
TAUdb: PerfDMF Refactored

Kevin Huck, Suzanne Millstein,
 Allen D. Malony and Sameer Shende

Department of Computer and Information Science
University of Oregon

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

PerfDMF Overview

  Performance Data Management Framework
  Started in 2004 (Huck et al., ICPP 2005)
  Database Schema & Java API (profile parsing, database

queries, conversion utilities)
  Provides DB support for TAU Profile Analysis Tools

ParaProf, PerfExplorer, EclipsePTP
  Used as regression testing database for TAU
  Used as performance regression database for FACETS

(2008-2012)
  Ported to several DBMS: PostgreSQL, MySQL, H2,

Derby, Oracle, DB2

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Supported Profile Formats

  TAU – profiles, packed
profiles, snapshots (UO)

  DynaProf – PAPI DynaProf
profiles (UTK)

  mpiP – Lightweight, scalable
MPI Profiling (Vetter,
Chambreau)

  HPM Toolkit profiles (IBM)
  Gprof profiles (GNU)
  PerfSuite psrun profiles

(NCSA)
  Cube, Cube3, Cube4 profiles

(FZJ)

  HPC Toolkit profiles (Rice)
  OMPP – OpenMP Profiler

profiles (Fuerlinger)
  PERI-XML (PERI)
  GPTL – General Purpose

Timing Library profiles
(ORNL)

  Paraver profiles (BSC)
  IPM – Integrated Performance

Monitoring (NERSC)
  Google profiles (Google)
  Others (Gyro, GAMESS, other

application-specific timer data)

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

PerfDMF Schema Overview

Application Experiment Trial

Timer Metric Counter

Measurement Measurement

Nice and simple, but there are problems...

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

A Little CScADS History…

  Meeting: “Performance Tools for Petascale Computing”
July 21-24, 2008

  PERI-XML Working Group: Towards a Common
Exchange Format

  Main Focus: Each data point has a connection to Five
profile dimensions
 Code (static location, binary/source) – Check!
 Space (physical and logical) – Check!
 Metrics (data which is collected, derived values) – Check!
 Dynamic State (callstack, context, …) – um, not explicitly
 Time (timeline) – no

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

PerfDMF Complaints Problems “Challenges”

  Metadata is not a first-class citizen in schema
 Compressed XML document, not context-sensitive

  Hierarchy inadequate (too many/few levels)
  Not enough explicit semantic relationships in the data

 Callpaths, phases, timer groups, etc.
  No explicit support for “special cases”

 Callpaths, phases, parameters*, snapshots/timestamps
  Inefficiencies

 Space (some poor normalization)
 Time (parsing XML slow, loading big trials slow, etc)

  No C API

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

TAUdb – PerfDMF, but better!

  New Schema – (hopefully) all problems addressed
  TAU Tools retain compatibility with old schema
  Refactoring Java API
  Redesigned TAU measurement interface
  Full-featured C API
  SQLite support (evaluating)

WOW!

NEW!

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

TAUdb Schema Organizational Change

  Application, experiment tables are gone
  View (user-defined grouping/filter of Trials or Views of

Trials – arbitrary depth) defined using Metadata
 Replacement for application & experiment

  Trial (still a single profile)
 Primary_Metadata – name : value pair, common to all

threads, no hierarchical data – handles most common cases
 Secondary_Metadata – could be unique for each thread,

phase, timer, can be hierarchical or arrays
 Both can be queried directly

 View : “Give me trials of application ABC with 4096 processes
which ran on machine X with dataset Y in the last 30 days”

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Schema Organizational Changes

Application Experiment Trial

Timer Metric Counter

Measurement Measurement

Metadata
View

ViewParam

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

View Creation Process

  Using trial metadata name/values, filter (out) the trials of
interest

  Same interface in PerfExplorer, ParaProf, web

View creation GUI mock-up

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Metadata Collection

  Like PerfDMF, can load Metadata file with profile data
 XML
 JSON http://www.json.org

 Like XML, allows for arbitrarily structured data
 Less annotation overhead, no pre-defined schema

  Example:
{ "metadata_number" : 14,
 "metadata_string" : "string",
 "metadata_boolean" : false,
 "metadata_array" : [1,2,3],
 "metadata_null" : null,
 "metadata_object" : { "inner_object" : "value" },
 "metadata_array_of_objects" : [{ "name" : "value" }, { "next" : "value" }] }

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

JSON Format

  JavaScript Object Notation

Figure credits: http://www.json.org

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Profile Data Schema Changes

  Redundancies (source
location, calls,
subroutines, node/context/
thread)

  No explicit tables
representing “location”,
“context” or “state”

  Encoded strings (main =>
foo => iteration12 => bar)

  Only 3 of 5 dimensions
explicitly supported

Timer
-name

-source loc
-callpath

Metric
-name

Measurement
-node

-thread
-#calls

-#subroutines
-inclusive
-exclusive

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Simple Example

void bar (int x) {
 sleep(1);
}
void foo (int x) {
 sleep(1);
 bar(x);
}
int main (int argc, char** argv) {
 int x = 0;
 for (x = 0 ; x < 10 ; x++) {
 foo (x);
 bar (x);
 }
}

  What happens when we
store a callpath profile of
this program?

