Job submission information

 Two methods for acquiring metadata:
TAU_METADATA() call from application
Optional XML file added when saving profile to PerfDMF

 TAU Metadata XML schema is simple, easy to generate
from scripting tools (no XML libraries required)

Petascale Architectures and Performance Strategies 66TAU Performance System

Performance Data Mining (Objectives)
 Conduct parallel performance analysis process

 In a systematic, collaborative and reusable manner
 Manage performance complexity
 Discover performance relationship and properties
 Automate process

 Multi-experiment performance analysis
 Large-scale performance data reduction

 Summarize characteristics of large processor runs
 Implement extensible analysis framework

 Abstraction / automation of data mining operations
 Interface to existing analysis and data mining tools

Petascale Architectures and Performance Strategies 67TAU Performance System

Performance Data Mining (PerfExplorer)
 Performance knowledge discovery framework

 Data mining analysis applied to parallel performance data
 comparative, clustering, correlation, dimension reduction, …

 Use the existing TAU infrastructure
TAU performance profiles, PerfDMF

 Client-server based system architecture
 Technology integration

 Java API and toolkit for portability
 PerfDMF
 R-project/Omegahat, Octave/Matlab statistical analysis
 WEKA data mining package
 JFreeChart for visualization, vector output (EPS, SVG)

Petascale Architectures and Performance Strategies 68TAU Performance System

Performance Data Mining (PerfExplorer)

K. Huck and A. Malony, “PerfExplorer: A Performance Data
Mining Framework For Large-Scale Parallel Computing,” SC 2005.

Petascale Architectures and Performance Strategies 69TAU Performance System

PerfExplorer Analysis Methods
 Data summaries, distributions, scatterplots
 Clustering

 k-means
 Hierarchical

 Correlation analysis
 Dimension reduction

 PCA
 Random linear projection
 Thresholds

 Comparative analysis
 Data management views

Petascale Architectures and Performance Strategies 70TAU Performance System

PerfDMF and the TAU Portal
 Development of the TAU portal

 Common repository for collaborative data sharing
 Profile uploading, downloading, user management
 Paraprof, PerfExplorer can be launched from the portal

using Java Web Start (no TAU installation required)
 Portal URL

http://tau.nic.uoregon.edu

Petascale Architectures and Performance Strategies 71TAU Performance System

PerfExplorer: Cross Experiment Analysis for S3D

Petascale Architectures and Performance Strategies 72TAU Performance System

PerfExplorer: S3D Total Runtime Breakdown

MPI_Wait

WRITE_
SAVEFILE

12,000
cores!

Petascale Architectures and Performance Strategies 73TAU Performance System

TAU Plug-Ins for Eclipse: Motivation
 High performance software development environments

 Tools may be complicated to use
 Interfaces and mechanisms differ between platforms / OS

 Integrated development environments
 Consistent development environment
 Numerous enhancements to development process
 Standard in industrial software development

 Integrated performance analysis
 Tools limited to single platform or programming language
 Rarely compatible with 3rd party analysis tools
 Little or no support for parallel projects

Petascale Architectures and Performance Strategies 74TAU Performance System

Adding TAU to Eclipse
 Provide an interface for configuring TAU’s automatic

instrumentation within Eclipse’s build system
 Manage runtime configuration settings and environment

variables for execution of TAU instrumented programs

C/C++/Fortran
Project in Eclipse

Add or modify
an Eclipse build

configuration w/ TAU

Temporary copy
of instrumented code

Compilation/linking
with TAU libraries

TAU instrumented
libraries

Program
execution

Performance
data

Program
output

Petascale Architectures and Performance Strategies 75TAU Performance System

TAU Eclipse Plug-In Features
 Performance data collection

 Graphical selection of TAU stub makefiles and compiler options
 Automatic instrumentation, compilation and execution of target C,

C++ or Fortran projects
 Selective instrumentation via source editor and source outline views
 Full integration with the Parallel Tools Platform (PTP) parallel

launch system for performance data collection from parallel jobs
launched within Eclipse

 Performance data management
 Automatically place profile output in a PerfDMF database or upload

to TAU-Portal
 Launch ParaProf on profile data collected in Eclipse, with

performance counters linked back to the Eclipse source editor

Petascale Architectures and Performance Strategies 76TAU Performance System

TAU Eclipse Plug-In Features

 PerfDMF

Petascale Architectures and Performance Strategies 77TAU Performance System

Choosing PAPI Counters with TAU’s in Eclipse

Petascale Architectures and Performance Strategies 78TAU Performance System

Future Plug-In Development
 Integration of additional TAU components

 Automatic selective instrumentation based on previous
experimental results

 Trace format conversion from within Eclipse
 Trace and profile visualization within Eclipse
 Scalability testing interface
 Additional user interface enhancements

Petascale Architectures and Performance Strategies 79TAU Performance System

KTAU Project
 Trend toward Extremely Large Scales

 System-level influences are increasingly dominant performance
bottleneck contributors

 Application sensitivity at scale to the system (e.g., OS noise)
 Complex I/O path and subsystems another example
 Isolating system-level factors non-trivial

 OS Kernel instrumentation and measurement is important to
understanding system-level influences

 But can we closely correlate observed application and OS
performance?

