
TAUdb: PerfDMF Refactored

Kevin Huck, Suzanne Millstein,
 Allen D. Malony and Sameer Shende

Department of Computer and Information Science
University of Oregon

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

PerfDMF Overview

  Performance Data Management Framework
  Started in 2004 (Huck et al., ICPP 2005)
  Database Schema & Java API (profile parsing, database

queries, conversion utilities)
  Provides DB support for TAU Profile Analysis Tools

ParaProf, PerfExplorer, EclipsePTP
  Used as regression testing database for TAU
  Used as performance regression database for FACETS

(2008-2012)
  Ported to several DBMS: PostgreSQL, MySQL, H2,

Derby, Oracle, DB2

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Supported Profile Formats

  TAU – profiles, packed
profiles, snapshots (UO)

  DynaProf – PAPI DynaProf
profiles (UTK)

  mpiP – Lightweight, scalable
MPI Profiling (Vetter,
Chambreau)

  HPM Toolkit profiles (IBM)
  Gprof profiles (GNU)
  PerfSuite psrun profiles

(NCSA)
  Cube, Cube3, Cube4 profiles

(FZJ)

  HPC Toolkit profiles (Rice)
  OMPP – OpenMP Profiler

profiles (Fuerlinger)
  PERI-XML (PERI)
  GPTL – General Purpose

Timing Library profiles
(ORNL)

  Paraver profiles (BSC)
  IPM – Integrated Performance

Monitoring (NERSC)
  Google profiles (Google)
  Others (Gyro, GAMESS, other

application-specific timer data)

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

PerfDMF Schema Overview

Application Experiment Trial

Timer Metric Counter

Measurement Measurement

Nice and simple, but there are problems...

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

A Little CScADS History…

  Meeting: “Performance Tools for Petascale Computing”
July 21-24, 2008

  PERI-XML Working Group: Towards a Common
Exchange Format

  Main Focus: Each data point has a connection to Five
profile dimensions
 Code (static location, binary/source) – Check!
 Space (physical and logical) – Check!
 Metrics (data which is collected, derived values) – Check!
 Dynamic State (callstack, context, …) – um, not explicitly
 Time (timeline) – no

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

PerfDMF Complaints Problems “Challenges”

  Metadata is not a first-class citizen in schema
 Compressed XML document, not context-sensitive

  Hierarchy inadequate (too many/few levels)
  Not enough explicit semantic relationships in the data

 Callpaths, phases, timer groups, etc.
  No explicit support for “special cases”

 Callpaths, phases, parameters*, snapshots/timestamps
  Inefficiencies

 Space (some poor normalization)
 Time (parsing XML slow, loading big trials slow, etc)

  No C API

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

TAUdb – PerfDMF, but better!

  New Schema – (hopefully) all problems addressed
  TAU Tools retain compatibility with old schema
  Refactoring Java API
  Redesigned TAU measurement interface
  Full-featured C API
  SQLite support (evaluating)

WOW!

NEW!

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

TAUdb Schema Organizational Change

  Application, experiment tables are gone
  View (user-defined grouping/filter of Trials or Views of

Trials – arbitrary depth) defined using Metadata
 Replacement for application & experiment

  Trial (still a single profile)
 Primary_Metadata – name : value pair, common to all

threads, no hierarchical data – handles most common cases
 Secondary_Metadata – could be unique for each thread,

phase, timer, can be hierarchical or arrays
 Both can be queried directly

 View : “Give me trials of application ABC with 4096 processes
which ran on machine X with dataset Y in the last 30 days”

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Schema Organizational Changes

Application Experiment Trial

Timer Metric Counter

Measurement Measurement

Metadata
View

ViewParam

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

View Creation Process

  Using trial metadata name/values, filter (out) the trials of
interest

  Same interface in PerfExplorer, ParaProf, web

View creation GUI mock-up

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Metadata Collection

  Like PerfDMF, can load Metadata file with profile data
 XML
 JSON http://www.json.org

 Like XML, allows for arbitrarily structured data
 Less annotation overhead, no pre-defined schema

  Example:
{ "metadata_number" : 14,
 "metadata_string" : "string",
 "metadata_boolean" : false,
 "metadata_array" : [1,2,3],
 "metadata_null" : null,
 "metadata_object" : { "inner_object" : "value" },
 "metadata_array_of_objects" : [{ "name" : "value" }, { "next" : "value" }] }

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

JSON Format

  JavaScript Object Notation

Figure credits: http://www.json.org

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Profile Data Schema Changes

  Redundancies (source
location, calls,
subroutines, node/context/
thread)

  No explicit tables
representing “location”,
“context” or “state”

  Encoded strings (main =>
foo => iteration12 => bar)

  Only 3 of 5 dimensions
explicitly supported

Timer
-name

-source loc
-callpath

Metric
-name

Measurement
-node

-thread
-#calls

-#subroutines
-inclusive
-exclusive

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Simple Example

void bar (int x) {
 sleep(1);
}
void foo (int x) {
 sleep(1);
 bar(x);
}
int main (int argc, char** argv) {
 int x = 0;
 for (x = 0 ; x < 10 ; x++) {
 foo (x);
 bar (x);
 }
}

  What happens when we
store a callpath profile of
this program?