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Simple example in old schema (reduced detail)

rows = callgraph nodes + callgraph edges
ID Name File Line Line end Column Column end
1 main() test.c 12 18 1 1
2 foo() test.c 7 10 1 1
3 main() => foo() test.c 7 10 1 1
4 bar() test.c 3 5 1 1
5 main() -> foo() => bar() test.c 3 5 1 1
6 main() => bar() test.c 3 5 1 1

Timer Node Thread Metric Inclusive Exclusive Incl % Excl % Calls Subr
1 0 0 0 30003073 49 100.00% 0.00% 1 20
2 0 0 0 20001985 10001026 66.67% 33.33% 10 10
3 0 0 0 20001985 10001026 66.67% 33.33% 10 10
4 0 0 0 20001998 20001998 66.67% 66.67% 20 0
5 0 0 0 10000959 10000959 33.33% 33.33% 10 0
6 0 0 0 10001039 10001039 33.33% 33.33% 10 0

rows = (callgraph nodes + callgraph edges) * # threads * # metrics

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Profile Data Schema Changes

  Redundancies eliminated
  Thread table represents

location
  TimerParam table

represents state
  Callpath object represents

call tree context
  Normalizing the schema

results in space savings
(timer, metric) - ~30%

  Long names eliminated

Timer
-name

-source loc

Metric
-name

Measurement
-inclusive
-exclusive

Callpath

Thread
-node

-context
-thread

CallpathData
-#calls

-#subroutines

TimerParam
-name
-value

Interval
- start, end

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Simple Example in New Schema

ID Name File Line Line end Column Column end
1 main() test.c 12 18 1 1
2 foo() test.c 7 10 1 1
3 bar() test.c 3 5 1 1

TIMER: # rows = callgraph nodes

ID Timer Parent
1 1 -
2 2 -
3 2 1
4 3 -
5 3 3
6 3 1

Callpath Thread Calls Subr
1 0 1 20
2 0 10 10
3 0 10 10
4 0 20 0
5 0 10 0
6 0 10 0

TCD Metric Incl Excl Incl % Excl %
1 1 30003073 49 100.00% 0.00%
2 1 20001985 10001026 66.67% 33.33%
3 1 20001985 10001026 66.67% 33.33%
4 1 20001998 20001998 66.67% 66.67%
5 1 10000959 10000959 33.33% 33.33%
6 1 10001039 10001039 33.33% 33.33%

ID Node Thread
0 0 0

MEASUREMENT: # rows = (callgraph nodes +
callgraph edges) * # threads * # metrics

THREAD: # rows = # threads

CALLPATH: # rows = callgraph
nodes + callgraph edges

CALLPATH_DATA: # rows =
(callgraph nodes + callgraph
edges) * # threads

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

TAUdb redesigned schema

Trial

Counter

Measurement

Metadata
Timer

Metric

Measurement

Callpath

Thread

CallpathData

TimerParam

Interval

 Metadata can be queried, context-sensitive
 All 5 dimensions now explicit

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

C API

  C programming interface under development
  PostgreSQL support first, others as requested
  Prototype developed

 Query only, both old and new schema
  Plan full-featured API: Query, Insert, & Update
  One internal test user so far – Nick Chaimov using it for

Active Harmony / CHiLL work
  Request for SQLite support – currently evaluating JDBC

clients

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Project Status, Conclusions, Future

  New database schema defined
  C API in development
  Java API (mostly) supports the new schema

 Supports JSON metadata (and previous XML support)
 Not in most TAU recent release

  View construction GUI still in design phase
  TAU measurement API needs design, implementation,

testing (context-sensitive metadata)
  Planning targeted distribution

 TAUdb, ParaProf, PerfExplorer
 Goal: zero-step config (likely 1-step config)

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

  Department of Energy (DOE)
  Office of Science
  ASC/NNSA
  SUPER project

  Department of Defense (DoD)
  HPC Modernization Office (HPCMO)

  NSF Software Development for Cyberinfrastructure (SDCI)
  Research Centre Juelich
  Argonne National Laboratory
  Technical University Dresden
  ParaTools, Inc.
  NVIDIA

Support Acknowledgements