 KTAU / TAU (Part of the ANL/UO ZeptoOS Project)
 Integrated methodology and framework to measure whole-system

performance

Petascale Architectures and Performance Strategies 80TAU Performance System

Applying KTAU+TAU
 How does real OS-noise affect real applications on target

platforms?
 Requires a tightly coupled performance measurement &

analysis approach provided by KTAU+TAU
 Provides an estimate of application slowdown due to Noise

(and in particular, different noise-components - IRQ,
scheduling, etc)

 Can empower both application and the middleware and OS
communities.

 A. Nataraj, A. Morris, A. Malony, M. Sottile, P. Beckman,
“The Ghost in the Machine : Observing the Effects of Kernel
Operation on Parallel Application Performance”, SC’07.

 Measuring and analyzing complex, multi-component I/O
subsystems in systems like BG(L/P) (work in progress).

Petascale Architectures and Performance Strategies 81TAU Performance System

KTAU System Architecture

A. Nataraj, A. Malony, S. Shende, and A. Morris, “Kernel-level Measurement for
Integrated Performance Views: the KTAU Project,” Cluster 2006, distinguished paper.

Petascale Architectures and Performance Strategies 82TAU Performance System

Support Acknowledgements
 US Department of Energy (DOE)

 Office of Science
 MICS, Argonne National Lab

 ASC/NNSA
 University of Utah ASC/NNSA Level 1
 ASC/NNSA, Lawrence Livermore National Lab

 US Department of Defense (DoD)
 NSF Software and Tools for High-End Computing
 Research Centre Juelich
 TU Dresden
 Los Alamos National Laboratory
 ParaTools, Inc.

Petascale Architectures and Performance Strategies 83TAU Performance System

TAU Transport Substrate - Motivations
 Transport Substrate

 Enables movement of measurement-related data
 TAU, in the past, has relied on shared file-system

 Some Modes of Performance Observation
 Offline / Post-mortem observation and analysis

 least requirements for a specialized transport
 Online observation

 long running applications, especially at scale
 dumping to file-system can be suboptimal

 Online observation with feedback into application
 in addition, requires that the transport is bi-directional

 Performance observation problems and requirements are
a function of the mode

Petascale Architectures and Performance Strategies 84TAU Performance System

Requirements
 Improve performance of transport

 NFS can be slow and variable
 Specialization and remoting of FS-operations to front-end

 Data Reduction
 At scale, cost of moving data too high
 Sample in different domain (node-wise, event-wise)

 Control
 Selection of events, measurement technique, target nodes
 What data to output, how often and in what form?
 Feedback into the measurement system, feedback into application

 Online, distributed processing of generated performance data
 Use compute resource of transport nodes
 Global performance analyses within the topology
 Distribute statistical analyses

 Scalability, most important - All of above at very large scales

Petascale Architectures and Performance Strategies 85TAU Performance System

Approach and Prototypes
 Measurement and measured data transport de-coupled

 Earlier, no such clear distinction in TAU
 Created abstraction to separate and hide transport

 TauOutput
 Did not create a custom transport for TAU(as yet)

 Use existing monitoring/transport capabilities
 TAUover: Supermon (Sottile and Minnich, LANL) and

MRNET (Arnold and Miller, UWisc)
 A. Nataraj, M.Sottile, A. Morris, A. Malony, S. Shende

“TAUoverSupermon: Low-overhead Online Parallel
Performance Monitoring”, Europar’07.

Petascale Architectures and Performance Strategies 86TAU Performance System

Rationale
 Moved away from NFS
 Separation of concerns

 Scalability, portability, robustness
 Addressed independent of TAU

 Re-use existing technologies where appropriate
 Multiple bindings

 Use different solutions best suited to particular platform
 Implementation speed

 Easy, fast to create adapter that binds to existing transport

Petascale Architectures and Performance Strategies 87TAU Performance System

Substrate Architecture - High-level
 Components

 Front-End (FE)
 Intermediate Nodes
 Back-End (BE)

 NFS, Supermon, MRNet
API

 Push-Pull model of data
retrieval

 Figure shows ToS high-
level view

Petascale Architectures and Performance Strategies 88TAU Performance System

Substrate Architecture - Back-End
 Application calls into TAU

 Per-Iteration explicit call to output
routine

 Periodic calls using alarm
 TauOutput object invoked

 Configuration specific:
compile or runtime

 One per thread
 TauOutput mimics subset of FS-style

operations
 Avoids changes to TAU code
 If required rest of TAU can be

made aware of output type
 Non-blocking recv for control
 Back-end pushes, Sink pulls