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Simple example in old schema (reduced detail)

rows = callgraph nodes + callgraph edges
ID Name File Line Line end Column Column end
1 main() test.c 12 18 1 1
2 foo() test.c 7 10 1 1
3 main() => foo() test.c 7 10 1 1
4 bar() test.c 3 5 1 1
5 main() -> foo() => bar() test.c 3 5 1 1
6 main() => bar() test.c 3 5 1 1

Timer Node Thread Metric Inclusive Exclusive Incl % Excl % Calls Subr
1 0 0 0 30003073 49 100.00% 0.00% 1 20
2 0 0 0 20001985 10001026 66.67% 33.33% 10 10
3 0 0 0 20001985 10001026 66.67% 33.33% 10 10
4 0 0 0 20001998 20001998 66.67% 66.67% 20 0
5 0 0 0 10000959 10000959 33.33% 33.33% 10 0
6 0 0 0 10001039 10001039 33.33% 33.33% 10 0

rows = (callgraph nodes + callgraph edges) * # threads * # metrics

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Profile Data Schema Changes

  Redundancies eliminated
  Thread table represents

location
  TimerParam table

represents state
  Callpath object represents

call tree context
  Normalizing the schema

results in space savings
(timer, metric) - ~30%

  Long names eliminated

Timer
-name

-source loc

Metric
-name

Measurement
-inclusive
-exclusive

Callpath

Thread
-node

-context
-thread

CallpathData
-#calls

-#subroutines

TimerParam
-name
-value

Interval
- start, end

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Simple Example in New Schema

ID Name File Line Line end Column Column end
1 main() test.c 12 18 1 1
2 foo() test.c 7 10 1 1
3 bar() test.c 3 5 1 1

TIMER: # rows = callgraph nodes

ID Timer Parent
1 1 -
2 2 -
3 2 1
4 3 -
5 3 3
6 3 1

Callpath Thread Calls Subr
1 0 1 20
2 0 10 10
3 0 10 10
4 0 20 0
5 0 10 0
6 0 10 0

TCD Metric Incl Excl Incl % Excl %
1 1 30003073 49 100.00% 0.00%
2 1 20001985 10001026 66.67% 33.33%
3 1 20001985 10001026 66.67% 33.33%
4 1 20001998 20001998 66.67% 66.67%
5 1 10000959 10000959 33.33% 33.33%
6 1 10001039 10001039 33.33% 33.33%

ID Node Thread
0 0 0

MEASUREMENT: # rows = (callgraph nodes +
callgraph edges) * # threads * # metrics

THREAD: # rows = # threads

CALLPATH: # rows = callgraph
nodes + callgraph edges

CALLPATH_DATA: # rows =
(callgraph nodes + callgraph
edges) * # threads

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

TAUdb redesigned schema

Trial

Counter

Measurement

Metadata
Timer

Metric

Measurement

Callpath

Thread

CallpathData

TimerParam

Interval

 Metadata can be queried, context-sensitive
 All 5 dimensions now explicit

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

C API

  C programming interface under development
  PostgreSQL support first, others as requested
  Prototype developed

 Query only, both old and new schema
  Plan full-featured API: Query, Insert, & Update
  One internal test user so far – Nick Chaimov using it for

Active Harmony / CHiLL work
  Request for SQLite support – currently evaluating JDBC

clients

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

Project Status, Conclusions, Future

  New database schema defined
  C API in development
  Java API (mostly) supports the new schema

 Supports JSON metadata (and previous XML support)
 Not in most TAU recent release

  View construction GUI still in design phase
  TAU measurement API needs design, implementation,

testing (context-sensitive metadata)
  Planning targeted distribution

 TAUdb, ParaProf, PerfExplorer
 Goal: zero-step config (likely 1-step config)

CScADS: Performance Tools for Extreme-Scale Computing, June 26-29, 2012

  Department of Energy (DOE)
  Office of Science
  ASC/NNSA
  SUPER project

  Department of Defense (DoD)
  HPC Modernization Office (HPCMO)

  NSF Software Development for Cyberinfrastructure (SDCI)
  Research Centre Juelich
  Argonne National Laboratory
  Technical University Dresden
  ParaTools, Inc.
  NVIDIA

Support Acknowledgements

